• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      腸-肝軸與非酒精性脂肪性肝病

      2014-03-18 13:13:44丁佳吳健
      微生物與感染 2014年2期
      關(guān)鍵詞:過度生長(zhǎng)菌門菌群

      丁佳,吳健

      復(fù)旦大學(xué)基礎(chǔ)醫(yī)學(xué)院醫(yī)學(xué)分子病毒學(xué)教育部/衛(wèi)生部重點(diǎn)實(shí)驗(yàn)室,上海 200032

      隨著肥胖、2型糖尿病和代謝綜合征的發(fā)病率逐年升高,非酒精性脂肪性肝病(non-alcoholic fatty liver disease,NAFLD)已成為20世紀(jì)最常見的慢性肝臟疾病之一。NAFLD包括單純性肝脂肪變、非酒精性脂肪性肝炎(non-alcoholic steatohepatitis,NASH)伴或不伴肝纖維化,后者可進(jìn)展為終末期肝病(肝硬化),并在此基礎(chǔ)上發(fā)生肝細(xì)胞肝癌(簡(jiǎn)稱肝癌)。NASH已成為近年來西方國(guó)家肝癌發(fā)病率升高的主要因素之一。除遺傳基因、飲食環(huán)境和生活方式等因素與NAFLD的發(fā)病相關(guān)外,近期研究表明腸道菌群組分改變?cè)谡T發(fā)能量代謝紊亂和胰島素抵抗,促進(jìn)NAFLD發(fā)展至NASH中也起重要作用。本文旨在總結(jié)近年來在探索腸-肝軸和腸道菌群改變與肝臟炎癥發(fā)生、發(fā)展關(guān)系方面的研究進(jìn)展,為擬定NASH治療的新策略提供科學(xué)依據(jù)。

      1 腸-肝軸相互作用

      腸道菌群對(duì)肝臟疾病的影響至少可追溯到80年前。Hoefert首先報(bào)道小腸細(xì)菌過度生長(zhǎng)普遍出現(xiàn)于肝硬化患者,并與疾病的嚴(yán)重程度直接相關(guān)[1]。由于解剖結(jié)構(gòu)和位置的特殊性,肝臟作為一級(jí)淋巴器官直接處理腸道血流中大量的細(xì)菌內(nèi)毒素和代謝產(chǎn)物,通過膽鹽等底物和腸-肝循環(huán)調(diào)節(jié)腸道功能、激素和免疫反應(yīng)。同時(shí),由于肝臟與腸道間的雙向作用,腸道的激素、炎性介質(zhì)和消化吸收產(chǎn)物也能調(diào)節(jié)肝功能。肝硬化時(shí)小腸動(dòng)力障礙和口-盲腸傳輸時(shí)間延長(zhǎng)是小腸細(xì)菌過度生長(zhǎng)的生理基礎(chǔ),同時(shí)腸道黏膜通透性增加為腸道內(nèi)細(xì)菌過度生長(zhǎng)、侵入腹腔創(chuàng)造了條件,從而更易發(fā)生自發(fā)性細(xì)菌性腹膜炎和肝性腦病[2,3]。這是腸-肝軸影響肝臟疾病發(fā)生、發(fā)展的典型案例。

