馬廣瑩+鄒清成+劉慧春+周江華+朱開元
摘要:通過高通量測序技術(shù)獲得紅掌成花素基因FT,對其進(jìn)行序列分析,通過與已報(bào)道同源基因的比較,預(yù)測基因FT能夠顯著促進(jìn)轉(zhuǎn)基因植物開花,為開展紅掌分子育種提供了有益基因資源。
關(guān)鍵詞:紅掌;克??;基因FT;信息學(xué);序列分析
中圖分類號: S682.03文獻(xiàn)標(biāo)志碼: A文章編號:1002-1302(2014)02-0031-02
收稿日期:2013-06-18
基金項(xiàng)目:國家自然科學(xué)基金(編號:31200527);浙江省自然科學(xué)基金(編號:Q13C150011)。
作者簡介:馬廣瑩(1982—),男,山東梁山人,博士,助理研究員,從事園林植物引種栽培及遺傳育種工作。E-mail:magypetunia@aliyun.com。為實(shí)現(xiàn)種群繁衍,植物必須在合適的時(shí)間進(jìn)行生殖生長、開花結(jié)果。許多植物調(diào)整開花時(shí)間的方式是根據(jù)環(huán)境信號(如日照長短、溫度等)來產(chǎn)生應(yīng)答反應(yīng),植物內(nèi)源激素和年齡這2個(gè)內(nèi)部信號也可以誘導(dǎo)植物開花。近年來,通過對模式植物擬南芥的分子水平研究,人們總結(jié)出“光周期、春化、自主調(diào)控以及赤霉素”4條控制植物開花的途徑[1-3]。FLOWERING LOCUS T基因(FT基因)是學(xué)術(shù)界普遍認(rèn)可的成花素,于葉片中合成,然后通過韌皮部運(yùn)輸?shù)巾敹朔稚M織,F(xiàn)T與FD基因互作,誘導(dǎo)下游成花基因的表達(dá),促進(jìn)開花[4-5]。
擬南芥(Arabidopsis thaliana)中存在6類FT-like基因,都可能參與了成花誘導(dǎo),這些基因有著共同的PEPB結(jié)構(gòu)域[6]。本研究經(jīng)轉(zhuǎn)錄組測序,克隆到了1個(gè)紅掌(Anthurium andraeanum)PEPB基因,通過序列對比等生物信息學(xué)分析,確定該基因是1種促進(jìn)開花的功能基因,這為今后通過轉(zhuǎn)基因手段培育矮化的早花紅掌品種、縮短紅掌育種年限提供了重要的資源。
1材料與方法
1.1試驗(yàn)材料
紅掌品種為“阿拉巴馬”,取盛花期植株幼嫩葉片、苞片、花序3個(gè)組織進(jìn)行混合,按照美國Invitrogen公司生產(chǎn)的植物RNA提取試劑盒(貨號:12322-012)提取總RNA,構(gòu)建Illumina文庫,并委托上海美吉生物公司采用Illumina Hiseq 2000對文庫進(jìn)行測序。
1.2序列分析軟件及分析方法
通過測序獲得的基因序列,經(jīng)過NCBI 網(wǎng)站ORFFinder軟件進(jìn)行編碼區(qū)預(yù)測,然后用http://prosite.expasy.org/網(wǎng)站進(jìn)行編碼區(qū)氨基酸序列預(yù)測,并進(jìn)行序列保守結(jié)構(gòu)域的檢索[7],采用DNAMAN軟件進(jìn)行多序列氨基酸比對,采用MEGA5進(jìn)行多物種FT基因進(jìn)化關(guān)系分析[8],建樹方法為Neighbor-joining,bootstrap 1 000次。
2結(jié)果與分析
2.1紅掌FT基因獲得
通過測序,獲得了與水稻FT基因相似度較高的1條EST序列,通過比對分析,初步確定其為紅掌FLOWERING LOCUS T基因的同源物,命名為AaFT。如圖1所示,該基因編碼區(qū)核苷酸序列有525 bp,其余部分為UTR區(qū)域。用該區(qū)域序列進(jìn)行氨基酸推測,得到了174個(gè)氨基酸殘基。
2.2AaFT基因生物信息學(xué)分析
通過在線軟件分析,不僅推測出該基因的氨基酸序列,還找到了該序列中存在PBP結(jié)構(gòu)域所在的位置,該結(jié)構(gòu)域共計(jì)23個(gè)氨基酸殘基,序列為YTLVMVDPDAPSPSDPNLREYLH,起始位置為64~86號氨基酸。
為了更好地分析該基因的保守性及與同類基因的相似度,將其與擬南芥FT基因(AtFT)進(jìn)行序列比較。由圖2可見,擬南芥與紅掌FT基因的序列相似度比較高,二者在FT基因關(guān)鍵氨基酸殘基上有著相同的組成,即第85、140號氨基酸殘基分別為酪氨酸、谷酰胺。
