王來亮, 羅 群
(1寧波大學(xué)醫(yī)學(xué)院, 2寧波市第二醫(yī)院腎內(nèi)科,浙江 寧波 315010)
腎臟纖維化是所有慢性腎臟疾病(chronickidneydisease,CKD),包括原發(fā)性、繼發(fā)性腎小球疾病,腎小管間質(zhì)和血管疾病以及腎移植慢性排斥性病變發(fā)展至終末期腎臟病共同的最終通路。目前認為,腎臟纖維化是不可逆的進行性病變,最終需透析治療或腎移植,對患者、家庭及社會造成沉重的負擔(dān)。盡管世界各國腎臟病學(xué)者做了大量的工作,但目前對腎臟纖維化的發(fā)病機制仍缺乏全面認識,嚴重阻礙了臨床抗纖維化治療的有效進行。近年來,研究表明:在腎臟損傷過程中,多種因子可誘導(dǎo)上皮細胞轉(zhuǎn)化為成纖維細胞/肌成纖維細胞,引起腎小管缺失與細胞外基質(zhì)蛋白沉積,這一過程被稱為上皮間充質(zhì)轉(zhuǎn)化(epithelial-mesenchymaltransition,EMT)[1-2]。本文就近年來腎小管上皮細胞EMT在腎臟纖維化的作用及機制研究進展進行綜述。
腎小管上皮細胞EMT是一復(fù)雜過程,主要包括4個重要特征:上皮細胞失去緊密黏附和極性;α-平滑肌肌動蛋白(α-smooth muscle actin, α-SMA)表達和肌動蛋白再合成;腎小管基底膜破損;細胞遷徙及浸潤性增強[2]。研究表明,腎小管上皮細胞在轉(zhuǎn)化生長因子-β(transforming growth factor β, TGF-β)誘導(dǎo)下發(fā)生表型轉(zhuǎn)化,上皮標志蛋白E-鈣黏蛋白(E-cadherin)、緊密黏連蛋白-1(zonula occludens 1, ZO-1)及細胞角蛋白(cytokeratin)表達減少,而間充質(zhì)標志蛋白波形蛋白(vimentin)、α-SMA、成纖維細胞特異蛋白-1(fibroblast-specific protein 1, FSP-1)、纖連蛋白(fibronectin, FN)及I型膠原表達增加[1-3]。轉(zhuǎn)分化的腎小管上皮細胞常伴細胞形態(tài)成纖維樣改變及遷徙能力增強,分泌大量間質(zhì)基質(zhì)蛋白,從而促進腎臟纖維化[2-3]。
腎小管上皮細胞EMT為腎間質(zhì)成纖維細胞/肌成纖維細胞的重要來源。研究表明,在單側(cè)輸尿管梗阻(unilateral ureteral obstruction, UUO)腎病模型早期,大量腎小管上皮細胞同時表達E-鈣黏蛋白與α-SMA,提示小管上皮細胞正發(fā)生EMT;隨著病程進展,病變部位E-鈣黏蛋白消失,代之以α-SMA陽性的肌成纖維細胞[2]。與動物研究相似,在人的腎活檢組織中同樣可以觀察到腎小管上皮細胞EMT現(xiàn)象。研究報道,在不同腎臟病患者的腎活檢組織中均存在腎小管上皮細胞EMT,小管上皮可不同程度地表達肌成纖維細胞標志蛋白α-SMA及間充質(zhì)蛋白波形蛋白[4]。此外,腎小管間質(zhì)成纖維細胞/肌成纖維細胞還源于內(nèi)皮細胞-間充質(zhì)細胞轉(zhuǎn)分化(endothelial-mesenchymal transition, EndoMT)[5]??梢?,腎小管間質(zhì)纖維化的成纖維細胞/肌成纖維細胞來源具有多重性。
體內(nèi)腎小管上皮細胞EMT對腎臟纖維化的作用常無法被充分評估,主要原因可能包括以下幾方面:首先,E-鈣黏蛋白、ZO-1及細胞角蛋白的丟失可能為腎小管上皮細胞損傷的普遍特征,腎小管上皮細胞EMT缺乏特異性較高的表型標志物;其次,間充質(zhì)標志物波形蛋白、α-SMA、FSP-1、FN及I型膠原等對成纖維細胞/肌成纖維細胞特異性較差,可同時存在于其它細胞如炎癥細胞和內(nèi)皮細胞等;此外,EMT為一動態(tài)過程,腎損傷后腎小管上皮細胞與內(nèi)皮細胞常發(fā)生不完全性EMT,可僅表現(xiàn)為1~2種表型蛋白的改變,且細胞可能并不離開固有的局灶微環(huán)境。因此,即使伴隨著基因標記技術(shù)的高度發(fā)展,在人體進行腎小管上皮細胞EMT的動態(tài)研究并不現(xiàn)實。可見,腎小管上皮細胞EMT在體內(nèi)腎臟纖維化,尤其是在人慢性腎臟疾病纖維化的作用至今尚未完全闡明,仍將是未來研究腎臟纖維化的重要主題。
