• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      氣相色譜/質(zhì)譜法檢測灰塵、土壤和沉積物中有機磷酸酯

      2014-07-10 21:30:35鹿建霞等
      分析化學(xué) 2014年6期
      關(guān)鍵詞:芳香烴烷烴阻燃劑

      鹿建霞等

      摘 要 本研究對實驗過程中可能存在的污染源進行了定性篩查,采用不同的質(zhì)控措施以降低實驗過程中的背景污染。

      1 引 言

      有機磷酸酯(Organophosphate esters,OPEs)是一類由不同烴類取代基取代磷酸分子上的氫所形成的一類磷酸酯類化合物,其取代基可以是烷烴、芳香烴和鹵代烷烴。一般烷烴和芳香烴取代的OPEs常被用作增塑劑,而含鹵OPEs則被廣泛用作阻燃劑。OPEs由于阻燃性能高,可塑性強, 被廣泛應(yīng)用于許多產(chǎn)品中,如清漆、聚氨酯泡沫、室內(nèi)裝潢和紡織品等[1]。OPEs多以物理方式添加到材料中,因此在材料的生產(chǎn)、使用和廢棄處理過程中很容易釋放到周圍環(huán)境中。OPEs的分析方法及環(huán)境監(jiān)測報道最早集中于20 世紀70~90 年代[2,3],近來隨著五溴聯(lián)苯醚、八溴聯(lián)苯醚被正式列入斯德哥爾摩公約,作為含溴阻燃劑的替代品OPEs再次受到環(huán)境科學(xué)家的廣泛關(guān)注,已在全球范圍內(nèi)的多種環(huán)境介質(zhì),包括大氣、水、土壤和生物體中檢測到OPEs[3~10]。與傳統(tǒng)持久性有機污染的研究相比,有關(guān)OPEs的研究進展緩慢,實驗方法的欠缺,依然是制約該類污染物環(huán)境行為研究的主要因素之一。

      2012年,由Brandsm等發(fā)起了OPEs的國際實驗室比對,來自9個國家和地區(qū)的實驗室參加了此次比對[11],結(jié)果表明,當前OPEs分析主要存在兩方面困難: (1)由于OPEs用途廣泛,測定中的污染物背景干擾已經(jīng)成為該類化合物分析檢測的主要問題,必須有效降低背景污染; (2)對于基質(zhì)成分復(fù)雜的樣品,儀器分析前必須采取嚴格的凈化步驟去除基質(zhì)干擾。常用的凈化方法包括凝膠滲透色譜(GPC)凈化和固相萃取(SPE)柱凈化,其中GPC凈化不但費時費力,需要大量溶劑,且凈化效果不好。OPEs對強酸強堿都比較敏感,因此以強酸/強堿性吸附材料做填料的SPE也不能應(yīng)用于這類污染物的分離凈化。近年來,以各種硅膠鍵合材料為吸附填料的SPE小柱斷被引入到復(fù)雜樣品中OPEs的分析[5,7]。

      本研究對實驗室內(nèi)可能存在OPEs污染的點源進行了初步分析,在嚴格的背景污染控制條件下,優(yōu)化對比了幾種不同凈化手段對實際樣品中OPEs分離凈化效果,采用氣相色譜/質(zhì)譜(GC/MS)建立了檢測灰塵、土壤和沉積物中7種主要OPEs的分析方法,并應(yīng)用于實際樣品中該類污染物的分析。

      2 實驗部分

      2.1 儀器與試劑

      安捷倫7890N聯(lián)5975C色譜質(zhì)譜聯(lián)用儀(美國安捷倫公司);

      1 WANG XiaoWei, LIU JingFu, YIN YongGuang. Prog.In.Chem., 2010, 22(10): 1983-1992

      王曉偉, 劉景富, 陰永光. 化學(xué)進展, 2010, 22(10): 1983-1992

      2 Lbel G L and Williams D T. Bull. Environ. Contam. Toxicol., 1986, 37(1): 41-46

      3 David MD, Seiber,JN. Arch. Environ. Contam. Toxicol., 1999, 36(3): 235-241

      4 Moeller A, Xie Z Y, Caba A, Sterm R, Ebinghaus R. Environ. Pollut., 2011, 159(12): 3660-3665

      5 Chen D, Letcher R J, Chu S G. J.Chromatogr. A, 2012, 1220(13): 169-174

      6 Reemtsma T, Sicco H, Brandsma S H, Boer J D, Cofino W P, Covaci A, Leonards P E. TracTrend Anal. Chem., 2008, 27(9): 727-737

      7 YAN XiaoJu,HE Huan, PENG Ying, WANG XiaoMeng, GAO ZhanQi, YANG ShaoGui, SUN Cheng. Chinese J. Anal. Chem., 2012, 40(11): 1693-1696

