阮竹恩 李翠平 鐘 媛
(1.北京科技大學(xué)土木與環(huán)境工程學(xué)院,北京 100083; 2.金屬礦山高效開采與安全教育部重點(diǎn)實(shí)驗(yàn)室,北京 100083)
全尾膏體制備過程中尾礦顆粒運(yùn)移行為研究進(jìn)展與趨勢(shì)
阮竹恩1,2李翠平1,2鐘 媛1,2
(1.北京科技大學(xué)土木與環(huán)境工程學(xué)院,北京 100083; 2.金屬礦山高效開采與安全教育部重點(diǎn)實(shí)驗(yàn)室,北京 100083)
我國重要大宗金屬礦產(chǎn)資源平均品位低,加之近年來我國礦產(chǎn)資源需求的持續(xù)增長(zhǎng)、資源綜合利用率的不斷提升,導(dǎo)致尾礦粒度越磨越細(xì)、尾礦排放量越來越大,尾礦已成為我國金屬礦山的重大危險(xiǎn)源。目前,對(duì)于全尾礦的處置技術(shù)基本上為地表低濃度排放和井下充填,但是由于尾礦制備和輸送濃度過低而存在許多問題,尾礦膏體堆放和膏體充填是尾礦最有效最具前景的處理方式,以此來實(shí)現(xiàn)安全生產(chǎn)和保護(hù)環(huán)境。超細(xì)全尾顆粒沉降速度慢,滲透性差,導(dǎo)致濃密困難,因此帶有超細(xì)顆粒的全尾礦快速脫水濃密是膏體制備的技術(shù)關(guān)鍵。詳細(xì)介紹了全尾膏體制備過程中全尾顆粒沉降、絮凝沉降、顆粒運(yùn)移以及沉降機(jī)理的研究現(xiàn)狀,分析了目前研究存在的問題以及其發(fā)展趨勢(shì)。
全尾膏體制備 顆粒沉降 絮凝沉降 沉降機(jī)理 顆粒運(yùn)移
尾礦是選礦的產(chǎn)物之一,隨著尾礦粒度越磨越細(xì)、尾礦排放量越來越大,尾礦已成為我國金屬礦山的重大危險(xiǎn)源[1]。由于當(dāng)前技術(shù)經(jīng)濟(jì)條件的限制,已不宜再進(jìn)一步分選。尾礦可根據(jù)濃度大小分為漿體尾礦、膏體尾礦和尾礦濾餅[2]。目前,對(duì)于全尾礦的處置技術(shù)基本上為地表低濃度排放和井下充填,但是由于尾礦制備和輸送濃度過低而存在許多問題,如易離析分層、強(qiáng)度低、脫水困難、嚴(yán)重磨損管道、固結(jié)時(shí)間長(zhǎng)等[3]。地表膏體堆放和井下膏體充填則是目前很有前景的尾礦處理方式。
尾礦干堆是將選礦流程輸出的尾礦漿經(jīng)多級(jí)濃縮后,超細(xì)的尾礦用高頻振動(dòng)板除水形成膏體,再用輸送泵將尾礦輸送到指定的地點(diǎn)進(jìn)行壓濾干堆。濃縮尾礦地表堆積最早在1973年應(yīng)用于加拿大安大略省的基德克里克(Kidd Creek )礦山[4]。直到2001年,位于坦桑尼亞的布里楊胡魯(Bulyanhulu)金礦首個(gè)真正將膏體尾礦地表處置投入實(shí)際應(yīng)用,其他如位于葡萄牙的內(nèi)維斯-科伏(Neves-Corvo)銅鋅礦[5]。在我國,上世紀(jì)90年代初黃金局曾大力推廣尾礦干堆技術(shù),最初在排山樓金礦、撰山子金礦[6]等地開始應(yīng)用,其后在三山島金礦[7]、大安河金礦[8]等地陸續(xù)采用尾礦干堆技術(shù),并獲得了一定的經(jīng)濟(jì)效益[9]。通過尾礦膏體堆存技術(shù),提高尾礦庫安全性能,延長(zhǎng)現(xiàn)役尾礦庫使用壽命,提高回水利用率,減少土地資源的占用,改善礦區(qū)周圍的生態(tài)環(huán)境,實(shí)現(xiàn)礦區(qū)環(huán)境效益與企業(yè)經(jīng)濟(jì)效益的雙贏[10]。
伴隨充填技術(shù)的發(fā)展,尾礦作為主要充填料被用于采空區(qū)充填,這不僅解決尾礦處置難題、更為采空區(qū)治理提供了可行方案,可謂“一廢治兩害”。但傳統(tǒng)充填工藝,基本采用分級(jí)尾砂,即去掉了-20 μm或-37 μm的細(xì)顆粒,致使存在超細(xì)尾礦仍需筑壩且難度增大、采場(chǎng)大量脫水污染、尾礦離析充填體強(qiáng)度不均等突出問題[11]。