2.1正調(diào)節(jié)因子 在腎臟纖維化不同階段,腎小管及毛細血管微環(huán)境中存在多種EMT調(diào)節(jié)因子。TGF-β、血管緊張素II、醛固酮、高糖及尿白蛋白誘導(dǎo)EMT及腎臟纖維化,而腺苷酸活化蛋白激酶(adenosine monophosphate-activated protein kinase, AMPK)的激活可抑制此過程。在人腎近曲小管上皮細胞(HK-2)中,AMPK激活劑二甲雙胍(metformin)誘導(dǎo)血紅素加氧酶-1(heme oxygenase 1, HO-1)及內(nèi)源性抗氧化劑硫氧還蛋白(thioredoxin, TRX)的表達,調(diào)控活性氧簇(reactive oxygen species, ROS)的活性,從而抑制EMT。AMPK抑制劑復(fù)合維生素C及小干擾RNA抑制可阻斷此過程[6]。
除了經(jīng)典的調(diào)節(jié)因子TGF-β、血管緊張素II等外,近年研究發(fā)現(xiàn)了多種新型EMT調(diào)節(jié)因子。在腎臟纖維化早期,淋巴細胞功能相關(guān)抗原-1(lymphocyte function-associated antigen 1, LFA-1)及細胞間黏附分子-1(intracellular adhesion molecule 1, ICAM-1)可分別作用于外周單核細胞及腎小管上皮細胞,促進小管上皮細胞EMT的發(fā)生[7]。補體系統(tǒng)與蛋白對腎小管上皮細胞EMT也有促進作用[4,8-10]。研究發(fā)現(xiàn),補體C3在小鼠UUO模型退行性腎小管中呈高表達,腎小管上皮細胞出現(xiàn)EMT[9]。此外,運用微流控與區(qū)劃芯片(microfluidic and compartmental chips)技術(shù)模擬活體近端小管微環(huán)境,也發(fā)現(xiàn)補體C3a及血清蛋白可誘導(dǎo)上皮細胞發(fā)生EMT,并促進細胞遷徙及形態(tài)改變[11]。有趣的是,草酸鈣可誘導(dǎo)巨噬細胞合成分泌促纖維化因子,促進腎小管上皮細胞EMT的發(fā)生,出現(xiàn)間充質(zhì)標志物波形蛋白表達上調(diào),而上皮細胞標志物E-鈣黏蛋白及細胞角蛋白表達下調(diào),此過程由小G蛋白RhoA及泛素-蛋白水解酶復(fù)合體通路(ubiquitin-proteasome pathway, UPP)依賴的TGF-β1信號轉(zhuǎn)號途徑介導(dǎo)[12]。CKD患者常伴尿酸升高,可誘導(dǎo)腎小管上皮細胞發(fā)生EMT,表現(xiàn)為E-鈣黏蛋白表達水平降低,α-SMA表達水平升高。這與尿酸促進轉(zhuǎn)錄因子Snail與Slug合成,同時增加E-鈣黏蛋白泛素化并降解相關(guān)[13]。此外,在糖尿病腎病患者中,近端小管上皮細胞神經(jīng)膠質(zhì)瘤致病相關(guān)蛋白-2(glioma pathogenesis related protein 2, GLIPR-2)水平增加[14]。研究發(fā)現(xiàn),GLIPR-2高表達可誘導(dǎo)近端小管上皮細胞EMT,表現(xiàn)為間充質(zhì)標志物如波形蛋白、α-SMA合成增加,細胞遷徙能力增強,這與細胞外信號調(diào)節(jié)蛋白激酶(extracellular signal-regulated protein kinase, ERK)1/2的激活密切相關(guān)[14]。