      嚴小菊, 何 歡, 彭 英, 王曉萌, 高占啟, 楊紹貴, 孫 成. 分析化學(xué), 2012, 40(11): 1693-1696

      8 Wang X W, Liu J F,Yin Y G. J. Chromatogr. A, 2011, 1218(38): 6705-6711

      9 Cao S X, Zeng X Y, Song H, Li H R, Yu Z Q, Sheng G Y, Fu J M. Environ. Toxicol. Chem., 2012, 31(7): 1478-1484

      10 Ma Y Q, Cui K Y, Zeng F, Wen J X, Liu H, Zhu F, Ouyang G F, Luan T G, Zeng Z X. Anal. Chim. Acta, 2013, 786(7): 47-53

      11 Brandsma S H, Boer J D, Cofino W P, Covaci A, Leonards P E. TracTrend Anal. Chem., 2013, 43(2): 217-228

      12 Cristale J, Lacorte S. J. Chromatogr. A, 2013, 1305(8): 267-275

      13 Garcia M, Rodriguez I, Cela R. J.Chromatogr. A, 2007, 1152(12): 280-286

      14 Kim J W, Isobe T, Sudaryanto A, Malarvannan G, Chang K H, Muto M, Prudente M, Tanabe S. Environ.Sc. Pollu. Res., 2013, 20(2): 812-822

      15 Matthews H B, Eustis S L, Haseman J. Toxicol. Sc., 1993, 20 (4): 477-485

      Analysis of Organophosphate Esters in Dust, Soil and Sediment

      Samples Using Gas Chromatography Coupled with Mass Spectrometry

      LU JianXia1, JI Wen1, MA ShengTao2, YU ZhiQiang2, WANG Zhao1, LI Han1,

      REN GuoFa1, FU JiaMo1,2

      1(Institute of Environmental Pollution and Health, School of Environment and Chemical Engineering,

      Shanghai University, Shanghai 200444, China)

      2(State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources,

      Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China)

      Abstract Background contamination is a major problem in the analysis of organophosphate esters (OPEs). In this study, the possible sources of OPEs pollution were screened and several different ways were applied to minimize the blank contamination. Under the strict quality control measures, the cleanup efficiency of different solid phase extraction (SPE) was investigated for OPEs in different environmental matrices. A method was developed for the detection of 7 OPEs in dust, soil and sediment samples by gas chromatograph coupled with mass spectrometry (GC/MS). Target compounds were extracted by hexane:dichloromethane (1∶1, V/V) followed by aminopropyl silica gel SPE column cleanup for dust, and target compounds in soil and sediment were Soxhlet extracted and cleanuped by twostep SPE. The results showed that the aminopropyl silica gel SPE column displayed the best purification performance among the three employed columns. Instrumental detection limits among the 7 OPEs ranged from 2.5 to 25.8 μg/L, and the method limits of quantification (MLOQs) in dust and soil sample ranged from 1.4 to 15.7 ng/g and 0.3 to 2.9 ng/g, respectively. The average recoveries of 7 OPEs in different matrices (dust and soil) at two spiked concentration levels ranged from 67.9% to 117.4%. The proposed method was successfully applied to detect OPEs in different environmental matrices collected in Shanghai.

      Keywords Organophosphate flame retardant; Organophosphate esters; Gas chromatograph coupled with mass spectrometry; Soil; Sediment; Dust

      (Received 3 December 2013; accepted 21 February 2014)

      This work was supported by the National Science Foundation of China (Nos. 21007037, 41273121), National Program for Water Pollution Control (2009ZX0752800204), and Shanghai Leading Academic Disciplines (S30109).

      14 Kim J W, Isobe T, Sudaryanto A, Malarvannan G, Chang K H, Muto M, Prudente M, Tanabe S. Environ.Sc. Pollu. Res., 2013, 20(2): 812-822

      15 Matthews H B, Eustis S L, Haseman J. Toxicol. Sc., 1993, 20 (4): 477-485

      Analysis of Organophosphate Esters in Dust, Soil and Sediment

      Samples Using Gas Chromatography Coupled with Mass Spectrometry

      LU JianXia1, JI Wen1, MA ShengTao2, YU ZhiQiang2, WANG Zhao1, LI Han1,

      REN GuoFa1, FU JiaMo1,2

      1(Institute of Environmental Pollution and Health, School of Environment and Chemical Engineering,

      Shanghai University, Shanghai 200444, China)

      2(State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources,

      Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China)

      Abstract Background contamination is a major problem in the analysis of organophosphate esters (OPEs). In this study, the possible sources of OPEs pollution were screened and several different ways were applied to minimize the blank contamination. Under the strict quality control measures, the cleanup efficiency of different solid phase extraction (SPE) was investigated for OPEs in different environmental matrices. A method was developed for the detection of 7 OPEs in dust, soil and sediment samples by gas chromatograph coupled with mass spectrometry (GC/MS). Target compounds were extracted by hexane:dichloromethane (1∶1, V/V) followed by aminopropyl silica gel SPE column cleanup for dust, and target compounds in soil and sediment were Soxhlet extracted and cleanuped by twostep SPE. The results showed that the aminopropyl silica gel SPE column displayed the best purification performance among the three employed columns. Instrumental detection limits among the 7 OPEs ranged from 2.5 to 25.8 μg/L, and the method limits of quantification (MLOQs) in dust and soil sample ranged from 1.4 to 15.7 ng/g and 0.3 to 2.9 ng/g, respectively. The average recoveries of 7 OPEs in different matrices (dust and soil) at two spiked concentration levels ranged from 67.9% to 117.4%. The proposed method was successfully applied to detect OPEs in different environmental matrices collected in Shanghai.