用MEGA軟件構(gòu)建了6種不同物種FT基因的進(jìn)化樹。從圖3可見,單、雙子葉植物FT基因同源性差異明顯,屬于單子葉植物的紅掌與水稻(Oryza sativa,登錄號:AB052943.1)、蕙蘭(Cymbidium faberi,登錄號:KC138734.1)、蝴蝶蘭(Phalaenopsis hybrid,登錄號:KC138805.1)、小麥(Triticum aestivum,登錄號:AY705794.1)親緣關(guān)系較近,聚類時(shí)容易聚在一起,而紅掌FT基因與擬南芥相比,親緣關(guān)系則明顯較遠(yuǎn),這也與二者分屬單、雙子葉植物類別相對應(yīng)。
3小結(jié)與討論
FT基因作為成花素,受到廣泛關(guān)注,目前,已經(jīng)有非常多植物的FT基因被成功克隆出來,在促進(jìn)植物開花方面表現(xiàn)十分優(yōu)異[9]。紅掌作為國內(nèi)外重要的高檔盆栽花卉,目前育種工作主要集中在常規(guī)雜交育種方面,分子育種剛剛起步,紅掌FT基因的克隆為通過轉(zhuǎn)基因手段快速培育紅掌新品系、縮短雜交育種年限提供了有利條件,也為微型紅掌品種的開發(fā)提供了可能。
本試驗(yàn)通過高通量測序技術(shù)獲得了1條包含完整編碼框的FT基因序列,通過比對及生物信息學(xué)分析,確定該基因?yàn)榧t掌FT同源基因。前人研究證明,F(xiàn)T基因家族存在著序列高度相似、功能完全相反的成員——TFL[10-11],但是二者在關(guān)鍵氨基酸組成上存在著明顯區(qū)別,通過比較分析,本研究所克隆的基因序列在85號及140號氨基酸組成上與擬南芥促進(jìn)早花的FT基因完全一致,結(jié)合相似序列,確定該基因是FT基因,其功能應(yīng)該是促進(jìn)植物開花,而非抑制植物開花。
用紅掌FT基因與擬南芥比較,雖然二者分屬于單、雙子葉植物類別,但是兩基因在氨基酸組成的高度相似說明了FT基因在進(jìn)化過程中保持著穩(wěn)定性,這可能是其發(fā)揮早花功能的必備條件。與多物種FT基因進(jìn)行聚類分析,發(fā)現(xiàn)紅掌FT基因與其他單子葉植物之間存在著較大遺傳距離,說明FT基因雖然功能上保持著穩(wěn)定性,但隨著物種的進(jìn)化而不斷發(fā)生變異,深入研究該基因及其家族成員,有利于解析不同物種的進(jìn)化模式。
參考文獻(xiàn):
[1]Simpson G G,Gendall A R,Dean C. When to switch to flowering[J]. Annual Review of Cell and Developmental Biology,1999,15(1):519-550.
[2]Reeves P H,Coupland G. Response of plant development to environment:control of flowering by daylength and temperature[J]. Current Opinion in Plant Biology,2000,3(1):37-42.
[3]Simpson G G,Arabidopsis D C. Arabidopsis,the rosetta stone of flowering time[J]. Science,2002,296(5566):285-289.
[4]Abe M,Kobayashi Y,Yamamoto S,et al. FD,a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex[J]. Science,2005,309(5737):1052-1056.
[5]Hanzawa Y,Money T,Bradley D. A single amino acid converts a repressor to an activator of flowering[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(21):7748-7753.
[6]Chardon F,Damerval C. Phylogenomic analysis of the PEBP gene family in cereals[J]. Journal of Molecular Evolution,2005,61(5):579-590.
[7]Artimo P,Jonnalagedda M,Arnold K,et al. ExPASy:SIB bioinformatics resource portal[J]. Nucleic Acids Research,2012,40:W597-W603.
[8]Tamura K,Peterson D,Peterson N,et al. MEGA5:molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance,and maximum parsimony methods[J]. Molecular Biology and Evolution,2011,28(10):2731-2739.