腎臟纖維化常伴組織修復(fù)與重塑,多種蛋白酶被激活并分泌進入腎小管間質(zhì),可誘導(dǎo)腎小管上皮細胞發(fā)生EMT,促進腎臟纖維化[15-18]。在小鼠UUO模型中,纖維化腎臟小管上皮細胞基質(zhì)金屬蛋白酶(matrix metalloproteinase, MMP)-2與MMP-9表達增加,引起鄰近小管基底膜破壞,小管上皮細胞發(fā)生EMT且遷徙力增強[16-18]。其機制與MMP激活Wnt5a-Ror2信號途徑及骨橋蛋白(osteopontin, OPN)裂解有關(guān)[16-17]。需要注意的是,在腎臟纖維化的早期與晚期,MMP來源細胞可能不同,小鼠UUO模型早期,MMP-9來源主要為腎小管上皮細胞,而晚期除了腎小管上皮細胞,還包括巨噬細胞及肌成纖維細胞[17]。
2.2負調(diào)節(jié)因子 在眾多EMT調(diào)節(jié)因子中還存在多種EMT負調(diào)節(jié)因子。其中經(jīng)典負調(diào)節(jié)因子包括肝細胞生長因子(hepatocytegrowthfactor,HGF)及骨形態(tài)發(fā)生蛋白 7(bonemorphogenicprotein7,BMP-7),可直接調(diào)控TGF-β/Smad信號途徑,阻斷腎小管上皮細胞EMT及腎臟纖維化。近年研究發(fā)現(xiàn)了多種新型腎小管上皮細胞EMT負調(diào)節(jié)因子,包括抗衰老蛋白Klotho、活性維生素D、血管內(nèi)皮生長因子(vascularendothelialgrowthfactor,VEGF)、IL-7等[19-22]。在UUO動物模型中,腎臟Klotho缺乏可誘導(dǎo)小管上皮細胞間充質(zhì)標志物的表達增加,而外源性Klotho可抑制此過程[19-20],提示Klotho可阻斷腎小管上皮細胞EMT及腎臟纖維化。Klotho為Wnt內(nèi)源性拮抗劑[23-24],其缺乏可引起Wnt/β-catenin信號通路激活,從而促進腎小管上皮細胞EMT及腎臟纖維化,其機制可能與Wnt3a延長小管細胞在細胞周期G2/M期的停滯時間,并促進TGF-β1的釋放有關(guān)[25]??梢?,Klotho可通過抑制Wnt/β-catenin與TGF-β1信號途徑減輕腎小管上皮EMT及腎臟纖維化。CKD患者維生素D受體(vitaminDreceptor,VDR)表達水平下降,出現(xiàn)腎小管上皮細胞EMT及腎臟纖維化,活性維生素D可促進VDR的表達并抑制此過程[22]。其內(nèi)在機制尚未闡明,但研究發(fā)現(xiàn)活性維生素D類似物帕立骨化醇可刺激慢性腎臟病小鼠Klotho合成分泌,升高血清和尿液Klotho水平,阻斷腎小管上皮細胞EMT[26-27]。此外,VEGF及IL-7也可阻斷腎小管上皮細胞EMT,其與腎小管上皮細胞TGF-β、TGF-βⅡ型受體、磷酸化Smad2/3、Smad3、Snai1或miR192表達受抑制[21,28]及促進Smad7合成有關(guān)[28]。
2.3microRNA 腎小管上皮細胞microRNA (miRNA)表達水平也與小管上皮細胞EMT及腎臟纖維化密切相關(guān)。研究發(fā)現(xiàn),低氧環(huán)境中腎小管上皮細胞miR34a表達水平下降,Notch信號通路激活,出現(xiàn)EMT,引起上皮細胞標志物ZO-1、E-鈣黏蛋白表達減少,間充質(zhì)標志物α-SMA、波形蛋白表達增加;而miR34a類似物可抑制此過程[29]。這提示低氧環(huán)境中miR34a的低表達可能通過激活Notch信號通路調(diào)控腎小管上皮細胞EMT。此外,研究表明Notch促進EMT的機制之一與其激活誘導(dǎo)Snail1的表達有關(guān)[30]。甲狀腺激素T3可促進miR34a表達,阻斷TGF-β1誘導(dǎo)的腎小管上皮細胞EMT[31]。在腎臟纖維化早期,miRNA-200家族水平即可降低,同樣促進腎小管上皮細胞EMT[32]。