• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      農產品中大腸桿菌O157∶H7的來源及分布研究進展

      2014-04-07 17:54:53賴衛(wèi)華陳明慧
      食品科學 2014年1期
      關鍵詞:生菜菠菜內化

      山 珊,賴衛(wèi)華,陳明慧,崔 希

      (南昌大學 食品科學與技術國家重點實驗室,江西 南昌 330047)

      農產品中大腸桿菌O157∶H7的來源及分布研究進展

      山 珊,賴衛(wèi)華*,陳明慧,崔 希

      (南昌大學 食品科學與技術國家重點實驗室,江西 南昌 330047)

      近年來,由大腸桿菌O157∶H7污染農產品而引起的食源性疾病頻繁發(fā)生。農產品可能會在生長過程中感染大腸桿菌O15 7∶H7, 了解農產品中大腸桿菌O157∶H7的來源及其分布,可以為預防農產品污染 提供建議。本文就農產品中大腸桿菌O157∶H7可能的來源和其在農產品中的大致分布情況進行了綜述。

      農產品;大腸桿菌O157∶H7;來源;分布

      微生物引起的食源性疾病是全世界、也是我國的頭號食品安全問題[1]。在食源性致病菌中,大腸桿菌O157∶H7是最危險的一種,它的感染劑量非常低,最低10個活菌就可能感染致病[2]。大腸桿菌O157∶H7感染后一般先出現(xiàn)腹部絞痛和非出血性腹瀉,超過70%的病人能夠發(fā)展成出血性腹瀉;30%~60%的病人有嘔吐現(xiàn)象;30%的病人有低度發(fā)熱癥狀;3%~5%的病人能夠發(fā)展成溶血性尿毒綜合癥,導致急性腎衰竭而死亡[3]。大腸桿菌O157∶H7能夠污染豬肉、禽肉、牛肉、牛奶、果汁、冷三明治、蔬菜 和飲水等,該菌的流行暴發(fā)大多是因為食用了被該菌污染的食物或未嚴格消毒的飲用水。此外,大腸桿菌還能通過人與人之間的接觸傳播[4-5]。

      自美國1982年首次報道大腸桿菌O157∶H7危害人類健康以來,世界上許多國家相繼發(fā)生了大腸桿菌O157∶H7的感染[6]。已報道暴發(fā)大腸桿菌O157∶H7感染的國家有美國、加拿大、日本、英國、蘇格蘭、中國、愛爾蘭、比利時、丹麥、德國、澳大利亞、南非、以色列等。1996年,日本暴發(fā)了大規(guī)模的大腸桿菌O157∶H7感染,上萬人感染患病,短短2周內就有12人不治身亡[7]。2006年9月,美國多個州暴發(fā)毒菠菜事件,短短十幾天內就有199名病人確診住院,事件共造成3人死亡,調查發(fā)現(xiàn)患者都是因為食用了被大腸桿菌O157∶H7污染的菠菜而致病[8-9]。

      1986年我國首次從江蘇省徐州市出血性腹瀉患者的糞便中分離出大腸桿菌O157∶H7。自1997年我國在一定范圍內開展腸出血性大腸桿菌O157∶H7監(jiān)測工作以來,已陸續(xù)有十余個省份從市售食品、進口食品、家畜家禽、腹瀉病患者的排泄物中分離出腸出血性大腸桿菌O157∶H7[10-12]。特別是1999年我國部分地區(qū)出現(xiàn)了腸出血性大腸桿菌O157∶H7感染性腹瀉的暴發(fā),表明腸出血性大腸桿菌O157∶H7感染性腹瀉已成為威脅我國人民健康的重要公共衛(wèi)生問題。

      農產品被認為是人類汲取營養(yǎng)物質的重要來源,是健康飲食的重要組成部分,許多國家鼓勵人們多食新鮮蔬菜水果來預防一些疾病,如心腦血管疾病和癌癥。近年來全球對農產品的需求量逐漸增多,同時,農產品上的致病菌引起的疾病也不斷地出現(xiàn),尤其是大腸桿菌O157∶H7引 起的疾病,更加引人關注。對此,分析農產品中大腸桿菌O157∶H7的來源和分布顯得尤為重要,而我國在此領域的研究非常薄弱。本文對農產品中大腸桿菌O157∶H7的來源及分布進行綜述,可以更好的了解污染農產品的大腸桿菌O157∶H7的來源及分布。

