呂社民,孟列素,朱文華
(西安交通大學(xué)醫(yī)學(xué)部基礎(chǔ)醫(yī)學(xué)院生物化學(xué)與分子生物學(xué)系,陜西西安 710061)
類風(fēng)濕性關(guān)節(jié)炎(rheumatoid arthritis, RA)是一種常見的、多發(fā)的、周圍關(guān)節(jié)的慢性免疫性炎癥。在我國的發(fā)病率約為0.3%~0.5%,其病情遷延,主要累及青壯年婦女,是造成我國人群勞動(dòng)力喪失與致殘的主要病因之一。但是,目前對(duì)其病因和發(fā)病機(jī)制的了解還不夠全面,預(yù)防及早期診斷幾無可能,更缺乏特異有效的治療措施[1]。因此,闡明RA的病因和發(fā)病機(jī)制就顯得尤為重要。近年來的研究顯示Toll樣受體(toll-like receptors, TLRs)在RA和實(shí)驗(yàn)性關(guān)節(jié)炎的發(fā)生發(fā)展中扮演著重要角色。
TLRs是一類重要的模式識(shí)別受體,自從1994年發(fā)現(xiàn)第一個(gè)人TLR(hTLR)以來,在哺乳動(dòng)物中已經(jīng)鑒定了13種TLRs,其中hTLR包括10種。這些TLR在相關(guān)的免疫調(diào)節(jié)細(xì)胞及免疫效應(yīng)細(xì)胞表面或胞內(nèi)廣泛存在,其中人TLR1、TLR2、TLR4、TLR5、TLR6和TLR10主要表達(dá)在細(xì)胞膜上并識(shí)別胞外病原相關(guān)分子模式(pathogen-associated molecular patterns, PAMPs),在激活之后會(huì)向吞噬體轉(zhuǎn)移。而TLR3、TLR7、TLR8和TLR9則表達(dá)在幾乎所有細(xì)胞的胞內(nèi)細(xì)胞器膜上,主要是內(nèi)含體和內(nèi)質(zhì)網(wǎng)膜上[2]。
TLRs所識(shí)別的配體主要包括微生物所特有的PAMPs和來源于機(jī)體自身的內(nèi)源性配體,如損傷相關(guān)分子模式(damage-associated molecular patterns, DAMPs)。當(dāng)配體PAMPs或DAMPs被TLR胞外段識(shí)別并結(jié)合后,使得受體活化(同源、異源寡聚化),受體的激活將進(jìn)一步招募同樣含有TLR結(jié)構(gòu)域的接頭分子與之結(jié)合,進(jìn)而招募激活相應(yīng)的蛋白激酶,活化對(duì)應(yīng)的轉(zhuǎn)錄因子,實(shí)現(xiàn)對(duì)包括炎性基因在內(nèi)的基因水平調(diào)控(主要涉及NF-κB、MAPK和IRFs家族等信號(hào)通路)[3]。目前,發(fā)現(xiàn)的接頭分子主要包括:MyD88、TRIF(或稱TICAM-1)、TRAM(或稱TICAM-2)、TIRAP(或稱Mal)等,其中在信號(hào)通路中MyD88與TRIF分別發(fā)揮核心作用,其他分子發(fā)揮協(xié)助作用,據(jù)此可將TLRs信號(hào)通路分為MyD88依賴信號(hào)通路與MyD88非依賴信號(hào)通路(即TRIF信號(hào)通路)。TLRs信號(hào)通路活化后介導(dǎo)機(jī)體的天然免疫應(yīng)答,同時(shí)也是聯(lián)系天然免疫與特異性免疫的橋梁,從多個(gè)方面影響著特異性免疫應(yīng)答。
TLRs的功能提示其在自身免疫性疾病RA中可能具有重要意義。研究者們?cè)诨颊叩拿庖咂鞴俸突そM織中,通過TLRs表達(dá)譜篩查或者特定TLR的檢測(cè),發(fā)現(xiàn)某些TLRs表達(dá)異常,而表達(dá)異常則是功能異常的基礎(chǔ),提示這些TLRs或在RA的發(fā)生發(fā)展中起到了關(guān)鍵作用。進(jìn)而在動(dòng)物模型中通過基因敲除或在體RNA干擾等技術(shù)驗(yàn)證關(guān)鍵TLR的作用,而它們發(fā)揮作用的確切分子機(jī)制則需進(jìn)一步在參與疾病的各型細(xì)胞中進(jìn)行充分闡明。