      2 腸道菌群改變影響NAFLD的發(fā)生

      在人類的消化道棲息著億萬(wàn)種不同種類的微生物,其中大部分細(xì)菌種系定植在結(jié)腸,細(xì)菌總數(shù)為1013~1014個(gè),菌體量> 1 kg。細(xì)菌的數(shù)量和類別保持動(dòng)態(tài)恒定是維持腸道內(nèi)環(huán)境穩(wěn)定的基礎(chǔ)[4]。人類宏基因組包括嵌入人體的基因組和伴生的微生物基因組。作為一個(gè)整體,微生物基因組數(shù)量是人類基因組數(shù)量的100余倍[5]。消化道在出生時(shí)是無(wú)菌的,出生后細(xì)菌開始定植并發(fā)展成穩(wěn)定的菌群。嬰兒腸道中的雙歧桿菌是分解母乳中寡糖的關(guān)鍵菌群,能否建立穩(wěn)定的菌群是嬰兒正常消化吸收功能的重要前提。嬰幼兒腸道菌群不穩(wěn)定是發(fā)生腹瀉和消化吸收障礙的原因之一[6]。成年后消化道內(nèi)菌群的數(shù)量和類別保持相對(duì)穩(wěn)定,但個(gè)體間差異巨大。消化道不同解剖部位的細(xì)菌種類和數(shù)量也不同,升結(jié)腸的細(xì)菌含量為1011個(gè)細(xì)胞/g,遠(yuǎn)端回腸為107~108個(gè)細(xì)胞/g,近端空回腸為102~103個(gè)細(xì)胞/g[7]。盡管腸道菌群的種系估計(jì)超過5 000種,但只有少部分菌種在數(shù)量上占主導(dǎo)地位[8,9],如厚壁菌門約占60%、擬桿菌門約占15%、放線菌門約占15%、疣微菌門約占2%、變性菌門約占1%、甲烷桿菌目約占1%[10]。其中,擬桿菌門合成氫氣,厚壁菌門合成各種可作為人體能量來源的短鏈脂肪酸(short chain fatty acid,SCFA),包括丁酸等。此外,同一門類中的微生物功能可具有高度多樣化[11]。

      研究表明,超重和肥胖兒童糞便中雙歧桿菌比例下降,金黃色葡萄球菌比例上升[12]。與健康人群相比,肥胖人群體內(nèi)厚壁菌門比例上升,而擬桿菌門比例下降[13]。某些腸道菌群能更高效地從食物中攝取能量,促進(jìn)肥胖和NAFLD的發(fā)生。Miele等對(duì)35例組織學(xué)證實(shí)的NAFLD患者研究后發(fā)現(xiàn),患者腸道黏膜通透性增加,黏膜上皮細(xì)胞間緊密連接缺失,帶狀閉合蛋白1(zona occludens 1,ZO-1)表達(dá)下調(diào)。其中60%患者出現(xiàn)小腸細(xì)菌過度生長(zhǎng),且與肝脂肪變的嚴(yán)重程度顯著相關(guān)[14]。動(dòng)物實(shí)驗(yàn)表明,高脂飼料喂養(yǎng)的小鼠糞便中厚壁菌門比例升高,腸道內(nèi)SCFA合成增加[15]。SCFA作為機(jī)體重要的能量來源,能增強(qiáng)肝臟自身脂質(zhì)合成和三酰甘油聚集;同時(shí)也是腸上皮細(xì)胞、腸內(nèi)分泌細(xì)胞和脂肪細(xì)胞的G蛋白偶聯(lián)受體(G protein-coupled receptor,GPCR)的配體[16]。通過與GPCR結(jié)合,SCFA可增強(qiáng)胃腸激素如胰高血糖素樣肽1(glucagon-like peptide 1,GLP-1)和酪酪肽(peptide YY,PYY)的分泌,直接或間接影響胰島素和胰高血糖素的產(chǎn)生,調(diào)節(jié)食欲和食物的攝入[17]。

      此外,動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn)部分高脂飼料喂養(yǎng)的小鼠(稱為“應(yīng)答”小鼠)除體重增加外,空腹血糖和胰島素水平都升高,伴有單核細(xì)胞趨化因子1(monocyte chemoattractant protein 1,MCP-1)和腫瘤壞死因子α(tumor necrosis factor α,TNF-α)等促炎因子分泌增加。將“應(yīng)答”小鼠和“非應(yīng)答”小鼠的腸道菌群分別移植至無(wú)菌小鼠后,接受“應(yīng)答”小鼠腸道菌群接種的受體小鼠出現(xiàn)了脂肪肝,并伴有轉(zhuǎn)錄因子固醇調(diào)節(jié)元件結(jié)合蛋白1c(sterol regulatory element binding protein 1c,SREBP1c)、糖類應(yīng)答元件結(jié)合蛋白(carbohydrate response element binding protein,ChREBP)和乙酰輔酶A 羧化酶等脂質(zhì)合成限速酶基因表達(dá)上調(diào);而“非應(yīng)答”受體小鼠則無(wú)顯著變化。與“非應(yīng)答”受體小鼠相比,“應(yīng)答”受體小鼠糞便內(nèi)厚壁菌門比例顯著升高,表明腸道菌群的改變促進(jìn)NAFLD發(fā)生[18]。但此結(jié)果能否在人體得到證實(shí),仍需多樣本臨床對(duì)照研究驗(yàn)證。由于厚壁菌門被認(rèn)為是“肥胖菌群”,且能在同一種系間接種傳播,故有學(xué)者將由此類細(xì)菌引起的能量代謝異常、肥胖和NALFD定義為“感染性疾病”[19]。這一論點(diǎn)能否得到公認(rèn),有待商榷。