研究表明,miRNA-200家族可與鋅指E-盒結(jié)合同源異形盒1(Zinc finger E-box-binding homeobox 1,ZEB1)及ZEB2靶向結(jié)合,促進腎小管上皮細胞E-鈣黏蛋白合成,抑制纖連蛋白表達,從而維持小管上皮細胞形態(tài)特征[32-33]。miRNA-200對E-鈣黏蛋白與纖連蛋白表達的調(diào)控并不依賴于磷酸化Smad2/3、p38絲裂原活化蛋白激酶(mitogen-activated protein kinase, p38 MAPK)或p42/44 MAPK信號通路的介導(dǎo)[33],但也有研究得出與此不一致的結(jié)論[32]。
3.1TGF-β信號通路 TGF-β在纖維化腎臟中表達普遍增加,可介導(dǎo)腎小管上皮細胞EMT,在腎臟纖維化的發(fā)生發(fā)展中備受關(guān)注。TGF-β可通過Smad依賴性信號途徑介導(dǎo)EMT。TGF-β通過跨膜絲/蘇氨酸I型和II型受體促進Smad2與Smad3磷酸化,磷酸化Smad2、Smad3及Smad4形成異聚體復(fù)合物,轉(zhuǎn)移進入細胞核調(diào)控相關(guān)基因的轉(zhuǎn)錄,包括分化抑制因子2(inhibitor of differentiation 2, Id2)、過氧化物酶體增殖物激活受體γ(peroxisome proliferator-activated receptor γ, PPAR-γ)、β-catenin、煙酰胺腺嘌呤二核苷酸磷酸氧化酶2(NADPH oxidase 2, Nox2)、激活蛋白1(activator protein 1, AP-1)、Snail等[22,34-37]。需要注意的是,Smad3分子不同結(jié)構(gòu)部位的磷酸化可對下游信號的表達產(chǎn)生截然相反的作用[34]。研究表明,TGF-β1通過經(jīng)典Smad 2/3信號途徑抑制Id2合成,誘導(dǎo)腎小管上皮細胞EMT,而BMP-7依賴Smad 1/5信號途徑可誘導(dǎo)Id2表達,拮抗以上過程[38],這提示Id2可抑制上皮細胞去分化。最新研究發(fā)現(xiàn),TGF-β1可抑制另一EMT負調(diào)節(jié)因子癌細胞擴散抑制因子(suppressor of cancer cell invasion, SCAI)的表達,加重腎臟纖維化[39]。Gremlin為TGF-β1信號途徑下游因子,研究表明重組gremlin可誘導(dǎo)腎小管上皮細胞TGF-β1的表達,促進細胞外基質(zhì)沉積及小管上皮細胞EMT;利用小干擾RNA(small interfering RNA)阻斷內(nèi)源性gremlin表達可抑制此過程,提示gremlin可能成為抗腎小管上皮細胞EMT及腎臟纖維化的新治療靶點[40]。
TGF-β還可激活腎小管上皮細胞多條非Smad依賴性EMT相關(guān)信號通路,包括p38 MAPK、磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase, PI3K)/蛋白激酶B(protein kinase B, PKB/Akt)及RhoA等。研究表明,低糖環(huán)境下TGF-β1可激活p38 MAPK,促進下游基因AP-1表達,從而引起腎小管上皮細胞EMT[37]。事實上,高糖可單獨激活p38 MAPK,促進腎小管上皮細胞下游基因AP-1的表達及EMT[37]。TGF-β激活p38 MAPK依賴于β1-整合素,而p38 MAPK激活可使糖原合成酶激酶3β(glycogen synthase kinase 3β, GSK-3β)C端磷酸化并使其失活,引起β-catenin積聚[41]。PI3K/Akt信號通路激活也與高糖環(huán)境下腎小管上皮細胞EMT緊密相關(guān),其機制可能通過促進GSK-3β磷酸化及Snail1和β-catenin的表達相關(guān)[42]。此外,腎小管上皮細胞在TGF-β誘導(dǎo)下發(fā)生EMT時,小G蛋白RhoA對細胞形態(tài)變化、間質(zhì)標志物如纖連蛋白、波形蛋白的表達及細胞骨架重塑也具有重要作用[12]。
