侯藏龍,陳 智,沈洪興
哺乳動(dòng)物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)具有絲氨酸/蘇氨酸激酶活性,在調(diào)節(jié)細(xì)胞代謝、增殖和死亡等方面具有重要作用[1]。近年來(lái),越來(lái)越多的研究證實(shí)mTOR在中樞神經(jīng)系統(tǒng),尤其是脊髓損傷的相關(guān)研究中發(fā)揮著越來(lái)越重要的作用,mTOR能夠參與調(diào)節(jié)神經(jīng)保護(hù)功能,但mTOR信號(hào)通路在脊髓損傷中的作用尚未完全闡明[2-3]。因此,本文綜述相關(guān)文獻(xiàn),進(jìn)一步拓深在脊髓損傷中mTOR信號(hào)通路在神經(jīng)保護(hù)過(guò)程中的作用機(jī)制。
先前的研究證實(shí)抑制mTOR信號(hào)通路對(duì)中樞神經(jīng)系統(tǒng)具有保護(hù)作用[4-5]。Sekiguchi等[6]通過(guò)實(shí)驗(yàn)檢驗(yàn)在鼠急性脊髓損傷后雷帕霉素抑制mTOR途徑是否可以減少神經(jīng)損傷,結(jié)果證實(shí)雷帕霉素可以顯著降低p70S6K蛋白磷酸化,同時(shí)在受損脊髓處LC3和Bcl1的表達(dá)增加。這些發(fā)現(xiàn)提示雷帕霉素通過(guò)抑制mTOR促進(jìn)自噬過(guò)程。此外還發(fā)現(xiàn)mTOR抑制后顯著降低了神經(jīng)組織的減少和細(xì)胞死亡,雷帕霉素治療的脊髓損傷鼠具有更好的運(yùn)動(dòng)神經(jīng)功能。
脊髓損傷包含多種病理生理過(guò)程和再生過(guò)程,這些過(guò)程發(fā)生于脊髓損傷后的不同時(shí)相[7]。首先,脊髓遭受原發(fā)性損傷并出現(xiàn)缺血壞死等表現(xiàn),受損組織范圍逐漸擴(kuò)大,出現(xiàn)繼發(fā)性損傷。繼發(fā)性脊髓損傷一般出現(xiàn)在原發(fā)損傷后24 h~3 d。脊髓損傷后導(dǎo)致細(xì)胞死亡、炎癥、巨噬細(xì)胞系統(tǒng)的激活、軸突退變和脫髓鞘等改變[8]。繼發(fā)性脊髓損傷后多種再生過(guò)程也被觀測(cè)記錄到,軸突再生始于脊髓損傷后1周,軸突的再髓鞘化也在脊髓損傷后1周出現(xiàn)[9]。
因?yàn)樯鲜鲞@些復(fù)雜的病理改變過(guò)程發(fā)生于損傷的不同時(shí)相,mTOR信號(hào)通路在不同時(shí)相中發(fā)揮的作用也不盡相同。在脊髓損傷的急性期mTOR參與調(diào)節(jié)與繼發(fā)性損傷相關(guān)的重要功能,例如細(xì)胞死亡、炎癥、巨噬細(xì)胞/小神經(jīng)膠質(zhì)細(xì)胞的激活等[10]。Sekiguchi等[6]通過(guò)研究發(fā)現(xiàn)抑制mTOR可以減少脊髓損傷后的細(xì)胞死亡。Dello等[11]研究證實(shí)抑制mTOR可以降低炎癥反應(yīng)標(biāo)記物表達(dá)量以及減少小神經(jīng)膠質(zhì)細(xì)胞內(nèi)激酶誘導(dǎo)的一氧化氮合酶(nitric oxide synthase, NOS)激活。Lu等[12]研究發(fā)現(xiàn)抑制mTOR途徑后可以降低NOS的表達(dá)以及小神經(jīng)膠質(zhì)細(xì)胞的激活,從而減輕對(duì)神經(jīng)元的損傷。
在脊髓損傷的亞急性/慢性期,mTOR參與調(diào)節(jié)受損神經(jīng)組織的再生。研究[13]證實(shí)通過(guò)雷帕霉素抑制mTOR可以減少具有促進(jìn)軸突再生功能的新生蛋白的合成和細(xì)胞增殖。mTOR信號(hào)通路同時(shí)調(diào)節(jié)中樞神經(jīng)系統(tǒng)的髓鞘化和少突膠質(zhì)細(xì)胞的分化。此外,mTOR抑制可以減少脊髓缺血損傷后反應(yīng)性星形膠質(zhì)細(xì)胞的積聚[14]。
