• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      9p21染色體單核苷酸多態(tài)性與冠心病相關(guān)性的研究進(jìn)展

      2014-02-21 05:40李建飛房秋菊張明宇
      中國(guó)現(xiàn)代醫(yī)生 2014年2期
      關(guān)鍵詞:染色體多態(tài)性基因組

      李建飛+房秋菊+張明宇

      [摘要] 冠心病是全世界范圍內(nèi)導(dǎo)致死亡的疾病,全基因組關(guān)聯(lián)研究(GWAS)發(fā)現(xiàn)了許多與冠心病相關(guān)的易感基因位點(diǎn)。本文綜述9p21染色體單核苷酸多態(tài)性(SNP)和冠心病的關(guān)系,9p21風(fēng)險(xiǎn)基因的表達(dá)不僅增加冠心病的發(fā)病率,同時(shí)提高心肌梗死的發(fā)病率,并與早發(fā)冠心病和再發(fā)心肌梗死相關(guān)聯(lián),但目前基因造成冠心病高發(fā)的具體作用途徑仍不清楚。

      [關(guān)鍵詞] 9p21染色體;單核苷酸多態(tài)性;冠心病

      [中圖分類號(hào)] R541.4 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-9701(2014)02-0004-04

      The 9p21 chromosome polymorphism and coronary artery disease: A research progress

      LI Jianfei1 FANG Qiuju2 ZHANG Mingyu1

      1.Department of Cardiology, the Fourth Hospital of Harbin Medical Univercity, Harbin 150001, China; 2.Department of Cardiology, Heilongjiang Provincial Hospital, Harbin 150038, China

      [Abstract] Coronary heart disease is the leading cause of death worldwide. Many susceptibility genes associated with CHD had been identified by GWAS. This article reviews the association of single-nucleotide polymorphisms on chromosome 9p21 with the the risk of CHD. The presence of a risk allele at 9p21 locus increased the risk of myocardial infaction as well as CHD. In addition, it significantly associates with premature CHD and recurrent MI. The mechanism of genetic variants triggered the pathogenesis of CHD remains to be clarified.

      [Key words] Chromosome 9p21; Single nucleotide polymorphism; Coronary artery disease 冠心病的發(fā)病率逐年升高,目前成為人類疾病譜的第一殺手。流行病學(xué)研究結(jié)果顯示冠心病具有遺傳因素作用,既往研究結(jié)果也發(fā)現(xiàn)了一些基因多態(tài)性影響血脂、血栓形成等,但如何測(cè)定冠心病易感基因,保護(hù)高危冠心病人群仍是一個(gè)堡壘。2007年以來,隨著高通量基因分型技術(shù)和統(tǒng)計(jì)學(xué)的快速發(fā)展,使得全基因組關(guān)聯(lián)研究(genome-wide association study,GWAS)策略得到廣泛應(yīng)用,在冠心病易感基因定位方面取得了一系列成績(jī)。在此對(duì)近年冠心病遺傳領(lǐng)域的研究進(jìn)展進(jìn)行綜述。