3.2Wnt信號通路Wnt蛋白屬分泌型生長因子的高度保守家族成員,通過FZD受體(frizzledreceptors)共受體低密度脂蛋白受體相關(guān)蛋白(LDL-receptor-relatedprotein,LRP)5/6調(diào)控器官發(fā)生、組織穩(wěn)態(tài)及腫瘤形成。Wnt蛋白與受體結(jié)合后,通過信號轉(zhuǎn)導(dǎo)促使β-catenin去磷酸化。β-catenin去磷酸化可抑制由泛素介導(dǎo)的降解,使其在胞漿積聚,進而與胞核T細胞因子/淋巴增強因子 1(Tcellfactor/lymphoidenhancer-bindingfactor1,TCF/LEF1)結(jié)合,促進Wnt目標基因的轉(zhuǎn)錄。
近年研究發(fā)現(xiàn),Wnt/β-catenin信號途徑除了調(diào)控器官形成、腫瘤轉(zhuǎn)移等,也參與CKD尤其糖尿病腎病的腎小管上皮細胞EMT及腎臟纖維化。Wnt信號活化主要集中在腎小管上皮細胞和腎臟間質(zhì)。研究發(fā)現(xiàn)高糖環(huán)境中,腎小管上皮細胞Wnt、α-SMA表達增加,E-鈣黏蛋白表達降低,β-catenin在細胞漿及核內(nèi)聚積,提示糖尿病腎病腎小管間質(zhì)纖維化與Wnt/β-catenin信號通路激活密切相關(guān)[19]。Zhou等[43]研究表明高糖可以活化Aktia小鼠糖尿病模型中經(jīng)典Wnt信號通路,使用胰島素控制血糖可明顯降低該模型中Wnt信號的活化,使Wnt信號通路的組成成分表達下調(diào);通過單克隆抗體阻斷LRP6抑制經(jīng)典Wnt信號通路能減輕腎小管上皮細胞EMT與腎臟纖維化。TGF-β與Wnt信號途徑都可激活β-catenin,β-catenin激活可能作為信號轉(zhuǎn)導(dǎo)的重要樞紐,促進下游基因(Snail、Twist等)的轉(zhuǎn)錄,從而調(diào)控腎小管上皮細胞EMT及腎臟纖維化。
最新研究發(fā)現(xiàn),非β-catenin依賴Wnt信號通路如Wnt5a-Ror2也可介導(dǎo)腎小管上皮細胞EMT及腎臟纖維化。在小鼠UUO模型中,Wnt5a與Ror2表達均上調(diào),而Ror2在小管上皮細胞尤為明顯,同時伴間充質(zhì)標志物Snail及波形蛋白水平升高[16]。與Ror2+/-相比,Ror2+/+小鼠腎小管基底膜破壞程度明顯增加,這可能與腎小管上皮細胞Ror2的高表達常伴MMP-2合成增加,從而引起鄰近小管基底膜破壞有關(guān)[16]。
近年,EMT在胚胎發(fā)育、腫瘤轉(zhuǎn)移及器官纖維化中的作用已成為重要的研究主題。在腎臟損傷或應(yīng)激時,腎小管上皮細胞發(fā)生EMT,其對腎臟纖維化的作用日益受到關(guān)注。細胞內(nèi)外存在多種調(diào)節(jié)因子,調(diào)控EMT相關(guān)信號的表達與轉(zhuǎn)導(dǎo)。雖然近年研究獲得一些成果,但腎小管上皮細胞EMT與腎臟纖維化還存在如下重要問題尚未解決。首先,除了上皮細胞與內(nèi)皮細胞,間質(zhì)成纖維細胞、循環(huán)纖維細胞及血管管周細胞也參與了腎臟纖維化,腎小管上皮細胞EMT在腎臟纖維化中的地位還未明確。其次,EMT涉及多種分子機制,但完整的EMT調(diào)控機制有待進一步闡明。此外,腎小管上皮細胞EMT機制的深入研究可啟動更具針對性的抗纖維化治療,但如何將已取得的研究成果轉(zhuǎn)化為具體臨床治療手段是未來工作的巨大挑戰(zhàn)。
[參 考 文 獻]