2.1表達(dá)異常的TLR可能在RA中扮演重要角色研究顯示RA患者的滑膜組織、滑膜成纖維細(xì)胞(fibroblast like synoviocyte, FLS)、外周血單核細(xì)胞(PBMCs)及滑液中的CD14+巨噬細(xì)胞中TLR2、TLR3、TLR4、TLR7表達(dá)升高[4-6]。其中TLR2在RA的研究中倍受關(guān)注,不僅在患者的滑膜組織中高表達(dá),在參與RA的各種細(xì)胞上也均有表達(dá),如RA患者的外周血CD16+單核細(xì)胞、CD64+單核細(xì)胞和滑膜組織中的巨噬細(xì)胞都高表達(dá)TLR2[7-8]。TLR3也是研究者所關(guān)注的重要模式識(shí)別受體,與正常組織或骨關(guān)節(jié)炎(OA)患者相比,RA患者滑膜組織TLR3表達(dá)增高,主要在滑膜襯層FLS中表達(dá)豐富[6,9-11]。TLR4在早期和持續(xù)期RA患者的滑膜中均呈現(xiàn)高表達(dá),在FLS中表達(dá)也非常豐富[11-12]。2005年ROELOFS[6,13]發(fā)現(xiàn)在RA患者的滑膜組織TLR7高表達(dá),其可能與TLR3、TLR8、TLR9在RA中共同發(fā)揮作用。但是,OSPELT[11]的實(shí)驗(yàn)結(jié)果顯示FLS并不表達(dá)TLR7-10,因此闡明TLR7/8與RA關(guān)系仍需更多的實(shí)驗(yàn)證據(jù)。
這種采用RA患者的組織樣本研究TLR的表達(dá)是揭示其作用的重要手段之一,但是實(shí)時(shí)監(jiān)控患者組織中TLR的表達(dá)變化卻難以實(shí)施,加之患者的異質(zhì)性也常常會(huì)掩蓋實(shí)驗(yàn)的真實(shí)結(jié)果。因此,動(dòng)物模型在RA的研究中成為了必不可少的手段。當(dāng)前應(yīng)用最廣泛的關(guān)節(jié)炎動(dòng)物模型主要包括:Ⅱ型膠原誘導(dǎo)的關(guān)節(jié)炎模型(collagen II-induced arthritis, CIA)和佐劑誘導(dǎo)的關(guān)節(jié)炎模型等,它們都從某些側(cè)面反映了RA的特征,是研究RA發(fā)病機(jī)制的良好工具[14]。在CIA小鼠的滑膜中TLR2的表達(dá)升高[7]。另外,本研究組在以關(guān)節(jié)炎易感的近交系DA大鼠構(gòu)建的降植烷誘導(dǎo)的關(guān)節(jié)炎(pristane-induced arthritis, PIA)模型中,脾臟和滑膜組織中的TLR表達(dá)譜檢測(cè)顯示TLR1~TLR9均有表達(dá),其中TLR3 mRNA在早期(發(fā)病前)表達(dá),并在疾病的急性期中保持高水平[15-17]。進(jìn)一步的研究顯示TLR3在PIA大鼠脾臟巨噬細(xì)胞中高表達(dá),而且使用降植烷刺激巨噬細(xì)胞時(shí),TLR3的表達(dá)呈時(shí)間和濃度依賴性上調(diào),其下游細(xì)胞因子IFN-β和TNF-α表達(dá)升高,提示降植烷可能通過影響巨噬細(xì)胞TLR3從而介導(dǎo)PIA的發(fā)生發(fā)展[15]。
同時(shí),也有研究發(fā)現(xiàn)在RA患者的血清、滑液和滑膜中某些TLR的配體含量增加,如在血清和滑液中TLR4配體增加[6],在患者滑膜組織中也檢測(cè)到豐富的TLR4配體-HSPB8[18],在一些RA患者的關(guān)節(jié)內(nèi)發(fā)現(xiàn)了細(xì)菌DNA(TLR9配體)[19]。這些研究結(jié)果顯示在RA和實(shí)驗(yàn)性關(guān)節(jié)炎的發(fā)生發(fā)展中存在異常表達(dá)的TLR和某些TLR配體含量的變化,推測(cè)這些TLR可能對(duì)疾病啟動(dòng)和進(jìn)展具有重要作用。
2.2在體研究證實(shí)關(guān)鍵TLR在實(shí)驗(yàn)性關(guān)節(jié)炎發(fā)生發(fā)展中的重要性如前所述,在RA和實(shí)驗(yàn)性關(guān)節(jié)炎中確實(shí)存在某些表達(dá)改變的TLR和含量增加的TLR配體,那么這些TLR是否在炎癥的發(fā)生和進(jìn)展中起到重要作用呢?研究者們構(gòu)建了多種TLR干預(yù)的關(guān)節(jié)炎動(dòng)物模型進(jìn)行了TLR的作用及機(jī)制分析,包括使用TLR敲除小鼠或采用TLR配體的在體干預(yù)。