      1 農產品上大腸桿菌O157 H7的來源

      在農產品生長的過程中,污染農產品的大腸桿菌O157∶H7的來源可能是土壤、灌溉水、糞肥和昆蟲、動物等[13-15]。

      土壤是農作物生長發(fā)育的重要物質基礎,大腸桿菌O157∶H7進入到土壤中,可以在其中存活很長時間,土壤成為大腸桿菌O157∶H7傳播到農產品的重要途徑。有報道[16]稱大腸桿菌O157∶H7可以在土壤中存活7~24周,具體時間取決于土壤的類型、濕度水平和溫度等因素。大腸桿菌O157∶H7可以在種植洋蔥和胡蘿卜的土地上分別存活154 d和196 d[17]。研究表明長期存在于生菜種上的大腸桿菌O157∶H7會在種子長成幼苗時大量繁殖[18],而土壤中的大腸桿菌O157∶H7很容易污染植物的種子,從而進一步污染植物幼苗。土壤中的大腸桿菌O157∶H7會直接污染植物的根部,并有可能內化進入植物的根部,然后通過植物脈管系統(tǒng)被運 輸?shù)饺~莖[19]。研究表明使用被大腸桿菌O157∶H7污染的堆肥,會導致大腸桿菌O157∶H7轉移到生菜上,并會在生菜上存留幾個月[20]。Girardin等[21]認為植物的葉子直接接觸土壤時會引起細菌污染;當灌溉水或是雨水帶有土壤飛濺到葉子上時,同樣也會引起污染。

      用來灌溉農產品的水和灌溉方式都會對大腸桿菌O157∶H7在農產品上的存活產生影響[22]。Ahmed等[23]研究發(fā)現(xiàn),在澳大利亞用來灌溉農產品的小溪和池塘中有28%的水源大腸桿菌O157∶H7呈陽性。在加拿大,Gannon等[24]檢測用來灌溉的河流,其中有10.3%被檢測到了大腸桿菌O157∶H7。大腸桿菌O157∶H7在8℃的過濾和高壓蒸汽處理后的城市用水中可以存活91 d,在25℃時存活49 d[25];大腸桿菌O157∶H7在15℃的過濾和高壓蒸汽處理后的農場用水中可以存活65 d。許多研究表明灌溉農產品的方式會影響大腸桿菌O157∶H7到農產品上的轉移。與溝灌相比,使用地下滴灌的方式可以減少農產品在生長過程中來自土壤的污染[27];研究發(fā)現(xiàn)當使用噴灑式的方法灌溉生菜時,生菜上的大腸桿菌O157∶H7存活的時間比使用其他灌溉方式存活的時間長[20]。Solomon等[28]使用含有等量大腸桿菌O157∶H7的灌溉水澆灌菠菜,選用噴灑式灌溉和地面灌溉兩種方式,結果發(fā)現(xiàn)在菠菜上大腸桿菌O157∶H7的殘留量分別是90%和19%。許多研究證實了用被污染的水對農產品進行灌溉可導致農產品表面被污染,并且會導致致病菌內化到植物的某些部位[29-32]。

      用作肥料或土壤改良劑的人畜糞便是污染農產品的大腸桿菌O157∶H7的主要來源之一。Islam等[17]在被動物糞便污染的土壤上種植洋蔥和胡蘿卜,發(fā)現(xiàn)大腸桿菌O157∶H7會轉移到它們表面,并且在洋蔥和胡蘿卜上可分別存活74 d和168 d。研究牛糞內大腸桿菌O157∶H7的生長狀況發(fā)現(xiàn),牛 糞中的大腸桿菌O157∶H7在37℃和22℃的條件下,分別能存活42~49 d和49~56 d[33]。另一項有關大腸桿菌O157∶H7的研究報告表明,大腸桿菌O157∶H7在牛糞、暴露在空中氣 的羊糞和不通氣的羊糞中存活的時間分別為47、120 d和630 d[34]。Islam等[17]研究的結果表明,與使用處理過的肥料相比,使用雞糞和牛糞做肥料時,土壤中的大腸桿菌O157∶H7存活時間更長,生長狀況更好。

      此外,引起農產品中大腸桿菌O157∶H7污染的來源還可能是一些昆蟲、牲畜等媒介的活動。報道稱引起食源性疾病的原因是動物或者動物糞便接觸了食物,來自牲畜的腸道致病菌更有可能污染農產品[35]。健康牛的腸道是大腸桿菌O157∶H7的主要寄居地,大腸桿菌O157∶H7在牛糞中會瞬間繁殖[36],而動物的糞便是一些蠅類主要的寄居處,比如家蠅和麗蠅。如果要控制大腸桿菌O157∶H7的污染源,蠅類一定要加強控制[37]。Telley等[38]的研究結果表明,家蠅可以攜帶大腸桿菌O157∶H7,污染生長的菠菜和生菜。在果蠅和家蠅的身體中或是在它們的殼表面會攜帶大腸桿菌O157∶H7,它們通過反復地接觸農產品或者會在其上排泄而污染植物和食品表面[38-40]。有報道證實攜帶大腸桿菌 O157∶H7的果蠅是蘋果創(chuàng)口污染菌定植的媒介,在果蠅與蘋果接觸后的4 8 h內都可以從蘋果創(chuàng)口中檢測到大腸桿菌O157∶H7[41]。研究表明昆蟲和物理傷害會導致大腸桿菌O157∶H7內化到生菜中[42]。昆蟲作為主要的帶菌者,會通過它們的攝食活動損害植物表面,間接地對植物的生長產生影響,并且會攜帶致病菌進入到植物中,比如在土壤中生活的昆蟲—蚯蚓,它的糞便增加了土壤中大腸桿菌O157∶H7的含量[43];在羊牧場生活的鼻涕蟲上發(fā)現(xiàn)了大腸桿菌O157∶H7的存在[44]?;钪木€蟲可以攝取大腸桿菌O157∶H7,可能是收獲前水果蔬菜的致病菌的攜帶者[45-46]。