[1]KimMK,MaengYI,SungWJ,etal.ThedifferentialexpressionofTGF-β1,ILKandwntsignalinginducingepithelialtomesenchymaltransitioninhumanrenalfibrogenesis:animmunohistochemicalstudy[J].IntJClinExpPathol,2013,6(9):1747-1758.
[2] Liu Y. New insights into epithelial-mesenchymal transition in kidney fibrosis[J]. J Am Soc Nephrol, 2010,21(2):212-222.
[3]López-HernándezFJ,López-NovoaJM.RoleofTGF-βinchronickidneydisease:anintegrationoftubular,glomerularandvasculareffects[J].CellTissueRes,2012,347(1): 141-154.
[4] Habib SL. Alterations in tubular epithelial cells in diabetic nephropathy[J]. J Nephrol,2013,26(5):865-869.
[5]HeJ,XuY,KoyaD,etal.Roleoftheendothelial-to-mesenchymaltransitioninrenalfibrosisofchronickidneydisease[J].ClinExpNephrol,2013,17(4):488-497.
[6] Lee JH, Kim JH, Kim JS, et al. AMP-activated protein kinase inhibits TGF-β-, angiotensin II-, aldosterone-, high glucose-, and albumin-induced epithelial-mesenchymal transition[J]. Am J Physiol Renal Physiol,2013,304(6):F686-F697.
[7]MorishitaY,WatanabeM,NakazawaE,etal.TheinteractionofLFA-1onmononuclearcellsandICAM-1ontubularepithelialcellsacceleratesTGF-β1-inducedrenalepithelial-mesenchymaltransition[J].PLoSOne,2011,6(8):e23267.
[8] Ibrini J, Fadel S, Chana RS, et al. Albumin-induced epithelial mesenchymal transformation[J]. Nephron Exp Nephrol,2012,120(3):e91-e102.
[9]ZhouX,FukudaN,MatsudaH,etal.Complement3activatestherenalrenin-angiotensinsystembyinductionofepithelial-to-mesenchymaltransitionofthenephrotubulusinmice[J].AmJPhysiolRenalPhysiol,2013,305(7):F957-F967.
[10] 孫良忠,岳智慧,陳述枚. 白蛋白超載誘導(dǎo)近端腎小管上皮細胞表達α-平滑肌肌動蛋白[J]. 中國病理生理雜志,2008,24(8):1575-1580.
[11]ZhouM,MaH,LinH,etal.Inductionofepithelial-to-mesenchymaltransitioninproximaltubularepithelialcellsonmicrofluidicdevices[J].Biomaterials,2014,35(5):1390-1401.
