王吳剛(綜述) 王 浩(審校)
實(shí)時(shí)三維超聲心動(dòng)圖評(píng)估二尖瓣反流嚴(yán)重程度的方法
王吳剛(綜述) 王 浩(審校)
二尖瓣閉鎖不全;超聲心動(dòng)描記術(shù),三維;綜述
二尖瓣反流(mitral regurgitation, MR)是心血管疾病中最常見的病理生理現(xiàn)象之一[1],中至重度MR可以進(jìn)展為左心室功能不全,而未經(jīng)治療、無癥狀的MR患者5年內(nèi)心血管疾病病死率為14%[2]。外科治療可以顯著改善MR患者的預(yù)期壽命[2,3]。MR患者的危險(xiǎn)分層、預(yù)后預(yù)測(cè)及手術(shù)時(shí)機(jī)的選擇均依賴對(duì)疾病嚴(yán)重程度的準(zhǔn)確評(píng)估,實(shí)時(shí)三維超聲心動(dòng)圖(real-time three-dimensional echocardiography, RT3DE)為精確評(píng)估MR的嚴(yán)重程度提供了新的工具。
早期三維彩色多普勒血流成像是采用門控的方法,應(yīng)用機(jī)械旋轉(zhuǎn)的經(jīng)胸壁探頭或電子驅(qū)動(dòng)的經(jīng)食管探頭采集圖像。這種方法需要二尖瓣反流束位于扇形圖像的中央?yún)^(qū)域,于患者呼氣末和心電圖門控下180°范圍內(nèi)每隔3°~5°旋轉(zhuǎn)探頭,連續(xù)采集二維彩色多普勒血流圖像;之后將獲得的二維圖像輸入計(jì)算機(jī)三維重建工作站,依據(jù)心電圖用幀頻捕捉器確定用于重建的二維圖像。三維重建二尖瓣反流束可以評(píng)估反流束的方向、形態(tài)、與周圍結(jié)構(gòu)的關(guān)系,甚至可以評(píng)估二尖瓣反流束的體積。然而該方法采集時(shí)間較長(zhǎng),可能會(huì)導(dǎo)致呼吸和運(yùn)動(dòng)偽像;且三維重建過程復(fù)雜、耗時(shí),所以臨床應(yīng)用受限。
近年來,隨著電子技術(shù)、全容積矩陣型三維探頭技術(shù)及圖像后處理技術(shù)的發(fā)展,RT3DE對(duì)MR嚴(yán)重程度的評(píng)估已取得長(zhǎng)足的進(jìn)展。目前RT3DE評(píng)估MR嚴(yán)重程度的指標(biāo)主要有:①二尖瓣反流束的最小截面寬度(vena contracta width, VCW)或者二尖瓣反流束最小截面面積(vena contracta area, VCA);②采用三維近端等速表面積(proximal isovelocity surface area, PISA)法測(cè)量的有效反流口面積(effective regurgitant orifce area, EROA);③采用三維重建法測(cè)量的解剖反流口面積(anatomic regurgitation orifce area, AROA);④MR體積及反流分?jǐn)?shù);⑤三維重建反流束形態(tài)及體積。
VCW在評(píng)估EROA的基礎(chǔ)上對(duì)MR嚴(yán)重程度進(jìn)行分級(jí)[4]。二維超聲心動(dòng)圖評(píng)估VCA只能在左心室長(zhǎng)軸或心尖切面測(cè)量,應(yīng)用圓形或橢圓形的幾何假設(shè),將VCW代入相關(guān)公式計(jì)算VCA,其受VCW的影響[5,6]。大多數(shù)MR,尤其是功能性MR,二尖瓣反流束最小截面的橫截面是非圓形,或不規(guī)則形的[6]。因而,二維超聲心動(dòng)圖利用假設(shè)幾何模型代入VCW計(jì)算的VCA與真實(shí)的VCA之間存在差異,影響對(duì)MR嚴(yán)重程度的評(píng)估。RT3DE可以對(duì)二尖瓣反流束進(jìn)行三維成像,將圖像進(jìn)行多平面重建及切割后,在短軸切面應(yīng)用平面法描繪反流束彩色多普勒血流信號(hào)輪廓直接計(jì)算VCA(圖1)。評(píng)估MR嚴(yán)重程度時(shí),RT3DE平面法測(cè)量的VCA較二維超聲更準(zhǔn)確[7-9]。RT3DE平面法測(cè)量的VCA界值定為0.41 cm2,可以將重度MR和中度MR區(qū)分,其敏感度為82%,特異度為96%[9]。