本研究組通過對(duì)PIA大鼠尾根部皮下分別注射肽聚糖(PGN、TLR2配體)、poly I∶C(TLR3配體)、LPS(TLR4配體)等配體,在體干預(yù)關(guān)節(jié)炎大鼠模型,發(fā)現(xiàn)PGN和poly I∶C都對(duì)疾病有明顯的加重作用,提示TLR2和TLR3介導(dǎo)的信號(hào)通路在PIA發(fā)病機(jī)制中起到了重要作用[15,20]。已有研究報(bào)道某些TLR配體可直接誘導(dǎo)實(shí)驗(yàn)性關(guān)節(jié)炎,如肽聚糖或鏈球菌細(xì)胞壁可誘導(dǎo)關(guān)節(jié)炎癥,該作用主要依賴于TLR2信號(hào)途徑。但也有研究顯示TLR2-/-小鼠與野生型小鼠相比,可罹患更嚴(yán)重的關(guān)節(jié)炎[21]。關(guān)節(jié)腔注射poly I∶C后,可引起嚴(yán)重的一過性關(guān)節(jié)炎[22]。我們?cè)赑IA高表達(dá)TLR3之后,對(duì)PIA大鼠關(guān)節(jié)腔注射poly I∶C,結(jié)果顯示PIA發(fā)病時(shí)間明顯提前,病情加重[16]。進(jìn)一步通過RNAi技術(shù)在體實(shí)驗(yàn),結(jié)果顯示降低TLR3表達(dá),大鼠PIA癥狀及滑膜炎等病理表現(xiàn)顯著減輕[15]。然而有研究發(fā)現(xiàn)poly I∶C對(duì)膠原抗體誘導(dǎo)和血清誘導(dǎo)的小鼠實(shí)驗(yàn)性關(guān)節(jié)炎有抑制作用,這種抑制作用依賴于Ⅰ型IFN[23],顯示TLR3在實(shí)驗(yàn)性關(guān)節(jié)炎中的作用機(jī)制仍有矛盾之處。TLR4基因敲除小鼠患抗CII抗體誘導(dǎo)關(guān)節(jié)炎的癥狀顯著輕于野生型小鼠,亦可減輕IL1ra基因缺失引起的嚴(yán)重關(guān)節(jié)炎,而且敲除小鼠罹患CIA的發(fā)病率下降,病情亦減輕[21,24]。但也有研究者發(fā)現(xiàn)使用包含有沙眼衣原體滑膜細(xì)胞進(jìn)行關(guān)節(jié)腔內(nèi)注射誘導(dǎo)關(guān)節(jié)炎時(shí),TLR4基因缺陷小鼠卻顯示出更嚴(yán)重的關(guān)節(jié)炎癥狀[25]。利用TLR7-/-小鼠誘導(dǎo)的CIA癥狀顯著減輕[26]。含有未甲基化CpG的細(xì)菌DNA(TLR9配體)可誘導(dǎo)關(guān)節(jié)炎的發(fā)生,而采用抑制性寡脫氧核糖核酸(ODBs)可以防止CpG DNA介導(dǎo)的關(guān)節(jié)炎發(fā)展[27]。
這些研究結(jié)果顯示抑制相關(guān)TLR的功能和表達(dá)對(duì)關(guān)節(jié)炎具有一定的治療效果。說明TLR2、TLR3、TLR4等的確參與了實(shí)驗(yàn)性關(guān)節(jié)炎和RA的進(jìn)展,但是卻存在著一些相互矛盾的實(shí)驗(yàn)證據(jù),這就需要進(jìn)一步在參與RA的關(guān)鍵細(xì)胞中探討不同TLR發(fā)揮作用的分子機(jī)制,揭示其作用通路。
2.3體外研究探討關(guān)鍵TLR參與RA和實(shí)驗(yàn)性關(guān)節(jié)炎的分子機(jī)制關(guān)鍵TLR在RA關(guān)鍵細(xì)胞中的分子作用機(jī)制也是研究者們關(guān)注的重要問題。FLS是滑膜炎癥發(fā)生發(fā)展中的重要靶細(xì)胞,巨噬細(xì)胞、DC、T細(xì)胞、B細(xì)胞等也可能通過TLR在RA的發(fā)生發(fā)展中發(fā)揮調(diào)控作用。除此之外,軟骨細(xì)胞、血管內(nèi)皮細(xì)胞等也在RA的發(fā)病機(jī)制中起重要作用。