      3 腸道菌群調(diào)控肝臟炎癥和肝纖維化

      腸道細(xì)菌的產(chǎn)物,如脂多糖(lipopolysaccharide,LPS)、脂多肽、DNA和RNA,具有潛在的肝毒性,能促進(jìn)炎癥發(fā)生[20]。這些細(xì)菌產(chǎn)物通過機(jī)體天然免疫系統(tǒng)的病原體相關(guān)分子模式(pathogen-associated molecular pattern,PAMP)和損傷相關(guān)分子模式(damage-associated molecular pattern,DAMP)激活肝細(xì)胞、Kupffer細(xì)胞和肝星狀細(xì)胞(hepatic stellate cell,HSC)表面和細(xì)胞內(nèi)的Toll樣受體(Toll-like receptor,TLR),啟動(dòng)相應(yīng)的炎癥反應(yīng)[21]。不同的TLR具有相應(yīng)的配體和特異的PAMP和DAMP[22]。TLR是進(jìn)化高度保守的Ⅰ型跨膜糖蛋白,包含2個(gè)結(jié)構(gòu)域:富含亮氨酸的重復(fù)序列和細(xì)胞內(nèi)信號(hào)結(jié)構(gòu)域——Toll/白細(xì)胞介素1受體(Toll/interleukin 1 receptor,TIR)結(jié)構(gòu)域[23]。TLR下游的信號(hào)通路包括髓樣分化因子88(myeloid differentiation factor 88,MyD88)依賴或MyD88非依賴2條通路。MyD88依賴的下游信號(hào)通路激活核因子κB(nuclear factor κB,NF-κB),促進(jìn)TNF-α、白細(xì)胞介素6(interleukin 6,IL-6)、IL-8和IL-12等促炎因子和γ干擾素(interferon γ,IFN-γ)、MCP-1等免疫相關(guān)基因和趨化因子的轉(zhuǎn)錄;MyD88非依賴的信號(hào)通路主要促進(jìn)下游IFN-β的表達(dá)[24]。其中,TLR4能通過與配體革蘭陰性桿菌胞壁成分LPS結(jié)合,同時(shí)以MyD88依賴和MyD88非依賴2種途徑激活下游信號(hào)通路[25]。

      在小鼠NAFLD模型中,將普通飼料換成高脂飼料后,小鼠腸道菌群中厚壁菌門比例升高,擬桿菌門比例下降。小鼠體重增加,空腹血糖和胰島素水平升高,肝內(nèi)三酰甘油和炎性分子聚集,門靜脈中LPS水平顯著升高[26]。Henao-Mejia等研究表明,IL-1細(xì)胞因子超家族成員IL-18能通過調(diào)節(jié)腸道菌群,在NAFLD等代謝性疾病進(jìn)展中起重要作用。IL-1β和IL-18被炎性小體復(fù)合物激活后,才能形成有生物學(xué)活性的分子。炎性小體復(fù)合物由半胱氨酸天冬氨酸蛋白酶1(cysteinyl aspartate specific proteinase 1, caspase-1)和核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體(nucleotide-binding oligomerization domain-like receptor,NLR)家族蛋白組成。NLRP3和NLRP6天然免疫缺陷小鼠失去產(chǎn)生IL-18的能力,腸道菌群譜中普雷沃菌科和紫單胞菌科比例增加,導(dǎo)致細(xì)菌產(chǎn)物由腸道轉(zhuǎn)位至血循環(huán)和肝臟,激活TLR4和TLR9。該小鼠在喂食膽堿缺失飼料后極易發(fā)生NAFLD,喂食高脂飼料后極易發(fā)生代謝綜合征[27]。