圖1 RT3DE平面法測(cè)量VCA。A、B.三維重建及切割后顯示的不同切面二尖瓣反流束的最小截面寬度;C.短軸切面描繪反流束彩色多普勒血流信號(hào)輪廓,可以直接測(cè)量VCA;D.三維模式顯示二尖瓣反流束
RT3DE平面法的優(yōu)勢(shì)在于,測(cè)量VCA時(shí)無需任何幾何學(xué)假設(shè),這對(duì)功能性MR尤其適用,因?yàn)樵诠δ苄訫R中,反流口呈細(xì)裂縫狀,沿二尖瓣閉合線延伸;另外,對(duì)于反流口是非圓形的MR,該方法同樣適用[5,6]。與二維超聲測(cè)量的EROA或VCW相比,RT3DE平面法測(cè)量的VCA可能對(duì)
理論上,RT3DE PISA法的優(yōu)勢(shì)是可以在三維空間的三個(gè)平面對(duì)PISA的不同徑線(寬度、長(zhǎng)度和半徑)進(jìn)行測(cè)量(圖2)[12];或應(yīng)用三維導(dǎo)航,獲取PISA的最大半徑,而無需對(duì)PISA形態(tài)進(jìn)行幾何學(xué)假設(shè)[6,13]。對(duì)RT3DE PISA法的研究多以二維超聲心動(dòng)圖為參考標(biāo)準(zhǔn),該標(biāo)準(zhǔn)內(nèi)在的局限性限制了RT3DE PISA法的準(zhǔn)確性[14-16]。近來,de Agustín等[17]應(yīng)用單心動(dòng)周期RT3DE PISA法評(píng)估MR的嚴(yán)重程度,以經(jīng)食管RT3DE平面法測(cè)量的EROA為參考標(biāo)準(zhǔn),發(fā)現(xiàn)二維PISA法始終低估EROA,尤其是對(duì)偏心性MR;而RT3DE PISA法與參考方法相比,相關(guān)性較好(r=0.99)。
雖然RT3DE可以直接測(cè)量PISA的寬度、長(zhǎng)度和半徑,改進(jìn)PISA法評(píng)估EROA的準(zhǔn)確性,但其仍需要對(duì)PISA的幾何形態(tài)進(jìn)行假設(shè)[14-16]。在Little等[18]和Matsumura等[15]嘗試獲取三維PISA面積的研究中,前者在體外模型中通過測(cè)量PISA的多個(gè)徑向平面以重建PISA的面積;后者通過測(cè)量PISA的多條徑線以重建PISA的面積,但這兩者對(duì)PISA的重建過程耗時(shí)耗力。一些新的研究應(yīng)用軟件自動(dòng)量化PISA的面積,結(jié)果的準(zhǔn)確性仍需要進(jìn)一步證實(shí)[19,20]。另外,RT3DE PISA法的多普勒角度依賴問題及EROA動(dòng)態(tài)變化問題仍舊未解決[11,12]。
圖2 RT3DE測(cè)量PISA法的不同徑線。A. D1示PISA的寬度;B. D2示PISA的長(zhǎng)度,D3示PISA的半徑;C. 短軸切面示PISA的三維形態(tài);D.三維模式示二尖瓣反流束
通過對(duì)三維數(shù)據(jù)集的切割及重建,可以獲取顯示解剖反流口的短軸切面,在該切面上應(yīng)用RT3DE平面法可以測(cè)量AROA。Hamada等[21]以MRI測(cè)量的MR體積為參考標(biāo)準(zhǔn),采用RT3DE平面法測(cè)量AROA,計(jì)算MR體積,結(jié)果顯示該法趨于高估MR體積(平均高估約20 ml)。需要注意的是,理論上AROA大于EROA[22]。