許多研究證實(shí)抑制mTOR通路后可以引發(fā)中樞神經(jīng)系統(tǒng)的保護(hù)作用[6,15]。但該機(jī)制是如何調(diào)控仍未完全闡明,其中一個(gè)可能的機(jī)制是通過(guò)激活自噬從而阻斷了凋亡過(guò)程[16]。有趣的是,抑制mTOR途徑后通過(guò)激活自噬增加了對(duì)線粒體的清除,從而降低細(xì)胞毒素和色素的釋放,下調(diào)半胱天冬酶(caspase)的激活[17]。
近年來(lái),mTOR在巨噬細(xì)胞和小神經(jīng)膠質(zhì)細(xì)胞中的核心作用被證實(shí),來(lái)自周?chē)h(huán)組織內(nèi)的巨噬細(xì)胞和小神經(jīng)細(xì)胞是脊髓損傷后產(chǎn)生炎性反應(yīng)的原發(fā)性反應(yīng)物質(zhì)[18]。尤其是在脊髓損傷急性期,激活的巨噬細(xì)胞和小膠質(zhì)神經(jīng)細(xì)胞產(chǎn)生各類(lèi)抗炎激酶,如白細(xì)胞介素-1β(interleukin-1β,IL-1β)、腫瘤壞死因子-α(tumor necrosis factor-α, TNFα),并產(chǎn)生繼發(fā)性脊髓損傷,神經(jīng)元丟失和脫髓鞘變化[19]。研究[11]證實(shí)抑制mTOR途徑可以抑制巨噬細(xì)胞/小神經(jīng)膠質(zhì)細(xì)胞的激活,并降低神經(jīng)炎性反應(yīng)。這些發(fā)現(xiàn)提示抑制mTOR途徑可以抑制由于繼發(fā)性脊髓損傷導(dǎo)致的抑制巨噬細(xì)胞/小神經(jīng)膠質(zhì)細(xì)胞的激活,并降低神經(jīng)炎性反應(yīng)。
mTOR信號(hào)通路在調(diào)節(jié)正常組織和腫瘤組織中的血管再生方面均發(fā)揮著重要作用[20]。mTOR信號(hào)通路調(diào)控血管再生相關(guān)因子,如血管內(nèi)皮細(xì)胞生長(zhǎng)因子(vascular endothelial growth factor,VEGF),氧化氮,促血管新生蛋白因子等[20]。研究[21]證實(shí)抑制mTOR途徑可以降低血管再生效應(yīng)及減少相關(guān)因子的分泌。脊髓損傷后在原發(fā)性損傷期間內(nèi)導(dǎo)致血管源性物質(zhì)結(jié)構(gòu)的破壞,從而導(dǎo)致繼發(fā)性病理?yè)p傷,影響軸突再生和功能恢復(fù)[22]。大量報(bào)道證實(shí)創(chuàng)傷后針對(duì)血管再生的相關(guān)優(yōu)化治療對(duì)脊髓損傷的恢復(fù)具有重要意義[23]。調(diào)控mTOR信號(hào)通路從而激活血管再生反應(yīng)對(duì)脊髓具有保護(hù)作用。
mTOR的作用還未完全闡明,許多細(xì)胞的功能都由mTOR調(diào)節(jié),該通路也參與調(diào)節(jié)多種中樞神經(jīng)系統(tǒng)的疾病和創(chuàng)傷。因此,深入認(rèn)識(shí)脊髓損傷中mTOR信號(hào)通路在神經(jīng)保護(hù)過(guò)程中的作用機(jī)制具有重要意義。
參考文獻(xiàn)
[1] Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism[J]. Cell, 2006, 124(3): 471-484.
[2] Ma T, Hoeffer CA, Capetillo-Zarate E, et al. Dysregulation of the mTOR pathway mediates impairment of synaptic plasticity in a mouse model of Alzheimer’s disease[J]. PLoS One, 2010, 5(9): e12845.
[3] Don AS, Tsang CK, Kazdoba TM, et al. Targeting mTOR as a novel therapeutic strategy for traumatic CNS injuries[J]. Drug Discov Today, 2012, 17(15-16): 861-868.