[12] Kanlaya R, Sintiprungrat K, Thongboonkerd V. Secreted products of macrophages exposed to calcium oxalate crystals induce epithelial mesenchymal transition of renal tubular cells via RhoA-dependent TGF-β1pathway[J]. Cell Biochem Biophys,2013,67(3):1207-1215.
[13]RyuES,KimMJ,ShinHS,etal.Uricacid-inducedphenotypictransitionofrenaltubularcellsasanovelmechanismofchronickidneydisease[J].AmJPhysiolRenalPhysiol,2013,304(5):F471-F480.
[14] Huang S, Liu F, Niu Q, et al. GLIPR-2 overexpression in HK-2 cells promotes cell EMT and migration through ERK1/2 activation[J]. PLoS One,2013,8(3):e58574.
[15]AresuL,BenaliS,GarbisaS,etal.Matrixmetalloproteinasesandtheirroleintherenalepithelialmesenchymaltransition[J].HistolHistopathol,2011,26(3):307-313.
[16] Li X, Yamagata K, Nishita M, et al. Activation of Wnt5a-Ror2 signaling associated with epithelial-to-mesenchymal transition of tubular epithelial cells during renal fibrosis[J]. Genes Cells,2013,18(7):608-619.
[17]TanTK,ZhengG,HsuTT,etal.Matrixmetalloproteinase-9oftubularandmacrophageorigincontributestothepathogenesisofrenalfibrosisviamacrophagerecruitmentthroughosteopontincleavage[J].LabInvest,2013,93(4):434-449.
[18] Du X, Shimizu A, Masuda Y, et al. Involvement of matrix metalloproteinase-2 in the development of renal interstitial fibrosis in mouse obstructive nephropathy[J]. Lab Invest,2012,92(8):1149-1160.
[19]SugiuraH,YoshidaT,ShiohiraS,etal.ReducedKlothoexpressionlevelinkidneyaggravatesrenalinterstitialfibrosis[J].AmJPhysiolRenalPhysiol,2012,302(10):F1252-F1264.
[20] Doi S, Zou Y, Togao O, et al. Klotho inhibits transforming growth factor-beta 1 (TGF-beta 1) signaling and suppresses renal fibrosis and cancer metastasis in mice[J]. J Biol Chem, 2011,286 (10):8655-8665.
[21]HongJP,LiXM,LiMX,etal.VEGFsuppressesepithelial-mesenchymaltransitionbyinhibitingtheexpressionofSmad3andmiR192,aSmad3-dependentmicroRNA[J].IntJMolMed,2013,31(6):1436-1442.
[22] Xiong M, Gong J, Liu Y, et al. Loss of vitamin D receptor in chronic kidney disease: a potential mechanism linking inflammation to epithelial-to-mesenchymal transition[J]. Am J Physiol Renal Physiol,2012,303(7):F1107- F1115.
[23]ChenB,MaX,LiuS,etal.Inhibitionoflungcancercellsgrowth,motilityandinductionofapoptosisbyKlotho,anovelsecretedWntantagonist,inadose-dependentmanner[J].CancerBiolTher,2012,13(12):1221-1228.
[24] Zhou L, Li Y, Zhou D, et al. Loss of Klotho contributes to kidney injury by derepression of Wnt/β-catenin signaling[J]. J Am Soc Nephrol,2013,24(5):771-785.
[25]SatohM,NagasuH,MoritaY,etal.KlothoprotectsagainstmouserenalfibrosisbyinhibitingWntsignaling[J].AmJPhysiolRenalPhysiol,2012,303(12):F1641-F1651.
[26] He W, Kang YS, Dai C, et al. Blockade of Wnt/β-catenin signaling by paricalcitol ameliorates proteinuria and kidney injury[J]. J Am Soc Nephrol,2011,22(1):90-103.
[27]LauWL,LeafEM,HuMC,etal.VitaminDreceptoragonistsincreaseklothoandosteopontinwhiledecreasingaorticcalcificationinmicewithchronickidneydiseasefedahighphosphatediet[J].KidneyInt,2012,82(12):1261-1270.