RT3DE在短軸切面重建解剖反流口,用平面法測(cè)量AROA,評(píng)估MR嚴(yán)重程度,可以對(duì)多個(gè)解剖反流口進(jìn)行測(cè)量,將測(cè)量結(jié)果相加,并且不需要對(duì)血流動(dòng)力學(xué)或反流口的幾何學(xué)形態(tài)進(jìn)行假設(shè)。然而,RT3DE平面法測(cè)量AROA面臨對(duì)心動(dòng)周期測(cè)量時(shí)相的選擇、獲取最好的解剖反流口短軸切面以及三維圖像的有縫拼接等問題[11,12]。
RT3DE測(cè)量的VCA、EROA或者AROA分別乘以MR速度時(shí)間積分可以用來評(píng)估MR體積。RT3DE測(cè)量左心室舒張與收縮末期容積之差可以用來評(píng)估舒張期二尖瓣前向血流體積,MR體積除以二尖瓣前向血流體積即為MR反流分?jǐn)?shù)。另外,也可以應(yīng)用RT3DE測(cè)量的左心室搏出體積結(jié)合二維超聲心動(dòng)圖測(cè)量的左心室流出道搏出體積計(jì)算MR體積和MR分?jǐn)?shù)[4]。
RT3DE測(cè)量的二尖瓣及左心室流出道前向血流體積即為MR體積[23]。RT3DE計(jì)算二尖瓣環(huán)及左心室流出道橫截面積是基于彩色多普勒在每個(gè)瓣口的三維空間分配,再結(jié)合彩色多普勒的速度分配計(jì)算經(jīng)過每個(gè)瓣口的前向血流體積。與二維多普勒方法相比,RT3DE計(jì)算結(jié)果更準(zhǔn)確,重復(fù)性更好[23,24]。這種新的三維彩色多普勒技術(shù)量化評(píng)估左心室搏出體積有著獨(dú)特的優(yōu)勢(shì);①脈沖多普勒測(cè)量瓣口血流速度時(shí),取樣容積范圍一般在2~5 mm,而新方法綜合了經(jīng)過二尖瓣環(huán)或左心室流出道的所有血流速度成分計(jì)算左心室搏出體積[23,24];②不用對(duì)二尖瓣環(huán)或左心室流出道的幾何形態(tài)進(jìn)行假設(shè);③新方法的自動(dòng)角度校正技術(shù)或半球形的取樣平面可以克服彩色多普勒血流的角度依賴性;④新方法手動(dòng)或自動(dòng)的混疊算法可以克服彩色多普勒混疊現(xiàn)象。
雖然RT3DE很適合評(píng)估MR體積和MR分?jǐn)?shù),但其仍然具有局限性:①只在單純MR患者中經(jīng)過驗(yàn)證,在MR伴隨其他相關(guān)病變時(shí)準(zhǔn)確性有待證實(shí);②在經(jīng)過主動(dòng)脈瓣和二尖瓣的血流速度升高時(shí),自動(dòng)或手動(dòng)混疊算法的準(zhǔn)確性并未得到驗(yàn)證;③三維彩色多普勒?qǐng)D像采集仍舊受限于幀頻較低,若患者心率過快,會(huì)造成數(shù)據(jù)準(zhǔn)確性降低;④儀器的側(cè)向分辨率、組織優(yōu)先設(shè)置、二尖瓣環(huán)或左心室流出道不完整的彩色多普勒數(shù)據(jù)采集均會(huì)影響這種方法的準(zhǔn)確性[4]。因此,在其應(yīng)用于臨床量化評(píng)估MR之前,仍需要進(jìn)一步研究。
隨著探頭技術(shù)及軟件技術(shù)的發(fā)展,RT3DE可以直接測(cè)量二尖瓣反流束體積。近來,Sugeng等[25]應(yīng)用TomTec GmbH軟件,將二尖瓣反流束分為8個(gè)等角度的切面,進(jìn)行反流束重建和體積測(cè)量,以PISA法計(jì)算的MR體積作為對(duì)照,結(jié)果顯示二者具有相關(guān)性(r=0.7);RT3DE直接測(cè)量二尖瓣反流束體積評(píng)估MR體積較PISA法平均低估約8 ml。我們采用全身成像三維量化(general imaging three-dimensional quantifcation, GI3DQ)法將二尖瓣反流束分為15個(gè)等厚度的薄切片平面,進(jìn)行反流束重建和體積測(cè)量(圖3),結(jié)果發(fā)現(xiàn),中心性MR組GI3DQ法和參考方法相比輕微低估MR體積(r=0.956, P<0.05;平均低估0.38 ml);偏心性MR組GI3DQ法和參考方法相比明顯低估MR體積(r=0.914, P<0.05;平均低估約10.55 ml)。