      1 GWAS在冠心病領(lǐng)域的進(jìn)展

      近20年來,通過家系連鎖分析研究人類的遺傳系統(tǒng)疾病取得了較大的進(jìn)步,但這些進(jìn)展僅局限于單基因疾病,而研究冠心病這種由多種遺傳因素和環(huán)境因素共同起作用造成的復(fù)雜性疾病遺傳變異卻受到了限制。2007年起采用GWAS研究冠心病取得了突破性進(jìn)展。GWAS是通過整個(gè)人類基因組中數(shù)以百萬計(jì)的SNP為標(biāo)記進(jìn)行病例-正常關(guān)聯(lián)分析來尋找基因變異與表型之間的關(guān)系,發(fā)現(xiàn)影響人類復(fù)雜性疾病/性狀關(guān)聯(lián)的功能性位點(diǎn)和易感區(qū)域[1]。該技術(shù)采用基因芯片方法對(duì)核苷酸序列進(jìn)行檢測(cè)和分析,具有高通量快速的優(yōu)點(diǎn),實(shí)驗(yàn)設(shè)計(jì)采用初篩實(shí)驗(yàn)、重復(fù)驗(yàn)證實(shí)驗(yàn)以及生物學(xué)功能驗(yàn)證三階段病例對(duì)照設(shè)計(jì),能經(jīng)濟(jì)有效和確切地發(fā)現(xiàn)遺傳變異位點(diǎn),對(duì)于致病位點(diǎn)和基因的鑒定具有如下優(yōu)點(diǎn):①在進(jìn)行GWAS研究之前不再需要構(gòu)建任何假設(shè);②一次可以監(jiān)測(cè)數(shù)以百計(jì)SNPs;③研究對(duì)象不僅局限于“候選基因”,基因可以是“未知”的。目前國(guó)內(nèi)外多項(xiàng)實(shí)驗(yàn)研究證實(shí)位于人9p21染色體上SNPs和冠心病發(fā)病率具有顯著關(guān)聯(lián)[2,3],并在多種族的重復(fù)試驗(yàn)中得到了驗(yàn)證,并且這些易感基因的風(fēng)險(xiǎn)因素獨(dú)立于所有已知危險(xiǎn)因素例如高血脂、高血壓、糖尿病和肥胖等之外,因此9p21成為冠心病遺傳領(lǐng)域研究的熱點(diǎn)。

      2 染色體9p21區(qū)域結(jié)構(gòu)特點(diǎn)

      9pP21染色體動(dòng)脈粥樣硬化的風(fēng)險(xiǎn)單倍型的核心區(qū)域不包含任何蛋白質(zhì)編碼基因,其大部分的區(qū)域位于一個(gè)連鎖不平衡塊中,該區(qū)域內(nèi)存在兩種細(xì)胞周期蛋白激酶抑制子編碼基因細(xì)胞周期素依賴性激酶2A/2B(CDKN2A/CDKN2B)以及名為ANRIL的大型反義非編碼RNA(ncRNA),其中ANRIL與CDKN2B基因存在部分重疊[4]。有證據(jù)表明ANRIL通過組蛋白修飾進(jìn)而調(diào)控CDKN2A/2B[5,6]。

      3 9p21染色體與冠心病

      Talmud最早評(píng)估了9p21染色體SNPs在傳統(tǒng)評(píng)分基礎(chǔ)上對(duì)冠心病風(fēng)險(xiǎn)的影響。在NPHS-Ⅱ研究中,對(duì)傳統(tǒng)的風(fēng)險(xiǎn)因子調(diào)整后,攜帶此風(fēng)險(xiǎn)基因的純合子人群死亡比率為1.7。王擎等[7]在《Nature》發(fā)表了以中國(guó)漢族人群樣本為基礎(chǔ)的多階段病例對(duì)照研究設(shè)計(jì)的GWAS及重復(fù)驗(yàn)證結(jié)果,在共1613例冠心病病例和1484例正常對(duì)照組的兩組人群中進(jìn)行檢測(cè),結(jié)果顯示位于9p21上的rs1333048和rs1333049兩個(gè)位點(diǎn)與冠心病顯著相關(guān),C和G為其風(fēng)險(xiǎn)等位基因,并且發(fā)現(xiàn)位于6q24.1上的rs6903956位點(diǎn)也與冠心病相關(guān)聯(lián)(P=4.87×10-12,OR=1.51)。2012年7月,顧東風(fēng)等[8]在《Nature》發(fā)表了對(duì)3.3萬余名中國(guó)冠心病患者以及正常對(duì)照人群的GWAS,鑒定出8個(gè)冠心病相關(guān)的9p21遺傳易感區(qū)域。該研究第一階段對(duì)1515例冠心病患者和5019名對(duì)照人群的基因組DNA進(jìn)行全基因組遺傳變異的關(guān)聯(lián)分析,隨后在15 460例冠心病患者和11 472名對(duì)照人群中進(jìn)行多階段重復(fù)驗(yàn)證,并在8.7萬歐洲人群全基因組樣本中交叉驗(yàn)證,同時(shí)還首次鑒定出2p24.1、4q32.1、6p21.32和12q21.33共4個(gè)染色體區(qū)域,其遺傳變異可影響冠心病的發(fā)病。隨后,一項(xiàng)25 945份病例及31 777份對(duì)照的薈萃分析在《Human Genetics》雜志上發(fā)表,該研究表明9p21上SNPs與東亞人群冠心病風(fēng)險(xiǎn)關(guān)聯(lián)緊密,其OR值為1.30,95%CI為1.25~1.35,其結(jié)果與高加索冠心病人群研究結(jié)果相似[9]。