      2 大腸桿菌O157 H7在農產品上的分布

      大腸桿菌O157∶H7可以污染農產品有內因和外因,如致病菌的活動性、和其他微生物之間的相互影響、以及從植物體滲透出的營養(yǎng)物質[47-48]。細菌的活動性促進細菌進入植物的傷口、氣孔以及其他開口中[49],這是大腸桿菌O157∶H7滲透到植物中的一個重要的因素。大腸桿菌O157∶H7與植物表面上其他微生物的相互作用可導致生物膜的形成,從而分布在植物表面,或者會內化到植物組織中[47]。

      大腸桿菌O157∶H7通過和其他微生物之間相互作用形成生物膜而分布在農產品的表面。有報道[50]稱在新鮮農產品表面上,許多菌細胞通過胞外的多糖聚集在一起而形成生物膜,生物膜可以保護細菌免受環(huán)境壓力,包括在干燥和殺菌過程中的壓力。研究[50]表明,在菠菜、生菜、大白菜、芹菜、韭菜、歐芹、萵苣這些蔬菜的葉子表面上都有生物膜的形成。在未受損傷的歐芹和菊苣葉上有10%~40%的菌與生物膜的形成有關,在4℃貯藏24 h未損傷的生菜和菠菜葉上,大腸桿菌O157∶H7仍然可以形成生物膜[51]。

      對于被物理損傷的農產品來說,大腸桿菌O157∶H7可能會分布在傷口表面進而內化到植物當中。研究表明致病菌可能會存在于農產品表面的裂縫和植物在收割時的切口處,或者在去皮的時候污染可食部分,也可能通過莖的疤痕進入農產品內部并在其中生長[52]。Seo等[53]發(fā)現(xiàn)在被損傷的生菜葉表面的毛狀體和氣孔上的大腸桿菌O157∶H7比在完整葉子上生長的好。被損傷的蘋果在48h后發(fā)現(xiàn)其上的大腸桿菌O157∶H7的數(shù)量比未損傷前多[54]。

      大腸桿菌O157∶H7能感染到植物的表面并且會內化到生長的植物血管細胞中[55-57],Solomon等[56]用激光掃描顯微鏡技術和熒光顯微鏡技術,在菠菜幼苗的內部組織中觀察到了大腸桿菌O157∶H7。研究稱細菌經常會選擇聚集在植物的毛狀體、氣孔周圍和葉脈 上[47],原因可能是這些區(qū)域濕度較大,并且能浸出養(yǎng)分可以供細菌生長[58]。在相對濕度為100%時,大腸桿菌O157∶H7可以在未受損傷的阿拉伯芥表面生長,并且生長數(shù)量可以達到107CFU/g[49]。依附在植物表面的大腸桿菌O157∶H7可以通過植物的氣孔從而內化到植物內部[59],可以內化到植物外表面下20~100 μm處[56],也可以進入到被切割的菠菜幼葉內部空腔的系統(tǒng)、松軟葉肉的細胞間隙和血管組織中[60]。

      但是研究發(fā)現(xiàn)致病菌內化到農產品中的現(xiàn)象是很少見的,會受到多種因素限制,如植物的種類和年齡、土壤的類型、生長的條件(水栽培或者土壤栽培)、接觸污染源的部位(種子或者植物根、葉等)以及污染程度等因素[30,55,61-62]。在用含有大腸桿菌O157∶H7的營養(yǎng)液培育的生菜組織中沒有發(fā)現(xiàn)該致病菌,但是生長在有大腸桿菌O157∶H7的土壤中的生菜上卻發(fā)現(xiàn)了該菌[63]。Mootian等[31]發(fā)現(xiàn)在土壤、被污染的水和糞便中的大腸桿菌O157∶H7能轉移到生菜的幼葉(生長12 d)或是成熟的葉子(生長30 d)上的量是很低的。一項研究表明被污染的菠菜種子發(fā)芽后,在120個完整的樣品中只發(fā)現(xiàn)1個樣品存在大腸桿菌O157∶H7的內化,而在成熟的植物(芽后生長49 d)沒有發(fā)現(xiàn)大腸桿菌O157∶H7[62]。Brandl等[64]的研究表明幼葉中大腸桿菌O157∶H7的含量要比中葉和老葉中的含量高。一項研究關于菠菜的年齡和大腸桿菌O157∶H7污染之間關系的報告表明,在菠菜生長到3周的時候,大腸桿菌O157∶H7污染菠菜最嚴重,但是內化到菠菜中的大腸桿菌O157∶H7很少見[62]。