采用GI3DQ法測(cè)量二尖瓣反流束體積評(píng)估MR體積的優(yōu)勢(shì)在于:不受主動(dòng)脈瓣反流的影響;不用對(duì)反流束進(jìn)行幾何學(xué)假設(shè),適用于任意形狀的體積測(cè)量。需要注意的是,該方法評(píng)估MR體積時(shí),一定要選擇心動(dòng)周期二尖瓣反流束最大時(shí)相測(cè)量,否則容易低估MR的嚴(yán)重程度。該方法的局限性在于:①三維彩色多普勒顯像幀頻較低,且觸發(fā)的采集模式會(huì)產(chǎn)生時(shí)間上的偽差,可能造成血流信號(hào)的部分丟失,從而引起低估。②由于該方法主要是對(duì)反流束進(jìn)行分析,因此,Coanda效應(yīng)可能會(huì)低估偏心性反流束體積[26]。
總之,RT3DE評(píng)估MR的指標(biāo)和方法部分彌補(bǔ)了二維彩色多普勒超聲心動(dòng)圖的缺陷,提高了MR的評(píng)估精確度;但RT3DE評(píng)估MR嚴(yán)重程度依舊面臨許多問題,而且RT3DE評(píng)估MR嚴(yán)重程度的指標(biāo)并未在臨床上獲得廣泛驗(yàn)證。相信隨著電子技術(shù)、超聲探頭技術(shù)及軟件技術(shù)的發(fā)展以及相關(guān)研究的進(jìn)一步深入,RT3DE在評(píng)估MR嚴(yán)重程度方面會(huì)發(fā)揮越來越重要的作用。參考文獻(xiàn)
圖3 GI3DQ法測(cè)量二尖瓣反流束體積。A.二尖瓣反流束被分為15個(gè)等厚度的薄切片平面;B.在每一切面描繪二尖瓣反流束橫截面積;C.二尖瓣反流束二維形態(tài);D.二尖瓣反流束三維立體形態(tài)
[1] Nkomo VT, Gardin JM, Skelton TN, et al. Burden of valvular heart diseases: a population-based study. Lancet, 2006, 368(9540): 1005-1011.
[2] Enriquez-Sarano M, Avierinos JF, Messika-Zeitoun D, et al. Quantitative determinants of the outcome of asymptomatic mitral regurgitation. N Engl J Med, 2005, 352(9): 875-883.
[3] Tribouilloy CM, Enriquez-Sarano M, Schaff HV, et al. Impact of preoperative symptoms on survival after surgical correction of organic mitral regurgitation: rationale for optimizing surgical indications. Circulation, 1999, 99(3): 400-405.
[4] Thavendiranathan P, Phelan D, Thomas JD, et al. Quantitative assessment of mitral regurgitation: validation of new methods. J Am Coll Cardiol, 2012, 60(16): 1470-1483.