      NAFLD患者小腸細(xì)菌過度生長(zhǎng)、小腸黏膜通透性增加及緊密連接丟失引起的細(xì)菌轉(zhuǎn)位導(dǎo)致血漿中LPS濃度升高,這些改變與NAFLD向NASH進(jìn)展相關(guān)[14,28,29]。與輕度肝脂肪變患者相比,中、重度肝脂肪變患者的腸道黏膜通透性增加,小腸細(xì)菌過度生長(zhǎng)的程度更甚[30]。NASH患者小腸細(xì)菌過度生長(zhǎng)的嚴(yán)重程度與TLR4表達(dá)增強(qiáng)和IL-8生成密切相關(guān)[29]。肝組織炎癥時(shí),Kupffer細(xì)胞和HSC中TLR4表達(dá)水平升高。Kupffer細(xì)胞首先對(duì)LPS作出反應(yīng),產(chǎn)生炎性細(xì)胞因子、趨化因子和活性氧(reactive oxygen species,ROS)[31],并通過分泌轉(zhuǎn)化生長(zhǎng)因子β(transforming growth factor β,TGF-β)等促纖維化因子激活HSC[32]。與健康人群相比,NASH患者小腸細(xì)菌過度生長(zhǎng)引起血漿中LPS增多,經(jīng)LPS-TLR4信號(hào)途徑誘導(dǎo)TNF-α水平顯著升高[33,34]。除通過Kupffer細(xì)胞間接激活HSC外,腸道來源的LPS可直接通過TLR4激活HSC。LPS通過下調(diào)TGF-β負(fù)向調(diào)節(jié)受體Bambi的功能,強(qiáng)化TGF-β對(duì)HSC的激活,活化的HSC分泌CC趨化因子配體2(CC chemokine ligand 2,CCL2)和CCL4等趨化因子,招募Kupffer細(xì)胞,后者再分泌TGF-β,繼而促進(jìn)肝纖維化進(jìn)展[32]。如此,LPS所致肝內(nèi)非實(shí)質(zhì)細(xì)胞間相互作用使肝臟炎癥和纖維化反應(yīng)得以持續(xù)。

      其他腸道細(xì)菌產(chǎn)物如細(xì)菌DNA,可通過DAMP模式影響NASH的進(jìn)展和慢性化。細(xì)菌DNA富含CpG序列,與細(xì)胞內(nèi)TLR9結(jié)合后,通過MyD88招募和激活下游NF-κB等信號(hào)分子,促進(jìn)炎癥分子表達(dá)[35]。此外,TLR9還通過干擾素調(diào)控因子7(interferon regulatory factor 7,IRF-7)促進(jìn)IFN-α表達(dá)[36]。肝細(xì)胞、肝血竇內(nèi)皮細(xì)胞、Kupffer細(xì)胞和HSC都可功能性表達(dá)TLR9[37,38]。小鼠NASH模型中,細(xì)菌DNA通過與Kupffer細(xì)胞內(nèi)TLR9結(jié)合,以MyD88依賴途徑促進(jìn)IL-1β表達(dá)。IL-1β通過活化HSC,上調(diào)Ⅰ型前膠原和金屬 蛋白酶組織抑制劑1(tissue inhibitor of metalloproteinase 1,TIMP-1)等促纖維化基因表達(dá)及下調(diào)Bambi表達(dá),促進(jìn)肝纖維化。TLR-9缺陷和IL-1受體缺陷小鼠與野生型小鼠相比,脂肪性肝炎和肝纖維化程度顯著下降[39]。

      4 腸-肝軸可作為防治NASH和肝纖維化的新策略

      肥胖和高脂飲食可改變腸道菌群,因此可通過抗生素、益生菌和益生元等藥物調(diào)節(jié)腸道菌群,改善腸道黏膜屏障,抑制小腸細(xì)菌過度生長(zhǎng),降低外周血和門靜脈內(nèi)毒素水平,以達(dá)到控制NASH向肝纖維化進(jìn)展的目標(biāo)。