[4] Liu G, Detloff MR, Miller KN, et al. Exercise modulates microRNAs that affect the PTEN/mTOR pathway in rats after spinal cord injury[J]. Exp Neurol, 2012, 233(1):447-456.
[5] Zhao T, Qi Y, Li Y, et al. PI3 Kinase regulation of neural regeneration and muscle hypertrophy after spinal cord injury[J]. Mol Biol Rep, 2012, 39(4):3541-3547.
[6] Sekiguchi A, Kanno H, Ozawa H, et al. Rapamycin promotes autophagy and reduces neural tissue damage and locomotor impairment after spinal cord injury in mice[J]. J Neurotrauma, 2012, 29(5): 946-956.
[7] 孫天勝, 張志成, 姜京城. 頸脊髓損傷的基礎(chǔ)研究與展望[J]. 脊柱外科雜志, 2009, 7(5): 307-310.
[8] 謝亮, 沈憶新, 范志海. 大鼠脊髓全橫斷損傷模型的建立及相關(guān)問(wèn)題[J]. 脊柱外科雜志, 2010, 8(6): 377-380.
[9] Vanasse M, Rossignol E, Hadad E. Chronic inflammatory demyelinating polyneuropathy[J]. Handb Clin Neurol. 2013, 112:1163-1169.
[10] Bourassa-Moreau E, Mac-Thiong JM, Feldman DE, et al. Non-neurological outcomes following complete traumatic spinal cord injury: The impact of surgical timing[J]. J Neurotrauma, 2013, Epub ahead of print.
[11] Dello Russo C, Lisi L, Tringali G, et al. Involvement of mTOR kinase in cytokine-dependent microglial activation and cell proliferation[J]. Biochem Pharmacol, 2009, 78(9): 1242-1251.
[12] Lu DY, Liou HC, Tang CH, et al. Hypoxiainduced iNOS expression in microglia is regulated by the PI3-kinase/Akt/mTOR signaling pathway and activation of hypoxia inducible factor-1alpha[J]. Biochem Pharmacol, 2006, 72(8): 992-1000.
[13] Tyler WA, Gangoli N, Gokina P, et al. Activation of the mammalian target of rapamycin (mTOR) is essential for oligodendrocyte differentiation[J]. J Neurosci, 2009, 29(19): 6367-6378.
[14] Codeluppi S, Svensson CI, Hefferan MP, et al. The Rheb-mTOR pathway is upregulated in reactive astrocytes of the injured spinal cord[J]. J Neurosci, 2009, 29(4):1093-1104.
[15] Malagelada C, Jin ZH, Jackson-Lewis V, et al. Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson’s disease[J]. J Neurosci, 2010, 30(3): 1166-1175.
[16] Pan T, Kondo S, Zhu W, et al. Neuroprotection of rapamycin in lactacystin-induced neurodegeneration via autophagy enhancement[J]. Neurobiol Dis, 2008, 32(1): 16-25.
[17] Ravikumar B, Berger Z, Vacher C, et al. Rapamycin pre-treatment protects against apoptosis[J]. Hum Mol Genet, 2006, 15(7):1209-1216.
[18] David S, Kroner A. Repertoire of microglial and macrophage responses after spinal cord injury[J]. Nat Rev Neurosci, 2011, 12(7): 388-399.
[19] Sahin B, Albayrak BS, Ismailoglu O, et al. The effects of medroxy progesterone acetate on the pro-inflammatory cytokines, TNF-alpha and IL-1beta in the early phase of the spinal cord injury[J]. Neurol Res, 2011, 33(1):63-67.
[20] Karar J, Maity A. PI3K/AKT/mTOR Pathway in Angiogenesis[J]. Front Mol Neurosci, 2011, 4: 51.
[21] Chen CH, Huang SY, Chen NF, et al. Intrathecal granulocyte colony-stimulating factor modulate glial cell line-derived neurotrophic factor and vascular endothelial growth factor A expression in glial cells after experimental spinal cord ischemia[J]. Neuroscience, 2013, 242:39-52.
[22] Oh JS, An SS, Gwak SJ, et al. Hypoxia-specific VEGF-expressing neural stem cells in spinal cord injury model[J]. Neuroreport, 2012, 23(3):174-178.
[23] Long HQ, Li GS, Hu Y, et al. HIF-1α/VEGF signaling pathway may play a dual role in secondary pathogenesis of cervical myelopathy[J]. Med Hypotheses, 2012, 79(1):82-84.