為此,礦業(yè)界借鑒“流態(tài)化混凝土”的經(jīng)驗(yàn)提出了全尾礦膏體充填,其突出優(yōu)勢(shì)在于利用了傳統(tǒng)充填不能使用的尾礦中的細(xì)粒級(jí)部分。其細(xì)粒級(jí)尤其是-25 μm的超細(xì)粒級(jí),在膏體輸送過程中能趨于管壁形成潤滑層、降低管道輸送阻力、減少管道磨損,并且能阻止粗顆粒下沉離析、確保膏體形成柱塞流,同時(shí)超細(xì)顆粒使膏體具有觸變性能和保水性能,從而膏體充填料不分層、不離析、不脫水,滿足充填所需的穩(wěn)定性、流動(dòng)性和可塑性,使之成為充填技術(shù)發(fā)展的主要方向[12-17]。
最早開始膏體充填研究的是德國,1978年巴德格隆德鉛鋅礦(Bad Grund Mine)作為“先驅(qū)”率先開展了全尾礦膏體充填試驗(yàn)研究,歷經(jīng)6 a形成了膏體充填系統(tǒng)“Preussage Pumped Fill”[18],其后加拿大、澳大利亞、美國、南非等礦業(yè)發(fā)達(dá)國家相繼開展試驗(yàn)研究并推廣應(yīng)用[19-20]。我國膏體充填尚屬起步階段,雖然金川公司二礦區(qū)于1987年開始膏體充填的試驗(yàn)研究,但因全尾礦過濾脫水等技術(shù)問題影響了工業(yè)化應(yīng)用,直至2008年底其充填系統(tǒng)才達(dá)標(biāo)達(dá)產(chǎn),冬瓜山銅礦、會(huì)澤鉛鋅礦、伽師銅礦、金大礦業(yè)、羊拉銅礦等相繼開展了工業(yè)試驗(yàn)與應(yīng)用。
但超細(xì)全尾顆粒沉降速度慢,不及分級(jí)尾砂的1/10,滲透性差,不及分級(jí)尾砂的1/100,導(dǎo)致濃密困難。但按全尾礦膏體堆放和膏體充填的技術(shù)要求,尾礦脫水后的質(zhì)量濃度應(yīng)達(dá)到基本飽和狀態(tài)(75%~80%以上),由此引出膏體堆放和膏體充填的首要技術(shù)難題——細(xì)粒級(jí)尾礦的脫水問題,即帶有超細(xì)顆粒的全尾礦快速脫水濃密是膏體充填的技術(shù)關(guān)鍵[11,14]。
膏體的定義一直不夠清晰,目前國內(nèi)外許多學(xué)者對(duì)于膏體的定義進(jìn)行了探索性研究。國外學(xué)者認(rèn)為,當(dāng)膏體中-20 μm含量為15%~20%(質(zhì)量比)且膏體料漿的屈服應(yīng)力大于200±25 Pa時(shí),可以視為膏體[21-22]。國內(nèi)學(xué)者通常用坍落度和分層指標(biāo)來表征膏體,當(dāng)塌落度在15~25 cm,分層度小于2 cm時(shí)可以視為膏體[23]。近年來,從飽和率、泌水率等角度對(duì)膏體的定義進(jìn)行了新的探索,當(dāng)漿體飽和率在101.5%~105.3%之間且泌水率在1.5%~5%之間即為合格的膏體[24]。同時(shí),基于全尾砂級(jí)配提出了膏體的新定義,從而使不同礦山不同特性全尾砂所能配制的膏體得到了統(tǒng)一規(guī)范化和定量化[24]??偟恼f來,膏體的特性如下[25]:
(1)固體濃度大。按照全尾砂膏體充填的技術(shù)要求,尾砂脫水后的質(zhì)量濃度應(yīng)達(dá)到75%~80%以上。形成膏體時(shí),尾礦濃度因尾礦種類不同而不同,這是因?yàn)椴煌驳V的粒徑分布、顆粒形態(tài)、黏土含量、礦物學(xué)性質(zhì)、絮凝劑等不同。
(2)不離析。在一定的條件下,膏體內(nèi)部水分子與尾砂顆粒之間、尾砂顆粒與尾砂顆粒之間受各種力的控制而出現(xiàn)一種相對(duì)平衡的狀態(tài)。
(3)黏度大,滲透率低。由于全尾膏體中加入了絮凝劑,黏度大,全尾膏體的滲透率低,有資料顯示膏體的滲透性比同等物料的滲透性低半個(gè)數(shù)量級(jí)。
2.1 顆粒沉降行為研究現(xiàn)狀