      動(dòng)物實(shí)驗(yàn)表明,雙歧桿菌可改善高脂飼料小鼠的葡萄糖穩(wěn)態(tài),降低小鼠體重和體脂含量,恢復(fù)葡萄糖介導(dǎo)的胰島素分泌,并降低促炎性細(xì)胞因子(如TNF-α、IL-6等)和LPS水平[40]。給予ob/ob小鼠口服益生菌復(fù)合制劑VSL#3(唾液鏈球菌、嗜熱鏈球菌、雙歧桿菌和嗜酸乳酸桿菌等8種活性益生菌混合物),可降低肝內(nèi)脂質(zhì)含量和肝臟炎癥,改善肝臟的胰島素抵抗[41],并能通過下調(diào)NF-κB活性降低促炎性細(xì)胞因子分泌,以及降低TNF-α、誘導(dǎo)型一氧化氮合酶(inducible nitric oxide synthase,iNOS)和環(huán)氧酶2等脂質(zhì)過氧化標(biāo)記的表達(dá)[42]。此外,VSL#3還可通過減少平滑肌α肌動(dòng)蛋白聚集、降低前膠原α1表達(dá)、刺激Bambi受體表達(dá)、控制HSC活化等機(jī)制,延緩膽堿缺乏飼料誘導(dǎo)的NASH纖維化進(jìn)程[43]。盡管益生菌在動(dòng)物模型中能緩解肝臟炎癥和降低肝內(nèi)脂肪聚積,但用其治療NAFLD的臨床試驗(yàn)結(jié)果卻不甚理想。因NAFLD患者在停藥4個(gè)月后肝內(nèi)脂質(zhì)含量顯著增加,故VSL#3治療NAFLD的臨床試驗(yàn)被提前終止[44]。

      口服腸道不吸收抗生素可調(diào)節(jié)腸道菌群,但由于無(wú)法特異性針對(duì)“有害”細(xì)菌,故備受爭(zhēng)議。研究表明,給予高脂飼料誘導(dǎo)的肥胖小鼠口服萬(wàn)古霉素,可使厚壁菌門與擬桿菌門細(xì)菌比例顯著下降,變形菌門細(xì)菌數(shù)量降低。在萬(wàn)古霉素干預(yù)期間,盡管進(jìn)食同等熱量的食物,小鼠體重較對(duì)照組降低,空腹血糖、血漿TNF-α及三酰甘油水平顯著下降[45]。在果糖誘導(dǎo)的小鼠NASH模型中,口服不吸收抗生素可顯著降低血漿和門靜脈LPS水平及肝臟TNF-α表達(dá),減緩肝細(xì)胞脂肪變和肝臟炎癥損傷[43]。但迄今為止,尚未有研究肯定益生菌或抗生素能顯著減緩NASH患者向肝纖維化及終末期肝病進(jìn)展。

      腸道菌群與NAFLD的關(guān)系強(qiáng)調(diào)了腸-肝軸相互作用對(duì)機(jī)體能量代謝的影響。鑒于一些腸道細(xì)菌的組分和產(chǎn)物與NAFLD進(jìn)展至NASH相關(guān),人們?cè)噲D通過定性和定量改變腸道菌群以延緩肝臟疾病的進(jìn)程。盡管動(dòng)物模型和部分臨床研究顯示,益生菌對(duì)NASH患者的肝臟損傷有潛在的治療作用,但迄今尚無(wú)大規(guī)模的臨床隨機(jī)對(duì)照試驗(yàn)來驗(yàn)證這一結(jié)果。腸道菌群的類型和功能鑒定、小腸細(xì)菌過度生長(zhǎng)與NASH起始和進(jìn)展的因果關(guān)系,仍有待進(jìn)一步研究。同時(shí),NASH由胰島素抵抗、肝脂質(zhì)毒性、氧化應(yīng)激反應(yīng)等多因素引起,且常為肥胖、糖尿病及代謝綜合征等疾病的肝臟表現(xiàn)或伴生疾病。NASH發(fā)病機(jī)制的個(gè)體化差異較大,一種機(jī)制往往不能解釋所有患者的發(fā)病原因,故其治療更應(yīng)趨于個(gè)體化[46]。

      [1] Hoefert B. über die Bakterienbefunde im Duodenalsaft von Gesunden und Kranken [J]. Zschr Klin Med, 1921, 92: 221-235.