2.3.1TLR可介導(dǎo)FLS炎癥因子、趨化因子的產(chǎn)生 研究者們發(fā)現(xiàn)TLR2及TLR4配體刺激FLS后,細(xì)胞分泌VEGF、CXCL8、IL-6、IL-8等細(xì)胞因子及趨化因子增加,此外粘附分子ICAM-1和各種金屬蛋白酶的表達(dá)水平也升高[28-29]。PGN也可促使RA-FLS產(chǎn)生更多IL-15,LPS能夠加強(qiáng)其誘導(dǎo)作用,這可能促進(jìn)了滑膜炎的發(fā)展[30]。PGN 還可促進(jìn)FLS的14個(gè)CC和CXC 趨化因子表達(dá)上調(diào),包括GCP-2(granulocyte chemotactic protein-2)、RANTES、MCP-2(monocyte chemoattractant protein-2)、IL-8等,它們可能參與了RA關(guān)節(jié)的炎性滲出[31]。LTA也可刺激RA-FLS產(chǎn)生IL-6,PKCS、c-Src、AP-1和NF-κB信號(hào)通路都參與了該過程[32]。腸道血管活性肽(vasoactive intestinal peptide, VIP)可下調(diào)LPS和TNF-α誘導(dǎo)的RA-FLS中的TLR4和MyD88表達(dá),也會(huì)降低LPS刺激下的CCL2和CXCL8生成,可見VIP對(duì)關(guān)節(jié)炎的治療機(jī)制與抑制TLR4表達(dá)和信號(hào)通路有關(guān)[12]。
壞死滑液細(xì)胞釋放的RNA也可能作為TLR3的內(nèi)源性配體刺激滑膜成纖維細(xì)胞促炎癥反應(yīng)基因的表達(dá)[9]。使用TLR3的配體poly I∶C刺激FLS,可以增加IFN-β、CXCL10、CCL5、IL-6、MMP-3和MMP-13的分泌[9,11]。該配體還可通過NF-κB通路影響FLS分泌TSLP(thymic stromal lymphopoietin),VEGF、IL-8從而參與RA的進(jìn)展[10,33]。盡管FLS中表達(dá)TLR9,但KYBURZ[34]發(fā)現(xiàn)CpG DNA卻不能像細(xì)菌PGN一樣激活FLS。
2.3.2TLR介導(dǎo)巨噬細(xì)胞等免疫細(xì)胞的功能發(fā)生改變 免疫細(xì)胞在包括RA在內(nèi)的自身免疫性疾病的發(fā)病機(jī)制中起著重要作用。TLR2配體及TLR4配體可刺激RA患者的DC細(xì)胞產(chǎn)生豐富的炎癥介質(zhì),如TNF-α、IL-6、巨噬細(xì)胞遷移抑制因子(macrophage migration inhibitory factor, MIF),這些炎癥因子可能對(duì)關(guān)節(jié)炎癥通路有一個(gè)放大作用。但是,TLR3或者TLR7的配體卻可以抑制該效應(yīng)[6,35]。使用TLR3配體刺激RA患者的DC、單核細(xì)胞及FLS均可導(dǎo)致I型IFN的分泌增加,反過來IFN-α也可以增加TLR3的表達(dá)[13]。同時(shí),TLR3的配體刺激可顯著降低來源于RA患者和正常對(duì)照的DC細(xì)胞分泌MIF[35]。TLR3配體的刺激會(huì)使RA患者的DC分泌的細(xì)胞因子平衡趨于IL-12生成,也可以刺激PMBC和FLS產(chǎn)生大量的IP-10/CXCL10,IP-10/CXCL10不僅可以激活表達(dá)CXCR3的Th1細(xì)胞和NK細(xì)胞,也可以對(duì)抗CCR3依賴的Th2細(xì)胞的趨化[6,36]。
支原體的致關(guān)節(jié)炎作用可能與通過TLR2激活巨噬細(xì)胞有關(guān)[37]。來自RA患者關(guān)節(jié)的CD14+巨噬細(xì)胞不僅高表達(dá)TLR2,也高表達(dá)TLR4,在PGN和LPS刺激下,其分泌TNF-α和IL-8的能力顯著增強(qiáng)[4]。ZARE等[38]發(fā)現(xiàn)TLR3的配體dsRNA可通過巨噬細(xì)胞及其產(chǎn)物參與小鼠關(guān)節(jié)炎的發(fā)生,IL-1R在其中起著重要作用。也有研究發(fā)現(xiàn)dsRNA的致關(guān)節(jié)炎能力與單核細(xì)胞/巨噬細(xì)胞分泌Ⅰ型IFN的能力有關(guān),并且依賴于Ⅰ型IFN受體信號(hào)通路[39]。我們的研究結(jié)果顯示降植烷和poly I∶C均可上調(diào)并激活TLR3通路,促使巨噬細(xì)胞的TNF-α、IFN-β等炎癥因子分泌[15]。