      許多研究表明農產品會通過其根部系統(tǒng)而被污染[49,56,65-66]。土壤是污染農產品的主要來源之一,土壤中的致病菌可能會內化到植物蔬菜的側根[49,67]。許多學者認為生菜會通過根部吸收大腸桿菌O157∶H7然后轉移到可食部分[56-57]。Habteselassie等[68]在土壤、蘿卜和生菜中追蹤標記大腸桿菌O157∶H7,發(fā)現(xiàn)大腸桿菌O157∶H7會通過污染植物的根部,從而進入到植物的葉際等其他部位。

      在綠色植物的葉子上,分布在遠軸部位比分布在近軸部位的大腸桿菌O157∶H7存活的時間長并且存活的數(shù)量也多[29,69]。Erickson等[29]用含有大腸桿菌O157∶H7的灌溉水對生菜進行噴灑式澆灌,當增加水中的含菌量時,開始出現(xiàn)內化現(xiàn)象,在葉子遠軸處出現(xiàn)的大腸桿菌O157∶H7量比在近軸處高,并且內化的大腸桿菌O157∶H7在葉子遠軸處存活時間高達14 d,葉子近軸處存活時間也可以達到2 d。在含有103CFU/g或106CFU/g大腸桿菌O157∶H7的土壤中生長的生菜,在其葉和根部都沒有發(fā)現(xiàn)內化的大腸桿菌[69-70]。但是根部系統(tǒng)生長在107CFU/g的土壤中時,17%的菠菜發(fā)現(xiàn)了內化現(xiàn)象[30]。Erickson等[16]的研究表明在土壤中通過植物根部內化的大腸桿菌O157∶H7很少見,如果存 在內化現(xiàn)象,7 d之后也會消失。Erickson等[29]在用含有大腸桿菌O157∶H7的水噴灌菠菜后,在菠菜的表面和內部組織中發(fā)現(xiàn)了大腸桿菌O157∶H7;但是在噴灌7 d后,所有菠菜葉子的內部組織都沒有發(fā)現(xiàn)被污染。

      3 結 語

      污染農產品的大腸桿菌O157∶H7的來源可能是土壤、灌溉水、糞肥和昆蟲等,大腸桿菌O157∶H7可以在土壤、灌溉水、糞肥中和新鮮農場品表面上存活很長時間。大量的研究表明,大腸桿菌O157∶H7在農產品上的分布與農產品的種類、培養(yǎng)方式、組織損傷、農產品的成熟程度和其他微生物的影響等因素有關。它經常會聚集在植物葉子的氣孔、被損傷處或是在植物表面形成生物膜,也可能內化到植物組織中,內化現(xiàn)象可能與植物的損傷程度、成熟率等因素有關。充分掌握了農產品中大腸桿菌O157∶H7的來源及分布,可以更加有效地預防大腸桿菌O157∶H7給人類造成的危害。

      參考文獻:

      [1] 陳君石. 我國食品安全問題的特點和應對措施[C]//中國毒理學會第五次全國學術大會論文集. 貴陽: 中國毒理學會, 2009.

      [2] FERENS W A, HOVDE C J. Escherichia coli O157: H7: animal reservoir and sources of human infection[J]. Foodborne Pathogens and Disease, 2011, 8(4): 465-487.

      [3] SANCHEZ S, MARTINEZ R, ALONSO J M, et al. Clinical and pathogenic aspects of infections due to Escherichia coli O157: H7 and other verocytotoxigenic E. coli[J] En fermedades Infecciosasy Microbiología Clínica, 2010, 28(6): 370-374.

      [4] RAFFAELLI R M, PALADINI M, HANSON H, et al. Child careassociated outbreak of Escherichia coli O157: H7 and hemolytic uremic syndrome[J]. The Pediatric Infectious Disease Journal, 2007, 26(10): 951-953.

      [5] HERMOS C R, JANINEH M, HAN L L, et al. Shiga toxin-producing Escherichia coli in children: diagnosis and clinical manifestations of O157: H7 and non-O157: H7 infection[J]. Journal of Clinical Microbiology, 2011, 49(3): 955-959.