      [2] Madrid AM, Cumsille F, Defilippi C. Altered small bowel motility in patients with liver cirrhosis depends on severity of liver disease [J]. Dig Dis Sci, 1997, 42(4): 738-742.

      [3] Madrid AM, Hurtado C, Venegas M, Cumsille F, Defilippi C. Long-term treatment with cisapride and antibiotics in liver cirrhosis: effect on small intestinal motility, bacterial overgrowth, and liver function [J]. Am J Gastroenterol, 2001, 96(4): 1251-1255.

      [4] Nicholson JK, Holmes E, Wilson ID. Gut microorganisms, mammalian metabolism and personalized health care [J]. Nat Rev Microbiol, 2005, 3(5): 431-438.

      [5] Neish AS. Microbes in gastrointestinal health and disease [J]. Gastroenterology, 2009, 136(1): 65-80.

      [6] Chichlowski M, German JB, Lebrilla CB, Mills DA. The influence of milk oligosaccharides on microbiota of infants: opportunities for formulas [J]. Annu Rev Food Sci Technol, 2011, 2: 331-351.

      [7] Zoetendal EG, Vaughan EE, de Vos WM. A microbial world within us [J]. Mol Microbiol, 2006, 59(6): 1639-1650.

      [8] Zoetendal EG, Rajilic-Stojanovic M, de Vos WM. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota [J]. Gut, 2008, 57(11):1605-1615.

      [9] Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the human intestinal microbial flora [J]. Science, 2005, 308(5728):1635-1638.

      [10] Ley RE, Knight R, Gordon JI. The human microbiome: eliminating the biomedical/environmental dichotomy in microbial ecology [J]. Environ Microbiol, 2007, 9(1):3-4.

      [11] Rajili-StojanoviM, Smidt H, de Vos WM. Diversity of the human gastrointestinal tract microbiota revisited [J]. Environ Microbiol, 2007, 9 (9):2125-2136.

      [12] Kalliomaki M, Collado MC, Salminen S, Isolauri E. Early differences in fecal microbiota composition in children may predict overweight [J]. Am J Clin Nutr, 2008, 87(3):534-538.

      [13] Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity [J]. Nature, 2006, 444(7122):1022-1023.

      [14] Miele L, Valenza V, La Torre G, Montalto M, Cammarota G, Ricci R, Mascianà R, Forgione A, Gabrieli ML, Perotti G, Vecchio FM, Rapaccini G, Gasbarrini G, Day CP, Grieco A. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease [J]. Hepatology, 2009, 49(6):1877-1887.

      [15] Murphy EF, Cotter PD, Healy S, Marques TM, O′Sullivan O, Fouhy F, Clarke SF, O′Toole PW, Quigley EM, Stanton C, Ross PR, O′Doherty RM, Shanahan F. Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models [J]. Gut, 2010, 59(12):1635-1642.

      [16] Le Poul E, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME, Brezillon S, Dupriez V, Vassart G, Van Damme J, Parmentier M, Detheux M. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation [J]. J Biol Chem, 2003, 278(28):25481-25489.

      [17] Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, Hammer RE, Williams SC, Crowley J, Yanagisawa M, Gordon JI. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41 [J]. Proc Natl Acad Sci USA, 2008, 105(43):16767-16772.

      [18] Le Roy T, Llopis M, Lepage P, Bruneau A, Rabot S, Bevilacqua C, Martin P, Philippe C, Walker F, Bado A, Perlemuter G, Cassard-Doulcier AM, Gérard P. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice [J]. Gut, 2013, 62(12): 1787-1794.

      [19] Chassaing B, Etienne-Mesmin L, Gewirtz AT. Microbiota-liver axis in hepatic disease [J]. Hepatology, 2014, 59(1): 328-339.