      4 心肌梗死相關(guān)SNPs

      Helgadott最早研究了冰島心肌梗死患者的SNP rs1333040、rs2383207、rs1011627,結(jié)果顯示這3個(gè)SNP都與心肌梗死發(fā)病率顯著相關(guān),其中rs10757278的堿基G與心肌梗死的相關(guān)度最高,OR=1.28,攜帶基因GG和GA相對(duì)危險(xiǎn)度分別是正常人基因AA的1.64和1.26倍,G基因每拷貝一次,心肌梗死的發(fā)病時(shí)間會(huì)提前1年。此后,在韓國(guó)[10]心肌梗死人群中研究結(jié)果顯示,染色體9p21基因的rs10757274、rs2383206位點(diǎn),攜帶基因GG和GA和患病風(fēng)險(xiǎn)較基因AA攜帶者增加30%。我國(guó)張琦[11]在432例漢族心肌梗死人群中的研究結(jié)果顯示,rs10757274、rs2383206這兩個(gè)位點(diǎn)的基因G可分別使心肌梗死患病風(fēng)險(xiǎn)提高40%和44%,在校正高血壓、高血脂和糖尿病等影響因素后分別為44%和54%(P < 0.01)。這些研究說明染色體9p21的基因變異與心肌梗死發(fā)病率高度相關(guān),可以作為冠心病心肌梗死患者的危險(xiǎn)度預(yù)測(cè)和進(jìn)行預(yù)防檢測(cè)方法。由于地區(qū)和種族的不同,基因多態(tài)在不同群體中的表現(xiàn)頻率存在差異,與心肌梗死的關(guān)聯(lián)性也有所不同,目前研究染色體9p21上常見基因變異位點(diǎn)見表1。

      表1 心肌梗死相關(guān)SNPs

      5 9p21染色體與早發(fā)冠心病

      早發(fā)冠心病被WHO定義為冠狀動(dòng)脈造影狹窄率≥50%或已診為急性心肌梗死,且男性<55歲,女性<60歲。在一項(xiàng)包括212例早發(fā)冠心病和232例沒有冠狀動(dòng)脈疾病的對(duì)照研究中,證實(shí)了rs10757278的A/G和G/G基因型、rs2383207的G/G基因型比A/A基因型在早發(fā)性冠狀動(dòng)脈疾病關(guān)聯(lián)上具有更高的風(fēng)險(xiǎn)性(OR:2.207,95%CI:1.069~4.394,P:0.028;OR:3.051,95%CI:1.086~8.567,P:0.004;OR:2.964,95%CI:1.063~8.265,P:0.038)[18]。Lin等[19]在臺(tái)灣將入選的425例早發(fā)冠心病患者及1377例對(duì)照組作為樣本,研究結(jié)果顯示rs2383207位點(diǎn)的基因G同該人群早發(fā)冠心病的發(fā)生相關(guān)(OR:1.85,95%CI:1.13~3.10)。Zhou等[20]最早對(duì)染色體9p21與早發(fā)冠心病的相關(guān)性進(jìn)行了薈萃分析,對(duì)篩選出的4個(gè)SNPs位點(diǎn)進(jìn)行病例對(duì)照研究,結(jié)果顯示染色體9p21區(qū)域遺傳變異是導(dǎo)致早發(fā)冠心病發(fā)生的易感因素,rs2383 206(OR:1.17,95%CI:1.10~1.25,P < 0.01);rs10757278(OR:1.28,95%CI:1.15~1.42,P < 0.01);rs10757274(OR:1.17,95%CI:1.08~1.33,P=0.02)。