顆粒沉降一直是流體力學(xué)的經(jīng)典問題,具有廣泛的工業(yè)生產(chǎn)背景,包括在重選、石油、環(huán)境、化工等領(lǐng)域[26]。不過學(xué)術(shù)界對(duì)于顆粒沉降的研究以水利工程領(lǐng)域的泥沙為對(duì)象的研究相對(duì)活躍,對(duì)于泥沙單顆粒的自由沉降行為研究較為成熟,基本明晰了球形顆粒所受流體外力作用的沉降速度的控制關(guān)系,并可采用計(jì)算流體動(dòng)力學(xué)(CFD)的數(shù)值模擬方法來分析顆粒的沉降行為。
通過實(shí)驗(yàn)的方法,許多學(xué)者對(duì)流體中泥沙單顆粒所受的氣動(dòng)阻力、升力、阻力系數(shù)沉降速度以及旋轉(zhuǎn)顆粒的馬格納斯(Magnus)力進(jìn)行了深入的研究并給出了相關(guān)的計(jì)算公式[27-35]。Debasish Pal和Koeli Ghoshal[36]通過引入顆粒表觀直徑的概念,與沉積物-流體混合物的質(zhì)量密度和無量綱顆粒直徑一起構(gòu)建的數(shù)學(xué)模型,能較好地計(jì)算出沉積物-流體混合物中顆粒沉降速度。同時(shí),針對(duì)不同情況下黏性流體中多顆粒之間的相互作用問題也進(jìn)行了一定的研究[37-44],包括沉降過程中顆粒特性、2個(gè)接觸顆粒之間力學(xué)的相互作用、旋轉(zhuǎn)運(yùn)動(dòng)對(duì)2個(gè)接觸顆粒之間相互作用的影響、顆粒群的平衡以及高分子絮凝劑聚合顆粒的運(yùn)動(dòng)等。
對(duì)于尾礦顆粒沉降行為的研究很少,尤其對(duì)于全尾顆粒在整個(gè)沉降過程中液-固兩相耦合作用下的運(yùn)移行為未見報(bào)道,可見報(bào)道只有針對(duì)給料井中的尾礦顆粒因給料井結(jié)構(gòu)不同以及絮凝劑不同而導(dǎo)致尾礦顆粒流動(dòng)軌跡及絮凝效果的數(shù)值模擬[45-49]。
2.2 絮團(tuán)壓縮沉降技術(shù)現(xiàn)狀
隨著全尾膏體充填技術(shù)的不斷發(fā)展,膏體制備過程中的尾礦濃密技術(shù)已從過濾分離發(fā)展到沉降分離,從離心沉降發(fā)展到絮凝沉降[50]。通過使用絮凝沉降技術(shù),可以改善全尾顆粒的沉降性能、提高全尾顆粒的沉降速度、降低膏體制備的時(shí)間單耗,并具有良好的經(jīng)濟(jì)效益[51-52]。
絮團(tuán)的壓縮行為上,提出了絮團(tuán)強(qiáng)度的流變宏觀效應(yīng),指出壓實(shí)之前需克服壓應(yīng)力,給出了凝膠濃度、壓縮屈服應(yīng)力、剪切屈服應(yīng)力、干涉沉降系數(shù)等參數(shù)對(duì)絮團(tuán)結(jié)構(gòu)強(qiáng)度的宏觀力學(xué)行為描述[53-55]。從連續(xù)介質(zhì)力學(xué)的基本原理出發(fā),開發(fā)絮凝懸浮液沉淀的唯象理論[56],研究在自身重力和滲透性的影響下的絮凝物的可壓縮性。同時(shí),針對(duì)圓柱狀、分散狀和收斂狀圓錐形的5種不同截面形狀沉降裝置進(jìn)行絮凝壓縮沉降行為研究,提出一種連續(xù)沉降和濃縮數(shù)學(xué)模型,為連續(xù)濃密提供了一種數(shù)值算法,也為濃密機(jī)設(shè)計(jì)提供依據(jù)[57]。
絮團(tuán)結(jié)構(gòu)模型建立上,以早期的Vold的彈射凝聚模型[58]和Sutherland的多孔松散結(jié)構(gòu)模型[59]為原型,基于分形理論建立了絮團(tuán)的動(dòng)力學(xué)生長(zhǎng)模型,利用分形維數(shù)作為絮團(tuán)結(jié)構(gòu)變化的控制參數(shù),得出分形維數(shù)大小與絮團(tuán)密實(shí)程度正相關(guān)[60]。王國文[61]應(yīng)用分形理論進(jìn)行鈦鐵尾礦絮凝沉降實(shí)驗(yàn),把難以用歐幾里德幾何表征的高濃度鈦鐵礦尾礦漿絮體模型基于分形理論來定量描述和分析,通過掃描電鏡、光學(xué)顯微鏡、計(jì)算機(jī)處理等現(xiàn)代分析技術(shù),首度測(cè)算出無機(jī)和有機(jī)絮凝劑兩大類絮凝劑作用于常見鈦鐵尾礦的分形維數(shù)。同時(shí),國外也有學(xué)者開始采用光學(xué)激光顯微鏡和 X 射線衍射技術(shù),對(duì)絮團(tuán)顆粒和沉積層微觀結(jié)構(gòu)進(jìn)行三維可視化研究[62]。