      Keywords Organophosphate flame retardant; Organophosphate esters; Gas chromatograph coupled with mass spectrometry; Soil; Sediment; Dust

      (Received 3 December 2013; accepted 21 February 2014)

      This work was supported by the National Science Foundation of China (Nos. 21007037, 41273121), National Program for Water Pollution Control (2009ZX0752800204), and Shanghai Leading Academic Disciplines (S30109).

      14 Kim J W, Isobe T, Sudaryanto A, Malarvannan G, Chang K H, Muto M, Prudente M, Tanabe S. Environ.Sc. Pollu. Res., 2013, 20(2): 812-822

      15 Matthews H B, Eustis S L, Haseman J. Toxicol. Sc., 1993, 20 (4): 477-485

      Analysis of Organophosphate Esters in Dust, Soil and Sediment

      Samples Using Gas Chromatography Coupled with Mass Spectrometry

      LU JianXia1, JI Wen1, MA ShengTao2, YU ZhiQiang2, WANG Zhao1, LI Han1,

      REN GuoFa1, FU JiaMo1,2

      1(Institute of Environmental Pollution and Health, School of Environment and Chemical Engineering,

      Shanghai University, Shanghai 200444, China)

      2(State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources,

      Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China)

      Abstract Background contamination is a major problem in the analysis of organophosphate esters (OPEs). In this study, the possible sources of OPEs pollution were screened and several different ways were applied to minimize the blank contamination. Under the strict quality control measures, the cleanup efficiency of different solid phase extraction (SPE) was investigated for OPEs in different environmental matrices. A method was developed for the detection of 7 OPEs in dust, soil and sediment samples by gas chromatograph coupled with mass spectrometry (GC/MS). Target compounds were extracted by hexane:dichloromethane (1∶1, V/V) followed by aminopropyl silica gel SPE column cleanup for dust, and target compounds in soil and sediment were Soxhlet extracted and cleanuped by twostep SPE. The results showed that the aminopropyl silica gel SPE column displayed the best purification performance among the three employed columns. Instrumental detection limits among the 7 OPEs ranged from 2.5 to 25.8 μg/L, and the method limits of quantification (MLOQs) in dust and soil sample ranged from 1.4 to 15.7 ng/g and 0.3 to 2.9 ng/g, respectively. The average recoveries of 7 OPEs in different matrices (dust and soil) at two spiked concentration levels ranged from 67.9% to 117.4%. The proposed method was successfully applied to detect OPEs in different environmental matrices collected in Shanghai.

      Keywords Organophosphate flame retardant; Organophosphate esters; Gas chromatograph coupled with mass spectrometry; Soil; Sediment; Dust

      (Received 3 December 2013; accepted 21 February 2014)

      This work was supported by the National Science Foundation of China (Nos. 21007037, 41273121), National Program for Water Pollution Control (2009ZX0752800204), and Shanghai Leading Academic Disciplines (S30109).

      猜你喜歡
      芳香烴烷烴阻燃劑
      氣相色譜六通閥在正構(gòu)烷烴及碳數(shù)分布測定中的應(yīng)用
      云南化工(2021年11期)2022-01-12 06:06:30
      系列芳香烴在土壤中洗脫規(guī)律的分子動力學(xué)模擬
      高苯原料油烷烴異構(gòu)化的MAX-ISOM技術(shù)
      氮-磷-硫膨脹型阻燃劑在聚碳酸酯中的應(yīng)用研究
      中國塑料(2016年1期)2016-05-17 06:13:11
      先天性心臟病相關(guān)性肺動脈高壓肺組織芳香烴受體的表達及其與肺血管重構(gòu)的相關(guān)性研究
      烷烴油滴在超臨界二氧化碳中溶解的分子動力學(xué)模擬
      氫氧化鎂阻燃劑的制備及其應(yīng)用
      膨脹型阻燃劑APP/MA/PEPB的制備及其在ABS中的應(yīng)用
      中國塑料(2015年2期)2015-10-14 05:34:22
      三聚氰胺基阻燃劑的研究進展
      中國塑料(2014年1期)2014-10-17 02:46:27
      道路灰塵中多環(huán)芳香烴污染研究
      广州市| 体育| 宁都县| 淮滨县| 梅河口市| 桐柏县| 新绛县| 南昌县| 武鸣县| 维西| 德钦县| 镇平县| 阿巴嘎旗| 武乡县| 东光县| 浏阳市| 镇康县| 筠连县| 新邵县| 仁布县| 普宁市| 黔江区| 洪湖市| 丰原市| 准格尔旗| 隆林| 嘉禾县| 泸州市| 巢湖市| 游戏| 庐江县| 大方县| 江山市| 白银市| 开化县| 鄂州市| 屏南县| 伊宁市| 牡丹江市| 施秉县| 互助|