      6 9p21染色體與再發(fā)心肌梗死

      全球注冊(cè)的急性冠脈事件對(duì)2942例急性冠脈綜合征患者及170例在195d內(nèi)出現(xiàn)再發(fā)心肌梗死患者進(jìn)行對(duì)照研究發(fā)現(xiàn),rs1333049與再發(fā)心肌梗死易感性相關(guān),C為其風(fēng)險(xiǎn)等位基因,rs1333049為影響再發(fā)性心肌梗死的獨(dú)立危險(xiǎn)因素(風(fēng)險(xiǎn)比HR:1.48,95%CI:1.00~2.19,P:0.048)[21]。Diether Lambrechts等[22]利用全基因組關(guān)聯(lián)研究,對(duì)英國(guó)和比利時(shí)2個(gè)地區(qū)2099例ACS患者隨訪5年,發(fā)現(xiàn)rs579459上C等位基因的多態(tài)性與再發(fā)心肌梗死相關(guān)(HR:2.25, 95%CI:1.37~3.71,P:0.001),在隨后的進(jìn)一步研究中在1250例波蘭ACS患者得到重復(fù)驗(yàn)證(HR:2.70,95%CI:1.26~5.82,P:0.011)。但近期Salim Virani等[23]在《Circulation》發(fā)表了對(duì)再發(fā)心肌梗死GWAS的分析結(jié)果,認(rèn)為位于9p21區(qū)域上的位點(diǎn)(rs1333049,rs2383206,rs10757278,rs10757274)與再發(fā)心肌梗死無關(guān)。冠心病作為一種典型的復(fù)雜性狀,是多個(gè)遺傳基因及環(huán)境因素相互作用的結(jié)果。目前包括GWAS策略在內(nèi)仍缺少有效方法評(píng)估基因-環(huán)境和基因間交互作用。同時(shí)由于人類種群的不同,也會(huì)導(dǎo)致基因組結(jié)構(gòu)的不同,造成決定同一復(fù)雜性狀的遺傳學(xué)基礎(chǔ)在不同種族得到的結(jié)果存在一定的差異。

      7 染色體9p21影響冠心病遺傳易感性的可能機(jī)制

      這些基因多態(tài)性的改變?nèi)绾螐姆肿訖C(jī)制上引發(fā)冠心病高發(fā)還是目前研究的瓶頸。近年來,對(duì)冠心病風(fēng)險(xiǎn)基因的分子機(jī)制研究已取得了一些成績(jī)[24,25],染色體9p21風(fēng)險(xiǎn)基因與CDKN2A/CDKN2B相隔約100 kb,p16INK4A和p15INK4b編碼的CDKN2A、CDKN2B被認(rèn)為在調(diào)節(jié)部分細(xì)胞周期中起主要作用[26],它們通過抑制腫瘤蛋白轉(zhuǎn)錄因子的分解,使E2F細(xì)胞增殖基因的表達(dá)能力下降,從而阻止細(xì)胞的增殖[26]。在動(dòng)物模型中證實(shí)了這些調(diào)節(jié)細(xì)胞周期因子可以抑制血管平滑肌細(xì)胞的增殖[27,28]。Visel等[29]已證實(shí)敲除小鼠4號(hào)染色體70 kb的DNA,它與人類染色體9p21冠心病風(fēng)險(xiǎn)區(qū)間的非編碼基因同源,他們觀察到突變種小鼠中的CDKN2A和CDKN2B表達(dá)顯著下降,主動(dòng)脈平滑肌的增殖能力明顯提升,這與冠狀動(dòng)脈粥樣硬化相關(guān)。這一研究為9p21風(fēng)險(xiǎn)區(qū)間能夠調(diào)節(jié)細(xì)胞增殖和老化提供了有力的證據(jù)。Holdt等[30]分析得出與冠狀動(dòng)脈斑塊形成相關(guān)的染色體9p21上CDKN2A、CDKN2B和MTAP也同樣在正常人群冠脈血管平滑肌上表達(dá)。Musunuru等[31]認(rèn)為9p21.3基因多態(tài)性對(duì)心肌梗死的影響可能是通過介導(dǎo)對(duì)血小板活性的影響。Harismendy等[32]已經(jīng)證實(shí)在人類血管內(nèi)皮細(xì)胞中,干擾素信號(hào)激活顯著地影響9p21染色體的結(jié)構(gòu)和位點(diǎn)基因的轉(zhuǎn)錄調(diào)節(jié)。同樣的9p21.3位點(diǎn)基因可能影響細(xì)胞周期激酶抑制因子4b位點(diǎn)的反義非編碼RNA ANRIL的調(diào)節(jié),進(jìn)而調(diào)節(jié)CDKN2A和CDKN2B的表達(dá),這種調(diào)節(jié)可能促進(jìn)細(xì)胞的增殖,引起動(dòng)脈粥樣硬化性改變[3,33]。