此外,人工合成的TLR2配體細(xì)菌脂蛋白(bacterial lipoprotein, BLP)在缺如APC時(shí),可與抗CD3抗體一起誘導(dǎo)Tregs和效應(yīng)T細(xì)胞的增殖,不過這種Tregs沒有抑制功能,這可能也是TLR2參與自身免疫疾病的機(jī)制之一[40]。同時(shí),TLR2能夠影響小鼠關(guān)節(jié)炎模型中的T細(xì)胞平衡,TLR2缺失促使Th2和調(diào)節(jié)性T細(xì)胞轉(zhuǎn)向病理性的Th1細(xì)胞,從而調(diào)控關(guān)節(jié)炎癥發(fā)展[21]。PIA大鼠脾臟T細(xì)胞與FLS共孵育后,F(xiàn)LS的侵襲能力增強(qiáng),其TLR3、IFN-β、IL-6和MMP3的表達(dá)也上調(diào),但如果采用TLR3抗體封閉FLS后,就阻斷了細(xì)胞因子和MMP3的上調(diào)。這提示脾臟活化的T細(xì)胞參與介導(dǎo)了關(guān)節(jié)局部炎癥,包括FLS的活化增殖和炎癥因子分泌等,而脾臟T細(xì)胞(或稱為“關(guān)節(jié)特異性T細(xì)胞”)的激活則可能與PIA大鼠脾臟中TLR3high巨噬細(xì)胞相關(guān)。
自身反應(yīng)性B細(xì)胞在RA中的作用毋庸置疑,而有研究顯示TLR7/8與TLR9可以阻止發(fā)展中的自身反應(yīng)性B細(xì)胞募集,在RA的發(fā)生中可能有一定作用[41]。但也有報(bào)道指出高度甲基化的CpG可以激活自身反應(yīng)性B細(xì)胞,從而產(chǎn)生RFs、IL-6和TNF-α,還可誘導(dǎo)其向漿細(xì)胞分化,參與RA的發(fā)病[42-44]。這些研究顯示參與RA和實(shí)驗(yàn)性關(guān)節(jié)炎的免疫細(xì)胞在不同程度上通過TLR通路介導(dǎo)了其效應(yīng)。
2.3.3TLR對(duì)其他參與RA的細(xì)胞功能的調(diào)控 CXCL9是參與自身免疫性關(guān)節(jié)炎的重要趨化因子,TLR2配體PGN或TLR4配體LPS聯(lián)合IFN-γ可以誘導(dǎo)微血管內(nèi)皮細(xì)胞CXCL9和CXCL10的產(chǎn)生,參與自身免疫性關(guān)節(jié)炎[45]。TLR2還可介導(dǎo)軟骨細(xì)胞中VEGF的生成,通過這些因子促進(jìn)血管生成和軟骨破壞,促進(jìn)關(guān)節(jié)炎癥進(jìn)展[46]。除了可通過巨噬細(xì)胞和DC發(fā)揮作用,TLR3配體dsRNA亦可聯(lián)合IFN-γ誘導(dǎo)微血管內(nèi)皮細(xì)胞中各種趨化因子如CXCL9、CXCL10及CXCL11的產(chǎn)生升高。
這些研究顯示,TLR2、TLR3、TLR4、TLR7/8、TLR9在RA和實(shí)驗(yàn)性關(guān)節(jié)炎的組織和細(xì)胞中均有一定程度表達(dá),可通過自身的表達(dá)調(diào)控和信號(hào)活化,介導(dǎo)細(xì)胞因子、趨化因子、MMP等介導(dǎo)局部炎癥的啟動(dòng)和維持。但是,它們?cè)趨⑴cRA和實(shí)驗(yàn)性關(guān)節(jié)炎時(shí)有著復(fù)雜交錯(cuò)的關(guān)系,可以相互協(xié)同,也可以相互拮抗,也可能互相調(diào)控,在不同的組織和細(xì)胞中也可能有不同的表現(xiàn),而要想清晰獲得TLRs在RA發(fā)病機(jī)制中的作用網(wǎng)絡(luò),則需要更全面和深入的研究。盡管如此,某些確定的TLR作用通路已被認(rèn)為是治療RA的潛在靶點(diǎn),為關(guān)節(jié)炎的新藥研發(fā)提供了新的思路。
參考文獻(xiàn):
[1] MCINNES IB, GEORG S. Mechanisms of disease the pathogenesis of rheumatoid arthritis[J]. New Engl J Med, 365(23):2205-2219.
[2] TAKEDA K, AKIRA S. Toll-like receptors in innate immunity[J]. Int Immunol, 2005, 17(1):1-14.
[3] AKIRA S, TAKEDA K. Toll-like receptor signalling[J]. Nat Rev Immunol, 2004, 4(7):499-511.
[4] HUANG Q, MA Y, ADEBAYO A, et al. Increased macrophage activation mediated through toll-like receptors in rheumatoid arthritis[J]. Arthritis Rheum, 2007, 56(7):2192-2201.