      [6] RILEY L W, REMIS R S, HELGERSON S D, et al. Hemorrhagic colitis associated with a rare Escherichia coli serotype[J]. New England Journal of Medicine, 1983, 308(12): 681-685.

      [7] HARUO W, AKIHITO W, YOSHISHIGE I, et al. Outbreaks of enterohaemorrhagic Escherichia coli O157: H7 infection by two different genotype strains in Japan, 1996[J]. The Lancet, 1996, 348: 831-832.

      [8] ARTHUR M W, DIEP H J, UMID S, et al. Multistate outbreak of Escherichia coli O157: H7 infection associated with consumption of packaged spinach, August–September 2006: the Wisconsin investigation[J]. Clinical Infectious Diseases, 2009, 48(8): 1079-1086.

      [9] JULIANA G, ARON M W, ARTHUR W, et al. Spinach-associated Escherichia coli O157: H7 outbreak, Utah and New Mexico, 2006[J]. Emerging Infectious Diseases, 2008, 14(10): 1633-1636.

      [10] 李毅, 章樂怡, 洪程基, 等. 溫州市食品中腸出血性大腸桿菌O157∶H7污染狀況調查[J]. 中國食品衛(wèi)生雜志, 2012, 24(4): 369-371.

      [11] 程孝連, 何澤民, 孟憲春, 等. 蚌埠地區(qū)2000—2010 年腸出血性大腸桿菌O157:H7感染狀況的研究[J]. 安徽預防醫(yī)學雜志, 2012, 18(1): 16-17.

      [12] 王燕, 謝貴林, 杜琳. 大腸桿菌O157: H7感染流行概況[J]. 微生物學免疫學進展, 2008, 36(1): 51-58.

      [13] U.S. Food and Drug Administration(FDA). Guidance for industry: guide to minimize microbial food safety hazards of fresh-cut fruits and vegetables[EB/OL]. (2008-02-25). http://www.fda.gov/Food/ GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/ ProducePlantProducts/ucm064458.htm

      [14] DOYLE M P, ERICKSON M C. Summer meeting 2007: the problems with fresh produce: an overview[J]. Journal of Applied Microbiology, 2009, 105(2): 317-330.

      [15] BEUCHAT L R. Vectors and conditions for preharvest contamination of fruits and vegetables with pathogens capable of causing enteric diseases[J]. British Food Journal, 2006(8): 38-53.

      [16] ERICKSON M C, WEBB C C, DIAZ-PEREZ J C, et al. Infrequent internalization of Escherichia coli O157:H7 into field-grown leafy greens[J]. Journal of Food Protection, 2010, 73(3): 500-506.

      [17] ISLAM M, DOYLE M P, PHATAK S C, et al. Survival of Escherichia coli O157:H7 in soil and on carrots and onions grown in fields treated with contaminated manure composts or irrigation water[J]. Food Microbiology, 2005, 22(1): 63-70.

      [18] LINDEN I V, COTTYN B, UYTTENDAELE M, et al. Long-term survival of Escherichia coli O157:H7 and Salmonella enterica on butterhead lettuce seeds, and their subsequent survival and growth on the seedlings[J]. International Journal of Food Microbiology, 2013, 161(3): 214-219.

      [19] WARRINER K F, IBRAHIM M, DICKINSON C, et al. Internalization of human pathogens within growing salad vegetables[J]. Biotechnology Genetic Engineering Reviews, 2003, 20(1):117-134.

      [20] OLIVEIRA M, VINAS I, USALL J, et al. Presence and survival of Escherichia coli O157:H7 on lettuce leaves and in soil treated with contamination compost and irrigation water[J]. International Journal of Food Microbiology, 2012, 156(2): 133-140.

      [21] GIRARDIN H, MORRIS C E, ALBAGNAC C, et al. Behavior of the pathogen surrogates Listeria innocua and Clostridium sporogenes during production of parsley in fields fertilized with contaminated amendments[J]. FEMS Microbiology Ecology, 2005, 54(2): 287-295.

      [22] SBODIO A, MAEDA S, LOPEZ V G, et al. Modified Moore swab optimization and validation in capturing E. coli O157:H7 and Salmonella enterica in large volume field samples of irrigation water[J]. Food Research International, 2013, 51(2): 654 -662.

      [23] AHMED W, SAWWANT S, HUYGENS F, et al. Prevalence and occurrence of zoonotic bacterial pathogens in surface waters determined by quantitative PCR[J]. Water Research, 2009, 43(19): 4918-4928.

      [24] GANNON V P, GRAHAM T A, READ S, et al. Bacterial pathogens in rural water supplies in Southern Alberta, Canada[J]. Journal of Toxicology and Environmental Health, 2004, 67(20/22): 1643-1653.