      綜上所述,9p21染色體SNPs與冠心病發(fā)病率密切相關(guān)?;蜓芯康淖罱K目的是提供臨床預(yù)測(cè)、診斷和預(yù)后評(píng)估,并為患者提供個(gè)性化治療策略,9p21可以提供冠心病的風(fēng)險(xiǎn)預(yù)測(cè),但目前實(shí)踐中我們還缺乏相關(guān)的專家共識(shí),同時(shí),研究基因造成冠心病高發(fā)的具體作用機(jī)制成為了我們更大的挑戰(zhàn)。

      [參考文獻(xiàn)]

      [1] Hardy J,Singleton A. Genomewide association studies and human disease[J]. N Engl J Med,2009,360(17):1759-1768.

      [2] Schunkert H,Erdmann J,Samani NJ. Genetics of myocardial infarction: a progress report[J]. Eur Heart J,2010,31(8):918-925.

      [3] Patel RS,Ye S. Genetic determinants of coronary heart disease: new discoveries and insights from genome-wide association studies[J]. Heart,2011,97(18):1463-1473.

      [4] Congrains A,Kamide K,Oguro R,et al. Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B[J]. Atherosclerosis, 2012,220(2):449-455.

      [5] Yap KL,Lei Z,Li S,et al. Molecular Interplay of the non-coding RNA ANRIL and methyllated histone H3 lysine 27 by Polycomb CBX7 in transcriptional silencing of INK4a[J]. Mol Cell,2010,38(5):662-674.

      [6] Kotake Y,Nakagawa T,Kitagawa K,et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15INK4B tumor suppressor gene[J]. Oncogene,2011,30(16):1956-1962.

      [7] Wang F,Xu CQ,He Q,et al. Genome-wide association identifies a susceptibility locus for coronary artery disease in the Chinese Han population[J]. Nature Genetics,2011,43(4):345-349.

      [8] Lu X,Wang L,Chen S,et al. Genome-wide association study in Han Chinese identifies four new susceptibility loci for coronary artery disease[J]. Nat Genet,2012,44(8):890-894.

      [9] Dong LP,Wang HR,Wang DW,et al. Association of chromosome 9p21 genetic variants with risk of coronary heart disease in the east asian population: a meta-analysis[J]. Annals of Human Genetics,2013,77(3):183-190.

      [10] Shen GQ,Li L,Rao S,et al. Four SNPs on chromosome 9p21 in a south Korean population implicate a genetic locus that confers high cross-race risk for development of coronary artery disease[J]. Arterioscler Thromb Vasc Bio,2007,28(2):360-365.

      [11] 張琦,王志軍,楊新春,等. 染色體9p21上兩個(gè)SNP位點(diǎn)與中國(guó)漢族人群心肌梗死的關(guān)系[J]. 山東醫(yī)藥,2010,50(5):4-6.

      [12] Hiura Y,F(xiàn)ukushima Y,Yuno M,et al. Validation of the association of genetic variants on chromosome 9p21 and 1q41 with myocardial infarction in a Japanese population[J]. Circ J,2008,72(8):1213-1217.

      [13] Peng WH,Lu L,Zhang Q,et al. Chromosome 9p21 polymorphism is associated with myocardial infarction but not with clinical outcome in Han Chinese[J]. Clin Chem Lab Med,2009,47(8):917-922.

      [14] Guo J,Li W,Wang Y,et al. Association of single nucleotide polymorphisms on chromosome 1p13 and 9p21 with acute myocardial infarction in a Chinese population: the AMI study in China[J]. Acad J Sec Mil Med Univ,2011,32(8):822-829.