[5] Marsan NA, Westenberg JJ, Ypenburg C, et al. Quantifcation of functional mitral regurgitation by real-time 3D echocardiography: comparison with 3D velocity-encoded cardiac magnetic resonance. JACC Cardiovasc Imaging, 2009, 2(11): 1245-1252.
[6] Kahlert P, Plicht B, Schenk IM, et al. Direct assessment of size and shape of noncircular vena contracta area in functional versus organic mitral regurgitation using real-time three-dimensional echocardiography. J Am Soc Echocardiogr, 2008, 21(8): 912-921.
[7] Shanks M, Siebelink HM, Delgado V, et al. Quantitative assessment of mitral regurgitation: comparison between threedimensional transesophageal echocardiography and magnetic resonance imaging. Circ Cardiovasc Imaging, 2010, 3(6): 694-700.
[8] Yosefy C, Hung J, Chua S, et al. Direct measurement of vena contracta area by real-time 3-dimensional echocardiography for assessing severity of mitral regurgitation. Am J Cardiol, 2009, 104(7): 978-983.
[9] Zeng X, Levine RA, Hua L, et al. Diagnostic value of vena contracta area in the quantifcation of mitral regurgitation severity by color Doppler 3D echocardiography. Circ Cardiovasc Imaging, 2011, 4(5): 506-513.
[10] Little SH, Pirat B, Kumar R, et al. Three-dimensional color Doppler echocardiography for direct measurement of vena contracta area in mitral regurgitation: in vitro validation and clinical experience. JACC Cardiovasc Imaging, 2008, 1(6): 695-704.
[11] Buck T, Plicht B, Kahlert P, et al. Effect of dynamic fow rate and orifce area on mitral regurgitant stroke volume quantifcation using the proximal isovelocity surface area method. J Am Coll Cardiol, 2008, 52(9): 767-778.
[12] Yosefy C, Levine RA, Solis J, et al. Proximal flow convergence region as assessed by real-time 3-dimensional echocardiography: challenging the hemispheric Assumption. J Am Soc Echocardiogr, 2007, 20(4): 389-396.
[13] Matsumura Y, Saracino G, Sugioka K, et al. Determination of regurgitant orifice area with the use of a new three-dimensional flow convergence geometric assumption in functional mitral regurgitation. J Am Soc Echocardiogr, 2008, 21(11): 1251-1256.
[14] Plicht B, Kahlert P, Goldwasser R, et al. Direct quantifcation of mitral regurgitant flow volume by real-time three-dimensional echocardiography using dealiasing of color Doppler flow at the vena contracta. J Am Soc Echocardiogr, 2008, 21(12): 1337-1346.
[15] Matsumura Y, Fukuda S, Tran H, et al. Geometry of the proximal isovelocity surface area in mitral regurgitation by 3-dimensional color Doppler echocardiography: difference between functional mitral regurgitation and prolapse regurgitation. Am Heart J, 2008, 155(2): 231-238.
[16] Altiok E, Hamada S, van Hall S, et al. Comparison of direct planimetry of mitral valve regurgitation orifice area by threedimensional transesophageal echocardiography to effective regurgitant orifice area obtained by proximal flow convergence method and vena contracta area determined by color Doppler echocardiography. Am J Cardiol, 2011, 107(3): 452-458.
[17] de Agustín JA, Marcos-Alberca P, Fernandez-Golfin C, et al. Direct measurement of proximal isovelocity surface area by singlebeat three-dimensional color Doppler echocardiography in mitral regurgitation: a validation study. J Am Soc Echocardiogr, 2012, 25(8): 815-823.
[18] Little SH, Igo SR, Pirat B, et al. In vitro validation of real-time three-dimensional color Doppler echocardiography for direct measurement of proximal isovelocity surface area in mitral regurgitation. Am J Cardiol, 2007, 99(10): 1440-1447.
[19] Thavendiranathan P, Liu S, Datta S,et al. Automated quantifcation of mitral inflow and aortic outflow stroke volumes by threedimensional real-time volume color-flow Doppler transthoracic echocardiography: comparison with pulsed-wave Doppler and cardiac magnetic resonance imaging. J Am Soc Echocardiogr, 2012, 25(1): 56-65.