[28] Hsieh PF, Liu SF, Lee TC, et al. The role of IL-7 in renal proximal tubule epithelial cells fibrosis[J]. Mol Immunol,2012,50(1-2):74-82.
[29]DuR,SunW,XiaL,etal.Hypoxia-induceddown-regulationofmicroRNA-34apromotesEMTbytargetingtheNotchsignalingpathwayintubularepithelialcells[J].PLoSOne,2012,7(2):e30771.
[30] Matsuno Y, Coelho AL, Jarai G, et al. Notch signaling mediates TGF-β1-induced epithelial-mesenchymal transition through the induction of Snai1[J]. Int J Biochem Cell Biol,2012,44(5):776-789.
[31]LuX,ChenZ,LiangH,etal.ThyroidhormoneinhibitsTGFβ1-inducedrenaltubularepithe-lialtomesenchymaltransitionbyincreasingmiR34aexpression[J].CellSignal,2013,25(10):1949-1954.
[32] Xiong M, Jiang L, Zhou Y, et al. The miR-200 family regulates TGF-β1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression[J]. Am J Physiol Renal Physiol,2012,302(3):F369- F379.
[33]TangO,ChenXM,ShenS,etal.MiRNA-200brepressestransforminggrowthfactor-β1-inducedEMTandfibronectinexpressioninkidneyproximaltubularcells[J].AmJPhysiolRenalPhysiol,2013,304(10):F1266-F1273.
[34]BaeE,KimSJ,HongS,etal.Smad3linkerphosphorylationattenuatesSmad3transcriptionalactivityandTGF-β1/Smad3-inducedepithelial-mesenchymaltransitioninrenalepithelialcells[J].BiochemBiophysResCommun,2012,427(3):593-599.
[35] Djamali A, Reese S, Hafez O, et al. Nox2 is a mediator of chronic CsA nephrotoxicity[J]. Am J Transplant,2012,12(8):1997-2007.
[36]OhnukiK,UmezonoT,AbeM,etal.ExpressionoftranscriptionfactorSnai1andtubulointerstitialfibrosisinprogressivenephropathy[J].JNephrol,2012,25(2):233-239.
[37] Lv ZM, Wang Q, Wan Q, et al. The role of the p38 MAPK signaling pathway in high glucose-induced epithe-lial-mesenchymal transition of cultured human renal tubular epithelial cells[J]. PLoS One,2011,6(7):e22806.
[38]VeerasamyM,PhanishM,DockrellME.SmadmediatedregulationofinhibitorofDNAbinding2anditsroleinphenotypicmaintenanceofhumanrenalproximaltubuleepithelialcells[J].PLoSOne,2013,8(1):e51842.
[39] Fintha A, Gasparics, Fang L, et al. Characterization and role of SCAI during renal fibrosis and epithelial-to-mesenchymal transition[J]. Am J Pathol,2013,182(2):388-400.
[40]Rodrigues-DiezR,LavozC,CarvajalG,etal.Gremlinisadownstreamprofibroticmediatoroftransforminggrowthfactor-betainculturedrenalcells[J].NephronExpNephrol, 2012,122(1-2):62-74.
[41] Thornton TM, Pedraza-Alva G, Deng B, et al. Phosphorylation by p38 MAPK as an alternative pathway for GSK3β inactivation[J]. Science,2008,320(5876):667-670.
[42]LeeYJ,HanHJ.Troglitazoneameliorateshighglucose-inducedEMTanddysfunctionofSGLTsthroughPI3K/Akt,GSK-3β,Snail1,andβ-catenininrenalproximaltubulecells[J].AmJPhysiolRenalPhysiol,2010,298(5):F1263-F1275.
[43] Zhou T, He X, Cheng R, et al. Implication of dysregulation of the canonical wingless-type MMTV integration site (WNT) pathway in diabetic nephropathy[J]. Diabetologia, 2012,55(1):255-266.