      [15] 齊林,李建美,孫浩,等. 云南漢族心肌梗死相關(guān)基因的多態(tài)性研究[J]. 中華醫(yī)學(xué)遺傳學(xué)雜志,2012,29(4):413-419.

      [16] Saleheen D,Alexander M,Danesh J,et al. Association of the 9p21.3 locus with risk of first-ever myocardial infarction in Pakistanis: Case-control study in south asia and updated meta-analysis of Europeans[J]. AHA,2010,30(7):1467-1473.

      [17] Shen GQ,Rao S,Martinelli N,et al. Association between four SNPs on chromosome 9p21 and myocardial infarction is replicated in an Italian population[J]. J Hum Genet,2008,53(2):144-150.

      [18] Chen Z,Qian Q,Ma G,et al. A common variant on chromosome 9p21 affects the risk of early-onset coronary artery disease[J]. Mol Biol Rep,2009,36(5):889-893.

      [19] Lin HF,Tsai PC,Liao YC,et al. Chromosome 9p21 genetic variants are associated with myocardial infarction but not with ischemic stroke in a Taiwanese population[J]. Investig Med,2011,59(6):926-930.

      [20] Zhou LT,Qin L,Zheng DC,et al. Meta-analysis of genetic association of chromosome 9p21 with early-onset coronary artery disease[J]. Elsevier,2012,510(2):185-188.

      [21] Buysschaert I,Curruthers KF,Dunbar DR,et al. A variant at chromosome 9p21 is associated with recurrent myocardial infarction and cardiac death after acute coronary syndrome: The GRACE Genetics Study[J]. European Heart Journal,2010,31(9):1132-1141.

      [22] Wauters E,Carruther KF,buysschaert I,et al. Influence of 23 coronary artery disease variants on recurrent myocardial infarction or cardiac death: the GRACE Genetics Study[J]. Eur Heart J,2013,34 (13):993-1001.

      [23] Virani SS,Brautbar A,Lee W,et al. Chromosome 9p21 single nucleotide polymorphisms are not associated with recurrent myocardial infarction in patients with established coronary artery disease[J]. Circulation Journal,2012,76(4):950-956.

      [24] Linsel-Nitschke P,Schunkert H. Chromosome 9p21 and coronary risk: the mystery continues[J]. Atherosclerosis,2011,214(2):257-258.

      [25] Muhlestein JB, Anderson JL. The 9p21.3 genetic region and coronary heart disease where do we go from here?[J]. Am Coll Cardiol,2011,58(4): 435-437.

      [26] Gil J,Peters G. Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all[J]. Nat Rev Mol Cell Biol,2006,7(9):667-677.

      [27] Gizard F,Nomiyama T,Zhao Y,et al. The PPARalpha/p16INK4a pathway inhibits vascular smooth muscle cell proliferation by repressing cell cycle-dependent telomerase activation[J]. Circ Res,2008,103(10):1155-1163.

      [28] Segev A,Nili N,Qiang B,et al. Inhibition of intimal hyperplasia after stenting by over-expression of p15: a member of the INK4 family of cyclin-dependent kinase inhibitors[J]. Mol Cell Cardiol,2011,50(3):417-425.

      [29] Visel A,Zhu Y,May D,et al. Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice[J]. Nature,2010,464(7287): 409-412.

      [30] Holdt LM,Beutner F,Scholz M,et al. Anril expression is associated with atherosclerosis risk at chromosome 9p21[J]. Arterioscler Thromb Vasc Biol,2010,30(3):620-627.

      [31] Musunuru K. Regulatory elements in noncoding dna in the chromosome 9p21 locus[J]. Circ Cardiovasc Genet,2011,4(3):330-331.

      [32] Harismendy O,Notani D,Song X,et al. 9p21 DNA variants associated with coronary artery disease impair interferon-γ signaling response[J]. Nature,2011,470(7333):264-268.

      [33] Cunnington MS,Keavney B. Genetic mechanisms mediating atherosclerosis susceptibility at the chromosome 9p21 locus[J]. Curr Atheroscler Rep,2011,13(3): 193-201.

      (收稿日期:2013-11-01)

      [27] Gizard F,Nomiyama T,Zhao Y,et al. The PPARalpha/p16INK4a pathway inhibits vascular smooth muscle cell proliferation by repressing cell cycle-dependent telomerase activation[J]. Circ Res,2008,103(10):1155-1163.