[5] IWAHASHI M, YAMAMURA M, AITA T, et al. Expression of toll-like receptor 2 on CD16+ blood monocytes and synovial tissue macrophages in rheumatoid arthritis[J]. Arthritis Rheum, 2004, 50(5):1457-1467.
[6] ROELOFS MF, JOOSTEN LA, ABDOLLAHI-ROODSAZ S, et al. The expression of toll-like receptors 3 and 7 in rheumatoid arthritis synovium is increased and costimulation of toll-like receptors 3, 4, and 7/8 results in synergistic cytokine production by dendritic cells[J]. Arthritis Rheum, 2005, 52(8):2313-2322.
[7] LEE JH, CHO ML, KIM JI, et al. Interleukin 17 (IL-17) increases the expression of Toll-like receptor-2, 4, and 9 by increasing IL-1beta and IL-6 production in autoimmune arthritis[J]. J Rheumatol, 2009, 36(4):684-692.
[8] VAROGA D, KLOSTERMEIER E, PAULSEN F, et al. The antimicrobial peptide HBD-2 and the Toll-like receptors-2 and -4 are induced in synovial membranes in case of septic arthritis[J]. Virchows Arch, 2009, 454(6):685-694.
[9] BRENTANO F, SCHORR O, GAY RE, et al. RNA released from necrotic synovial fluid cells activates rheumatoid arthritis synovial fibroblasts via Toll-like receptor 3[J]. Arthritis Rheum, 2005, 52(9):2656-2665.
[10] MOON SJ, PARK MK, OH HJ, et al. Engagement of toll-like receptor 3 induces vascular endothelial growth factor and interleukin-8 in human rheumatoid synovial fibroblasts[J].Korean J Intern Med, 2010, 25(4):429-435.
[11] OSPELT C, BRENTANO F, RENGEL Y, et al. Overexpression of toll-like receptors 3 and 4 in synovial tissue from patients with early rheumatoid arthritis: toll-like receptor expression in early and longstanding arthritis[J]. Arthritis Rheum, 2008, 58(12):3684-3692.
[12] GUTIéRREZ-CAAS I, JUARRANZ Y, SANTIAGO B, et al. VIP down-regulates TLR4 expression and TLR4-mediated chemokine production in human rheumatoid synovial fibroblasts[J]. Rheumatology, 2006, 45(5):527-532.