      [20] Seki E, Schnabl B. Role of innate immunity and the microbiota in liver fibrosis: crosstalk between the liver and gut [J]. J Physiol, 2012, 590(Pt 3):447-458.

      [21] Schwabe RF, Seki E, Brenner DA. Toll-like receptor signaling in the liver [J]. Gastroenterology, 2006, 130(6):1886-1900.

      [22] Alisi A, Carsetti R, Nobili V. Pathogen- or damage-associated molecular patterns during nonalcoholic fatty liver disease development [J]. Hepatology, 2011, 54(5):1500-1502.

      [23] O′Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling [J]. Nat Rev Immunol, 2007, 7(5):353-364.

      [24] Guo J, Friedman SL. Toll-like receptor 4 signaling in liver injury and hepatic fibrogenesis [J]. Fibrogenesis Tissue Repair, 2010, 3:21.

      [25] Freudenberg MA, Tchaptchet S, Keck S, Fejer G, Huber M, Schütze N, Beutler B, Galanos C. Lipopolysaccharide sensing an important factor in the innate immune response to Gram-negative bacterial infections: benefits and hazards of LPS hypersensitivity [J]. Immunobiology, 2008, 213(3-4):193-203.

      [26] Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmée E, Cousin B, Sulpice T, Chamontin B, Ferrières J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R. Metabolic endotoxemia initiates obesity and insulin resistance [J]. Diabetes, 2007, 56(7):1761-1772.

      [27] Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, Thaiss CA, Kau AL, Eisenbarth SC, Jurczak MJ, Camporez JP, Shulman GI, Gordon JI, Hoffman HM, Flavell RA. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity [J]. Nature, 2012, 482(7384):179-185.

      [28] Sabaté JM, Jou?t P, Harnois F, Mechler C, Msika S, Grossin M, Coffin B.High prevalence of small intestinal bacterial overgrowth in patients with morbid obesity: a contributor to severe hepatic steatosis [J]. Obes Surg, 2008, 18(4):371-377.

      [29] Shanab AA, Scully P, Crosbie O, Buckley M, O′Mahony L, Shanahan F, Gazareen S, Murphy E, Quigley EM. Small intestinal bacterial overgrowth in nonalcoholic steatohepatitis: association with Toll-like receptor 4 expression and plasma levels of interleukin 8 [J]. Dig Dis Sci, 2011, 56(5):1524-1534.

      [30] Thuy S, Ladurner R, Volynets V, Wagner S, Strahl S, K?nigsrainer A, Maier KP, Bischoff SC, Bergheim I. Nonalcoholic fatty liver disease in humans is associated with increased plasma endotoxin and plasminogen activator inhibitor 1 concentrations and with fructose intake [J]. J Nutr, 2008, 138(8):1452-1455.

      [31] Baffy G. Kupffer cells in non-alcoholic fatty liver disease: the emerging view [J]. J Hepatol, 2009, 51(1):212-223.

      [32] Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA, Schwabe RF. TLR4 enhances TGF-beta signaling and hepatic fibrosis [J]. Nat Med, 2007, 13(11):1324-1332.

      [33] Wigg AJ, Roberts-Thomson IC, Dymock RB, McCarthy PJ, Grose RH, Cummins AG. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis [J]. Gut, 2001, 48(2):206-211.

      [34] Rabelo F, Oliveira CP, Faintuch J, Mazo DF, Lima VM, Stefano JT, Barbeiro HV, Soriano FG, Alves VA, Carrilho FJ. Pro- and anti-inflammatory cytokines in steatosis and steatohepatitis [J]. Obes Surg, 2010, 20(7):906-912.

      [35] Takeuchi O, Akira S. Pattern recognition receptors and inflammation [J]. Cell, 2010, 140(6):805-820.

      [36] Takeda K, Akira S. TLR signaling pathways [J]. Semin Immunol, 2004, 16(1):3-9.

      [37] G?bele E, Mühlbauer M, Dorn C, Weiss TS, Froh M, Schnabl B, Wiest R, Sch?lmerich J, Obermeier F, Hellerbrand C. Role of TLR9 in hepatic stellate cells and experimental liver fibrosis [J]. Biochem Biophys Res Commun, 2008, 376(2):271-276.