      [25] WANG Guodong, DOYLE M P. Survival of enterohemorrhagic Escherichia coli O157:H7 in water[J]. Journal of Food Protection, 1998, 61(6): 662-667.

      [26] ARTIZ R R E, KILLHAM K. Survival of Escherichia coli O157:H7 in private drinking water wells: in fluences of protozoan grazing and elevated copper concentrations[J]. FEMS Microbiology Letters, 2002, 216(1): 117-122.

      [27] SONG I, STINE S W, CHOI C Y, et al. Comparison of crop contamination by microorganisms during subsurface drip and furrow irrigation[J]. Journal of Environmental Engineering, 2006, 132(10): 1243-1248.

      [28] SOLOMON E B, YARON S, MATHEWS K R. Transmission of Escherichia coli O157:H7 from contaminated manure and irrigation water to lettuce plant tissue and its subsequent internalization[J]. Applied and Environmental Microbiology, 2002, 68(1): 397-400.

      [29] ERICKSON M C, WEBB C C, DIAZ-PEREZ J C, et al. Surface and internalized Escherichia coli O157:H7 on field-grown spinach and lettuce treated with spray-contaminated irrigation water[J]. Journal of Food Protection, 2010, 73(7): 1023-1029.

      [30] MITRA R, CUESTA A E, WAYADANDE A, et al. Effect of route of introduction and host cultivar on the colonization, internalization, and movement of the human pathogen Escherichia coli O157:H7 in spinach[J]. Journal of Food Protection, 2009, 72(10): 1521-1530.

      [31] MOOTIAN G, WU Wenhuanu, MATTHEWS K. R. Transfer of Escherichia coli O157:H7 from soil, water, and manure contaminated with low numbers of the pathogen to lettuce plants[J]. Journal of Food Protection, 2009, 72(5): 2308-2312.

      [32] PATEL J, MILLNER P, NOU X, et al. Persistence of enterohaemorrhagic and non pathogenic E. coli on spinach leaves and in rhizosphere soil[J]. Journal of Applied Microbiology, 2010, 108(5): 1789-1796.

      [33] WANG Guodong, ZHAO Tao, DOYLE M P. Fate of enterohemorrhagic Escherichia coli O157∶H7 in bovine feces[J].Applied and Environmental Microbiology, 1996, 62(7): 2567-2570.

      [34] KUDVA I T, BLANCH K, HOVDE C J. Analysis of Escherichia coli O157:H7 survival in ovine or bovine manure and manure slurry[J]. Applied and Environmental Microbiology, 1998, 64(9): 3166-3174.

      [35] DOYLE M P, ERICKSON M C. Reducing the carriage of foodborne pathogens in livestock and poultry[J]. Poultry Science, 2006, 85(6): 960-973.

      [36] BACH S J, MCALLISTER T A, VEIRA D M, et al. Transmission and control of Escherichia coli O157:H7: a review[J]. Canadian Journal of Animal Science, 2002, 82(4): 475-490.

      [37] AHMAD A, NAGARAJA T, ZUREK L. Transmission of Escherichia coli O157:H7 to cattle by house flies[J]. Preventive Veterinary Medicine, 2007, 80(1): 74-81.

      [38] TALLEY J L, WAYADANDE A C, WASALA L P, et al. Association of Escherichia coli O157:H7 with filth flies(muscidae and calliphoridae) captured in leafy greens fields and experimental transmission of E. coli O157:H7 to spinach leaves by house flies (Diptera: Muscidae)[J]. Journal of Food Protection, 2009, 72(7): 1547-1552.

      [39] de JESDS A J, OLSEN A R, BRYCE J R, et al. Quantitative contamination and transfer of Escherichia coli from foods by houseflies, Musca domestica L. (Diptera: Muscidae)[J]. International Journal of Food Microbiology, 2004, 93(2): 259-262.

      [40] SELA S, NESTEL D, PINTO R, et al. Mediterranean fruit fly as a potential vector of bacterial pathogens[J]. Applied and Environmental Microbiology, 2005, 71(7): 4052-4056.

      [41] JANISIEWICZ W J, CONWAY W S, BROWN M W, et al. Fate of Escherichia coli O157:H7 on fresh-cut apple tissue and its potential for transmission by fruit flies[J]. Applied and Environmental Microbiology, 1999, 65(1): 1-5.

      [42] ERICKSON M C, JEAN L, ALISON S P, et al. Preharvest internalization of Escherichia coli O157:H7 into lettuce leaves, as affected by insect and physical damage[J]. Journal of Food Protection, 2010, 73(10): 1809-1816.

      [43] WILLIAMS A P, ROBERTS P, AVERY L M, et al. Earthworms as vectors of Escherichia coli O157:H7 in soil and vermincomposts[J]. FEMS Microbiology Ecology, 2006, 58(1): 54-64.