      [28] Segev A,Nili N,Qiang B,et al. Inhibition of intimal hyperplasia after stenting by over-expression of p15: a member of the INK4 family of cyclin-dependent kinase inhibitors[J]. Mol Cell Cardiol,2011,50(3):417-425.

      [29] Visel A,Zhu Y,May D,et al. Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice[J]. Nature,2010,464(7287): 409-412.

      [30] Holdt LM,Beutner F,Scholz M,et al. Anril expression is associated with atherosclerosis risk at chromosome 9p21[J]. Arterioscler Thromb Vasc Biol,2010,30(3):620-627.

      [31] Musunuru K. Regulatory elements in noncoding dna in the chromosome 9p21 locus[J]. Circ Cardiovasc Genet,2011,4(3):330-331.

      [32] Harismendy O,Notani D,Song X,et al. 9p21 DNA variants associated with coronary artery disease impair interferon-γ signaling response[J]. Nature,2011,470(7333):264-268.

      [33] Cunnington MS,Keavney B. Genetic mechanisms mediating atherosclerosis susceptibility at the chromosome 9p21 locus[J]. Curr Atheroscler Rep,2011,13(3): 193-201.

      (收稿日期:2013-11-01)

      [27] Gizard F,Nomiyama T,Zhao Y,et al. The PPARalpha/p16INK4a pathway inhibits vascular smooth muscle cell proliferation by repressing cell cycle-dependent telomerase activation[J]. Circ Res,2008,103(10):1155-1163.

      [28] Segev A,Nili N,Qiang B,et al. Inhibition of intimal hyperplasia after stenting by over-expression of p15: a member of the INK4 family of cyclin-dependent kinase inhibitors[J]. Mol Cell Cardiol,2011,50(3):417-425.

      [29] Visel A,Zhu Y,May D,et al. Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice[J]. Nature,2010,464(7287): 409-412.

      [30] Holdt LM,Beutner F,Scholz M,et al. Anril expression is associated with atherosclerosis risk at chromosome 9p21[J]. Arterioscler Thromb Vasc Biol,2010,30(3):620-627.

      [31] Musunuru K. Regulatory elements in noncoding dna in the chromosome 9p21 locus[J]. Circ Cardiovasc Genet,2011,4(3):330-331.

      [32] Harismendy O,Notani D,Song X,et al. 9p21 DNA variants associated with coronary artery disease impair interferon-γ signaling response[J]. Nature,2011,470(7333):264-268.

      [33] Cunnington MS,Keavney B. Genetic mechanisms mediating atherosclerosis susceptibility at the chromosome 9p21 locus[J]. Curr Atheroscler Rep,2011,13(3): 193-201.

      (收稿日期:2013-11-01)

      猜你喜歡
      染色體多態(tài)性基因組
      單核苷酸多態(tài)性與中醫(yī)證候相關(guān)性研究進(jìn)展
      牛參考基因組中發(fā)現(xiàn)被忽視基因
      多一條X染色體,壽命會(huì)更長(zhǎng)
      為什么男性要有一條X染色體?
      能忍的人壽命長(zhǎng)
      馬鈴薯cpDNA/mtDNA多態(tài)性的多重PCR檢測(cè)
      GlobalFiler~? PCR擴(kuò)增試劑盒驗(yàn)證及其STR遺傳多態(tài)性
      再論高等植物染色體雜交
      基因組DNA甲基化及組蛋白甲基化
      有趣的植物基因組
      武穴市| 噶尔县| 鹿泉市| 河曲县| 五家渠市| 都昌县| 张家川| 林州市| 南郑县| 青冈县| 峨山| 高密市| 行唐县| 苗栗县| 大英县| 红河县| 海盐县| 江阴市| 瑞金市| 岐山县| 平度市| 贺兰县| 长垣县| 新丰县| 大厂| 方山县| 乐亭县| 保山市| 黎平县| 玛曲县| 农安县| 丹东市| 甘德县| 巍山| 晋江市| 万载县| 衡阳市| 巴南区| 星子县| 东丰县| 白河县|