[20] Grady L, Datta S, Kutter O, et al. Regurgitation quantification using 3D PISA in volume echocardiography. Med Image Comput Comput Assist Interv, 2011, 14(Pt 3): 512-519.
[21] Hamada S, Altiok E, Frick M, et al. Comparison of accuracy of mitral valve regurgitation volume determined by three-dimensional transesophageal echocardiography versus cardiac magnetic resonance imaging. Am J Cardiol, 2012, 110(7): 1015-1020.
[22] Chandra S, Salgo IS, Sugeng L, et al. A three-dimensional insight into the complexity of flow convergence in mitral regurgitation: adjunctive benefit of anatomic regurgitant orifice area. Am J Physiol Heart Circ Physiol, 2011, 301(3): H1015-H1024.
[23] Thavendiranathan P, Liu S, Datta S,et al. Automated quantifcation of mitral inflow and aortic outflow stroke volumes by threedimensional real-time volume color-flow Doppler transthoracic echocardiography: comparison with pulsed-wave Doppler and cardiac magnetic resonance imaging. J Am Soc Echocardiogr, 2012, 25(1): 56-65.
[24] Lodato JA, Weinert L, Baumann R, et al. Use of 3-dimensional color Doppler echocardiography to measure stroke volume in human beings: comparison with thermodilution. J Am Soc Echocardiogr, 2007, 20(2): 103-112.
[25] Sugeng L, Weinert L, Lang RM. Real-time 3-dimensional color Doppler fow of mitral and tricuspid regurgitation: feasibility and initial quantitative comparison with 2-dimensional methods. J Am Soc Echocardiogr, 2007, 20(9): 1050-1057.
[26] Chao K, Moises VA, Shandas R, et al. Infuence of the Coanda effect on color Doppler jet area and color encoding. In vitro studies using color Doppler fow mapping. Circulation, 1992, 85(1): 333-341.
R453;R445.1
國(guó)家自然科學(xué)基金面上項(xiàng)目(81071161)。
北京協(xié)和醫(yī)學(xué)院,中國(guó)醫(yī)學(xué)科學(xué)院心血管病研究所,阜外心血管病醫(yī)院超聲科 北京 100037
王 浩 E-mail: fwanghao@sina.cn患者M(jìn)R嚴(yán)重程度的分類更為精確[7-9]。RT3DE平面法評(píng)估VCA仍具有局限性:①由于空間分辨率的限制,三維重建及切割平面時(shí)可能會(huì)得到較小的反流口面積或EROA[7,10];②心動(dòng)周期收縮期測(cè)量時(shí)相的選擇依賴于MR的病因,可能會(huì)影響RT3DE平面法對(duì)VCA的評(píng)估,從而使研究者之間產(chǎn)生較大的變異[11];③RT3DE平面法測(cè)量VCA時(shí)需要多平面三維重建,以獲取切割平面,可能影響VCA的測(cè)量結(jié)果;該影響對(duì)偏心性MR尤其顯著,因?yàn)楫?dāng)MR高度偏心時(shí),若切割平面不正交,則會(huì)高估VCA[4];④RT3DE平面法測(cè)量VCA其實(shí)測(cè)量的是反流束最小截面的彩色多普勒反流信號(hào)的輪廓,因此,若彩色多普勒反流信號(hào)滲入到周圍的灰階圖像中,則會(huì)高估VCA[4];⑤RT3DE平面法主要采用觸發(fā)的采集模式,可能產(chǎn)生時(shí)間偽差,導(dǎo)致由若干個(gè)亞容積組成的全容積圖像出現(xiàn)有縫拼接,從而影響VCA測(cè)值,雖然無縫拼接RT3DE技術(shù)可以克服這些缺點(diǎn),但其空間和時(shí)間分辨率尚未達(dá)到分析要求[4]。
2013-05-29
2013-10-24
(責(zé)任編輯 唐 潔)
10.3969/j.issn.1005-5185.2014.01.014