[13] ROELOFS MF, WENINK MH, BRENTANO F, et al. Type I interferons might form the Link between Toll-like receptor (TLR) 3/7 and TLR4-mediated synovial inflammation in rheumatoid arthritis (RA)[J]. Ann Rheum Dis, 2009, 68(9):1486-1493.
[14] 呂社民. 用動(dòng)物模型定位、克隆復(fù)雜性疾病的易感基因:以類風(fēng)濕關(guān)節(jié)炎動(dòng)物模型為范例[J].西安交通大學(xué)學(xué)報(bào):醫(yī)學(xué)版,2006,27(5):417-420.
[15] MENG L, ZHU W, JIANG C, et al. Toll-like receptor 3 upregulation in macrophages participates in the initiation and maintenance of pristane-induced arthritis in rats[J]. Arthritis Res Ther, 2010, 12(3):R103.
[16] ZHU W, MENG L, JIANG C, et al. Arthritis is associated with T-cell-induced upregulation of Toll-like receptor 3 on synovial fibroblasts[J]. Arthritis Res Ther, 2011, 13(3):R103.
[17] ZHU W, MENG L, JIANG C, et al. Overexpression of toll-like receptor 3 in spleen is associated with experimental arthritis in rats[J].Scand J Immunol, 2012, 76(3):263-270.
[18] ROELOFS MF, BOELENS WC, JOOSTEN LA, et al. Identification of small heat shock protein B8 (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis[J]. J Immunol, 2006, 176(11):7021-7027.
[19] VAN DER HEIJDEN IM, WILBRINK B, TCHETVERIKOV I, et al. Presence of bacterial DNA and bacterial peptidoglycans in joints of patients with rheumatoid arthritis and other arthritides[J]. Arthritis Rheum, 2000, 43(3):593-598.
[20] ZHU W, MENG L, JIANG C, et al. Induction of toll-like receptor 2 positive antigen-presenting cells in spleen of pristane-induced arthritis in rats[J]. Mol Biol Rep, 2012, 39(4):3667-3673.
[21] ABDOLLAHI-ROODSAZ S, JOOSTEN LA, KOENDERS MI, et al. Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis[J]. J Clin Invest, 2008, 118(1):205-216.
[22] YARON M, BARATZ M, YARON I, et al. Acute induction of joint inflammation in the rat bypoly I poly C[J]. Inflammation, 1979, 3(3):243-251.
[23] YARILINA A, DICARLO E, IVASHKIV LB. Suppression of the effector phase of inflammatory arthritis by double-stranded RNA is mediated by type I IFNs[J]. J Immunol, 2007, 178(4):2204-2211.
[24] PIERER M, WAGNER U, ROSSOL M, et al. Toll-like receptor 4 is involved in inflammatory and joint destructive pathways in collagen-induced arthritis in DBA1J mice[J]. PLoS One, 2011, 6(8): e23539.
[25] ZHANG X, GLOGAUER M, ZHU F, et al. Innate immunity and arthritis: neutrophil Rac and toll-like receptor 4 expression define outcomes in infection-triggered arthritis[J]. Arthritis Rheum, 2005, 52(4):1297-1304.
[26] ALZABIN S, KONG P, MEDGHALCHI M, et al. Investigation of the role of endosomal Toll-like receptors in murine collagen-induced arthritis reveals a potential role for TLR7 in disease maintenance[J]. Arthritis Res Ther, 2012, 14(3):R142.
[27] DENG GM, NILSSON IM, VERDRENGH M, et al. Intra-articularly localized bacterial DNA containing CpG motifs induces arthritis[J].Nat Med, 1999, 5(6):702-705.
[28] CHO ML, JU JH, KIM HR, et al. Toll-like receptor 2 ligand mediates the upregulation of angiogenic factor, vascular endothelial growth factor and interleukin-8/CXCL8 in human rheumatoid synovial fibroblasts[J]. Immunol Lett, 2007, 108(2):121-128.
[29] SACRE SM, ANDREAKOS E, KIRIAKIDIS S, et al. The toll-like receptor adaptor proteins MyD88 and Mal/TIRAP contribute to the inflammatory and destructive processes in a human model of rheumatoid arthritis[J]. Am J Pathol, 2007, 170(2):518-525.