      [44] SPROSTON E L, MACRAE M, OGDEN I D, et al. Slugs: potential novel vectors of Escherichia coli O157[J]. Applided and Environmental Microbiology, 2006, 72(1): 144-149.

      [45] KENNEY S J, ANDERSON G L, WILLIAMS P L, et al. Persistence of Escherichia coli O157:H7, Salmonella Newport, and Salmonella Poona in the gut of a free-living nematode, Caenorhabditis elegans, and transmission to progeny and uninfected nematodes[J]. International Journal of Food Microbiology, 2005, 101(2): 227-236.

      [46] KENNENY S J, ANDERSON G L, WILLIAMS P L, et al. Migration of Caenorhabditis elegans to manure and manure compost and potential for transport of Salmonella Newport to fruits and vegetables[J]. International Journal of Food Microbiology, 2006, 106(1): 61-68.

      [47] ARUSCAVAGE D, LEE K, MILLER S, et al. Interactions affecting the proliferation and control of human pathogens on edible plants[J]. Journal of Food Science, 2006, 71(8): 89-99.

      [48] FRANK J E. Microbial attachment to food and food contact surfaces[J]. Advance in Food Nutrition Research, 2001, 43(8): 319-370.

      [49] COOLEY M B, MILLER W G, MANDRELL R E. Colonization of Arabidopsis thaliana with Salmonella enterica and enterohemorrhagic Escherichia coli O157:H7 and competition by Enterobacter asburiae[J]. Applied and Environmental Microbiology, 2003, 69(8): 4915-4926.

      [50] MORRIS C E, MONIER J M. The ecological significance of biofilm formation by plant associated bacteria[J]. Annual Review of Phytopathology, 2003, 41(1): 429-453.

      [51] OLMEZ H, TEMUR S D. Effects of different sanitizing treatments on biofilms and attachment of Escherichia coli and Listeria monocytogenes on green leaf lettuce[J]. LWT-Food Science and Technology, 2010, 43(6): 964-970.

      [52] U.S. Food and Drug Administration (FDA). Guidance for industry: guide to minimize microbial food safety hazards of melons[EB/OL]. (2009-07).

      [53] SEO K H, FRANK J F. Attachment of Escherichia coli O157:H7 to lettuce leaf surface and bacterial viability in response to chlorine treatment[J]. Journal of Food Protection, 1999, 62(1): 3-9.

      [54] DINGMAN D W. Growth of Escherichia coli O157:H7 in bruised apple (Malus domestica) tissue as influenced by cultivar, date of harvest, and source[J]. Applied and Environmental Microbiology, 2000, 66(3): 1077-1083.

      [55] SOLOMON E B, BRANDL M T, MANDRELL R E. Microbiology of fresh produce [M]. Washington: ASM, 2006: 55-83.

      [56] SOLOMON E B, YARON S, MATTHEWS K R. Transmission of Escherichia coli O157:H7 from contaminated manure and irrigation water to lettuce plant tissue and its subsequent internalization[J]. Applied and Environmental Microbiololoy, 2002, 68(1): 397-400.

      [57] WACHTEL M R, WHITEHAND L C, MANDRELL R E. Prevalence of Escherichia coli associated with a cabbage crop inadvertently irrigated with partially treated sewage wastewater[J]. Journal of Food Protection, 2002, 65(5): 471-475.

      [58] BRANDL M T, MANDRELL R E. Fitness of Salmonella enterica serovar Thompson in the cilantro phyllosphere[J]. Applied and Environmental Microbiology, 2002, 68(7): 3614-3621.

      [59] TAKEUCHI K, FRANK J F. Penetration of Escherichia coli O157:H7 into lettuce tissues as affected by inoculum size and temperature and the effect of chlorine treatment on cell viability[J]. Journal of Food Protection, 2000, 63(7): 434-440.

      [60] SALDANA Z, SANCHEZ E, XICOHTENCATL C J, et al. S urface structures involved in plant stomata and leaf colonization by Shigatoxigenic Escherichia coli O157:H7[J]. Frontiers in Microbiology, 2011(9): 1-9.

      [61] DELAQUIS P, BACH S, DINU L D. Behavior of Escherichia coli O157:H7 in leafy vegetables[J]. Journal of Food Protection, 2007, 70(9): 1966-1974.

      [62] PU S, BEAULIEU J C, PRINYAWIWATKUL W, et al. Effects of plant maturity and growth media bacterial inoculum level on the surface contamination and internalization of Escherichia coli O157:H7 in growing spinach leaves[J]. Journal of Food Protection, 2009, 72(8): 2313-2320.