[9]Kotoda N,Hayashi H,Suzuki M,et al. Molecular characterization of FLOWERING LOCUS T-like genes of apple(Malus domestica Borkh.)[J]. Plant & Cell Physiology,2010,51(4):561-575.
[10]Ahn J H,Miller D,Winter V J,et al. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1[J]. Embo Journal,2006,25(3):605-614.
[11]Mimida N,Goto K,Kobayashi Y,et al. Functional divergence of the TFL1-like gene family in Arabidopsis revealed by characterization of a novel homologue[J]. Genes to Cells,2001,6(4):327-336.
參考文獻(xiàn):
[1]Simpson G G,Gendall A R,Dean C. When to switch to flowering[J]. Annual Review of Cell and Developmental Biology,1999,15(1):519-550.
[2]Reeves P H,Coupland G. Response of plant development to environment:control of flowering by daylength and temperature[J]. Current Opinion in Plant Biology,2000,3(1):37-42.
[3]Simpson G G,Arabidopsis D C. Arabidopsis,the rosetta stone of flowering time[J]. Science,2002,296(5566):285-289.
[4]Abe M,Kobayashi Y,Yamamoto S,et al. FD,a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex[J]. Science,2005,309(5737):1052-1056.
[5]Hanzawa Y,Money T,Bradley D. A single amino acid converts a repressor to an activator of flowering[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(21):7748-7753.
[6]Chardon F,Damerval C. Phylogenomic analysis of the PEBP gene family in cereals[J]. Journal of Molecular Evolution,2005,61(5):579-590.
[7]Artimo P,Jonnalagedda M,Arnold K,et al. ExPASy:SIB bioinformatics resource portal[J]. Nucleic Acids Research,2012,40:W597-W603.
[8]Tamura K,Peterson D,Peterson N,et al. MEGA5:molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance,and maximum parsimony methods[J]. Molecular Biology and Evolution,2011,28(10):2731-2739.
[9]Kotoda N,Hayashi H,Suzuki M,et al. Molecular characterization of FLOWERING LOCUS T-like genes of apple(Malus domestica Borkh.)[J]. Plant & Cell Physiology,2010,51(4):561-575.
[10]Ahn J H,Miller D,Winter V J,et al. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1[J]. Embo Journal,2006,25(3):605-614.
[11]Mimida N,Goto K,Kobayashi Y,et al. Functional divergence of the TFL1-like gene family in Arabidopsis revealed by characterization of a novel homologue[J]. Genes to Cells,2001,6(4):327-336.
參考文獻(xiàn):
[1]Simpson G G,Gendall A R,Dean C. When to switch to flowering[J]. Annual Review of Cell and Developmental Biology,1999,15(1):519-550.
[2]Reeves P H,Coupland G. Response of plant development to environment:control of flowering by daylength and temperature[J]. Current Opinion in Plant Biology,2000,3(1):37-42.
[3]Simpson G G,Arabidopsis D C. Arabidopsis,the rosetta stone of flowering time[J]. Science,2002,296(5566):285-289.
[4]Abe M,Kobayashi Y,Yamamoto S,et al. FD,a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex[J]. Science,2005,309(5737):1052-1056.
[5]Hanzawa Y,Money T,Bradley D. A single amino acid converts a repressor to an activator of flowering[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(21):7748-7753.
[6]Chardon F,Damerval C. Phylogenomic analysis of the PEBP gene family in cereals[J]. Journal of Molecular Evolution,2005,61(5):579-590.
[7]Artimo P,Jonnalagedda M,Arnold K,et al. ExPASy:SIB bioinformatics resource portal[J]. Nucleic Acids Research,2012,40:W597-W603.
[8]Tamura K,Peterson D,Peterson N,et al. MEGA5:molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance,and maximum parsimony methods[J]. Molecular Biology and Evolution,2011,28(10):2731-2739.
[9]Kotoda N,Hayashi H,Suzuki M,et al. Molecular characterization of FLOWERING LOCUS T-like genes of apple(Malus domestica Borkh.)[J]. Plant & Cell Physiology,2010,51(4):561-575.
[10]Ahn J H,Miller D,Winter V J,et al. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1[J]. Embo Journal,2006,25(3):605-614.
[11]Mimida N,Goto K,Kobayashi Y,et al. Functional divergence of the TFL1-like gene family in Arabidopsis revealed by characterization of a novel homologue[J]. Genes to Cells,2001,6(4):327-336.