[30] JUNG YO, CHO ML, KANG CM, et al. Toll-like receptor 2 and 4 combination engagement upregulate IL-15 synergistically in human rheumatoid synovial fibroblasts[J].Immunol Lett, 2007, 109(1):21-27.
[31] PIERER M, RETHAGE J, SEIBL R, et al. Chemokine secretion of rheumatoid arthritis synovial fibroblasts stimulated by Toll-like receptor 2 ligands[J]. J Immunol, 2004, 172(2):1256-1265.
[32] TANG CH, HSU CJ, YANG WH, et al. Lipoteichoic acid enhances IL-6 production in human synovial fibroblasts via TLR2 receptor, PKCdelta and c-Src dependent pathways[J].Biochem Pharmacol, 2010, 79(11):1648-1657.
[33] OZAWA T, KOYAMA K, ANDO T, et al. Thymic stromal lymphopoietin secretion of synovial fibroblasts is positively and negatively regulated by Toll-like receptors/nuclear factor-kappaB pathway and interferon-gamma/dexamethasone[J]. Mod Rheumatol, 2007, 17(6):459-463.
[34] KYBURZ D, RETHAGE J, SEIBL R, et al. Bacterial peptidoglycans but not CpG oligodeoxynucleotides activate synovial fibroblasts by toll-like receptor signaling[J]. Arthritis Rheum, 2003, 48(3):642-650.
[35] POPA C, VAN LIESHOUT AW, ROELOFS MF, et al. MIF production by dendritic cells is differentially regulated by Toll-like receptors and increased during rheumatoid arthritis[J]. Cytokine, 2006, 36(1-2):51-56.
[36] PROOST P, VYNCKIER AK, MAHIEU F, et al. Microbial toll-like receptor ligands differentially regulate CXCL10/IP-10 expression in fibroblasts and mononuclear leukocytes in synergy with IFN-gamma and provide a mechanism for enhanced synovial chemokine levels in septic arthritis[J]. Eur J Immunol, 2003, 33(11):3146-3153.
[37] COLE BC, MU HH, PENNOCK ND, et al. Isolation and partial purification of macrophage- and dendritic cell-activating components from Mycoplasma arthritidis: association with organism virulence and involvement with Toll-like receptor 2[J]. Infect Immun, 2005, 73(9):6039-6047.
[38] ZARE F, BOKAREWA M, NENONEN N, et al. Arthritogenic properties of double-stranded (viral) RNA[J]. J Immunol, 2004, 172(9):5656-5663.
[39] MAGNUSSON M, ZARE F, TARKOWSKI A. Requirement of type I interferon signaling for arthritis triggered by double-stranded RNA[J]. Arthritis Rheum, 2006, 54(1):148-157.
[40] LIU H, KOMAI-KOMA M, XU D, et al. Toll-like receptor 2 signaling modulates the functions of CD4+CD25+regulatory T cells[J]. Proc Natl Acad Sci USA, 2006, 103(18):7048-7053.
[41] ISNARDI I, NG YS, SRDANOVIC I, et al. IRAK-4- and MyD88-dependent pathways are essential for the removal of developing autoreactive B cells in humans[J]. Immunity, 2008, 29(5): 746-757.
[42] RUDNICKA W, WARNAWIN E, BURAKOWSKI T, et al. Toll-like receptor 9 agonists and IL-15 promote activation, proliferation, secretion of proinflammatory cytokines and differentiation of B cells isolated from bone marrow of rheumatoid arthritis patients[J]. Arthritis Res Ther, 2007, 9
[43] RUDNICKA W, BURAKOWSKI T, WARNAWIN E, et al. Functional TLR9 modulates bone marrow B cells from rheumatoid arthritis patients[J].Eur J Immunol, 2009, 39(5): 1211-1220.
[44] VIGLIANTI GA, LAU CM, HANLEY TM, et al. Activation of autoreactive B cells by CpG dsDNA[J]. Immunity, 2003, 19(6):837-847.
[45] LOOS T, DEKEYZER L, STRUYF S, et al. TLR ligands and cytokines induce CXCR3 ligands in endothelial cells: enhanced CXCL9 in autoimmune arthritis[J].Lab Invest, 2006, 86(9):902-916.
[46] VAROGA D, PAULSEN F, MENTLEIN R, et al. TLR-2-mediated induction of vascular endothelial growth factor (VEGF) in cartilage in septic joint disease[J]. J Pathol, 2006, 210(3):315-324.
西安交通大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)2014年4期