      [63] FRANZ E, DIEPENINGEN A D, DEVOS O J, et al. E ffects of cattle feeding regimen and soil management type on the fate of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in manure, manure-amended soil, and lettuce[J]. Applied and Environmental Microbiology, 2005, 71(10): 6165-6174.

      [64] BRANDL M T, AMUNDSON R. Leaf age as a risk factor in the contamination of lettuce with Escherichia coli O157:H7 and Salmonella enterica[J]. Applied and Environmental Microbiology, 2008, 74(8): 2298-2306.

      [65] COOLEY M B, CHAO D, MANDRELL R E. E scherichia coli O157:H7 survival and growth on lettuce is altered by the presence of epiphytic bacteria[J]. Journal of Food Protection, 2006, 69(10): 2329-2335.

      [66] GAGLIARDI J V, KARNS J S. Persistence of Escherichia coli O157:H7 in soil and on plant roots[J]. Environmental Microbiology, 2002, 4(8): 89-96.

      [67] DONG Y, INIGUEZ A L, AHMER B M M, et al. Kinetics and strain specificity of rhizosphere and endophytic colonization by enteric bacteria on seedlings of Medicago sativa and Medicago truncatula[J]. Applied Environmental Microbiology, 2003, 69(3): 1783-1790.

      [68] HABTESELASSIE M Y, BISCHOFF M, APPLEGATE B, et al. Understanding the role of agricultural practices in the potential colonization and contamination by Escherichia coli in the rhizospheres of fresh produce[J]. Journal of Food Protection, 2010, 73(11): 2001-2009.

      [69] ZHANG Guodong, MA Li, BEUCHAT R L, et al. Lack of internalization of Escherichia coli O157∶H7 in lettuce(Lactuca sativa L.) after leaf surface and soil inoculation[J]. Journal of Food Protection, 2009, 72(10):2028-2037.

      [70] ZHANG Guodong, MA Li, BEUCHAT L R, et al. H eat and drought stress during growth of lettuce (Lactuca sativa L.) does not promote internalization of Escherichia coli O157∶H7[J]. Journal of Food Protection, 2009, 72(12): 2471-2475.

      Research Progress in Sources and Distribution of Escherichia coli O157:H7 in Agricultural Products

      SHAN Shan, LAI Wei-hua*, CHEN Ming-hui, CUI Xi
      (State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China)

      Foodborne diseases happened frequently due to food contamination from Escherichia coli O157:H7 (E. coli O157:H7) in recent years. Agricultural products may be infected with E. coli O157:H7 during the growth period. Therefore, understanding the sources and distribution of E. coli O157:H7 in agricultural products is beneficial for preventing the infection of products. In this paper, possible sources and general distribution of E. coli O157:H7 in agricultural products are reviewed.

      agricultural products; Escherichia coli O157:H7; source; distribution

      TS201.3

      A

      1002-6630(2014)01-0289-05

      10.7506/spkx1002-6630-201401057

      2013-04-09

      南昌大學食品科學與技術國家重點實驗室自由探索課題(SKLF-ZZB-201307);南昌市科學技術局黨外專家博士產學研合作專項(2012CYHDWSP001)

      山珊(1989—),女,碩士研究生,研究方向為食品質量安全。E-mail:ncuskshanshan@163.com

      *通信作者:賴衛(wèi)華(1968—),男,教授,博士,研究方向為食品質量安全。E-mail:talktolaiwh@163.com

      猜你喜歡
      生菜菠菜內化
      升華內化
      脆嫩爽口的生菜
      中老年保健(2022年6期)2022-08-19 01:44:10
      菠菜用肥料要謹慎
      激活中隊活力,內化少先隊員組織歸屬感
      少先隊活動(2020年8期)2020-09-11 06:42:32
      生菜怎么吃更健康
      農家參謀(2020年5期)2020-06-15 05:12:28
      冬鮮菠菜
      人大建設(2019年12期)2019-11-18 12:11:06
      德魯大叔內化營銷勝過廣告
      華人時刊(2018年15期)2018-11-10 03:25:30
      菠菜花生米
      菠菜含鐵
      生菜?你愛吃圓的還是散葉兒的?
      食品與健康(2017年3期)2017-03-15 18:07:48
      宁阳县| 连山| 威远县| 吉木萨尔县| 高清| 象山县| 利辛县| 旺苍县| 天全县| 闻喜县| 灵宝市| 布尔津县| 浦城县| 桐乡市| 鄂托克前旗| 宝丰县| 宿松县| 密云县| 上饶县| 黑河市| 东兰县| 深州市| 兰考县| 乌兰察布市| 甘谷县| 乐陵市| 勐海县| 巨野县| 元朗区| 遂平县| 黄龙县| 郓城县| 疏附县| 寻甸| 于都县| 通江县| 财经| 桐庐县| 邢台县| 威宁| 滕州市|