      [38] Martin-Armas M, Simon-Santamaria J, Pettersen I, Moens U, Smedsr?d B, Sveinbj?rnsson B. Toll-like receptor 9 (TLR9) is present in murine liver sinusoidal endothelial cells (LSECs) and mediates the effect of CpG-oligonucleotides [J]. J Hepatol, 2006, 44(5):939-946.

      [39] Miura K, Kodama Y, Inokuchi S, Schnabl B, Aoyama T, Ohnishi H, Olefsky JM, Brenner DA, Seki E. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice [J]. Gastroenterology, 2010, 139(1):323-334.

      [40] Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, Gibson GR, Delzenne NM. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia [J]. Diabetologia, 2007, 50(11):2374-2383.

      [41] Ma X, Hua J, Li Z. Probiotics improve high fat diet-induced hepatic steatosis and insulin resistance by increasing hepatic NKT cells [J]. J Hepatol, 2008, 49(5):821-830.

      [42] Esposito E, Iacono A, Bianco G, Autore G, Cuzzocrea S, Vajro P, Canani RB, Calignano A, Raso GM, Meli R. Probiotics reduce the inflammatory response induced by a high-fat diet in the liver of young rats [J]. J Nutr, 2009, 139(5):905-911.

      [43] Velayudham A, Dolganiuc A, Ellis M, Petrasek J, Kodys K, Mandrekar P, Szabo G. VSL#3 probiotic treatment attenuates fibrosis without changes in steatohepatitis in a diet-induced nonalcoholic steatohepatitis model in mice [J]. Hepatology, 2009, 49(3):989-997.

      [44] Solga SF, Buckley G, Clark JM, Horska A, Diehl AM. The effect of a probiotic on hepatic steatosis [J]. J Clin Gastroenterol, 2008, 42(10):1117-1119.

      [45] Murphy EF, Cotter PD, Hogan A, O′Sullivan O, Joyce A, Fouhy F, Clarke SF, Marques TM, O′Toole PW, Stanton C, Quigley EM, Daly C, Ross PR, O′Doherty RM, Shanahan F. Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity [J]. Gut, 2013, 62(2):220-226.

      [46] Wu J. Coumarin: an alternative candidate for the treatment of non-alcoholic steatohepatitis [J]? Br J Nutr, 2013, 109(9):1542-1543.

      猜你喜歡
      過度生長(zhǎng)菌門菌群
      “云雀”還是“貓頭鷹”可能取決于腸道菌群
      中老年保健(2022年2期)2022-08-24 03:20:50
      兒童下肢長(zhǎng)骨干骨折后過度生長(zhǎng)的影響因素及機(jī)制研究進(jìn)展
      “水土不服”和腸道菌群
      科學(xué)(2020年4期)2020-11-26 08:27:06
      野生樹鼩與人工飼養(yǎng)樹鼩消化道不同部位微生物組成的比較研究
      饑餓與重?cái)z食對(duì)河蟹腸道菌群結(jié)構(gòu)的影響
      昆蟲體內(nèi)微生物多樣性的影響因素研究進(jìn)展
      妊娠期糖尿病腸道菌群變化及臨床價(jià)值分析
      肉牛剩余采食量與瘤胃微生物菌群關(guān)系
      腸易激綜合征與小腸細(xì)菌過度生長(zhǎng)關(guān)系的Meta分析
      奶牛單純性蹄壁過度生長(zhǎng)的防治
      盘锦市| 庄河市| 松阳县| 娱乐| 微山县| 临潭县| 肃北| 南康市| 西充县| 娄烦县| 开平市| 和田市| 津南区| 义乌市| 濮阳市| 雷州市| 驻马店市| 宾阳县| 南溪县| 盐津县| 留坝县| 周至县| 岑巩县| 福贡县| 内江市| 陇西县| 永登县| 惠水县| 夏津县| 新昌县| 修武县| 吴江市| 上饶县| 潜山县| 阿克| 绥江县| 宜章县| 监利县| 吉水县| 乳源| 英山县|