影響因素的作用效果上,國外研究人員近年基于二維SEM掃描圖片,宏觀分析了溫度、pH值、絮凝作用、耙動(dòng)作用等對(duì)絮團(tuán)結(jié)構(gòu)的影響,定性闡述了絮團(tuán)結(jié)構(gòu)的變化,并提出絮團(tuán)內(nèi)部水及在攪動(dòng)作用下排水通道的存在[63-66]。我國研究人員針對(duì)絮凝沉降的影響因素做了大量相關(guān)研究[67-72],研究了物料顆粒粒度、礦漿濃度、絮凝劑種類及添加量、泥層高度等因素對(duì)沉降速度與靜止沉降極限濃度的影響。研究發(fā)現(xiàn),礦漿濃度、絮凝劑濃度、絮凝劑單耗對(duì)沉降速度的影響程度為尾砂濃度>絮凝劑單耗>絮凝劑濃度[73]。同時(shí),在靜態(tài)沉降的基礎(chǔ)上,國內(nèi)學(xué)者開始研究動(dòng)態(tài)濃密[74-75],采用自制尾砂動(dòng)態(tài)濃密物理模型,進(jìn)行不同絮凝劑單耗下尾礦動(dòng)態(tài)濃密效果研究,將絮凝劑添加量由低到高劃分了4個(gè)區(qū)間,并提出了不同區(qū)間下絮凝劑對(duì)尾礦濃密極限濃度的影響機(jī)理,為現(xiàn)場(chǎng)深錐運(yùn)行提供技術(shù)依據(jù)。
2.3 深錐濃密機(jī)中尾礦沉降機(jī)理研究
深錐濃密機(jī)是一種新型的固液分離設(shè)備,除了具有高效濃密機(jī)的特點(diǎn)之外,最大的特點(diǎn)是深錐高度要比其他濃密機(jī)高得多,壓縮沉降帶的結(jié)構(gòu)也更復(fù)雜。深錐膏體濃密機(jī)多用于井下尾礦充填和地表尾礦管道輸送干式堆存。
尾礦沉降機(jī)理方面的研究主要基于靜態(tài)間歇沉降實(shí)驗(yàn),探討如何利用數(shù)學(xué)模型更有效地從實(shí)驗(yàn)數(shù)據(jù)中表達(dá)沉降過程,如何更全面分析影響沉降過程的各個(gè)因素。其理論基礎(chǔ)是Coe-Clevenger的沉降模型,后經(jīng)Kynch、Talmage、Fitch、Shannon、Tory、Landman、Usher等人發(fā)展完善,建立沉降過程的宏觀分布參數(shù)方程,利用沉降曲線分析沉降速度與固體濃度、沉降通量等參數(shù)的關(guān)系,獲得底流濃度與濃密機(jī)面積等工業(yè)指標(biāo)[76-81]。雖然近年研究已開始涉足動(dòng)態(tài)連續(xù)沉降,但其模型維度基本是一維的沉降模型,故對(duì)實(shí)際工業(yè)指標(biāo)預(yù)測(cè)存在較大偏差,且很少考慮壓縮沉降[82-83]。
國內(nèi)因膏體充填尚處工業(yè)試驗(yàn)階段,故對(duì)深錐濃密機(jī)的脫水濃密的研究主要集中在宏觀濃縮效果、濃密機(jī)結(jié)構(gòu)參數(shù)等方面,包括濃密機(jī)高徑比、濃縮面積等結(jié)構(gòu)參數(shù)與壓縮程度、停留時(shí)間、泥層高度、固體通量、底流濃度等因素的影響,以及傳統(tǒng)濃密機(jī)的系統(tǒng)改造等工業(yè)應(yīng)用探討等。在分析礦漿濃度影響因素的基礎(chǔ)上,敘述了深錐濃密機(jī)槽體高度的計(jì)算過程,尤其是動(dòng)態(tài)壓縮層高度的計(jì)算[84]。通過推導(dǎo)出深錐濃密機(jī)內(nèi)部料漿停留時(shí)間的理論公式,進(jìn)而確定深錐濃密機(jī)內(nèi)部料漿體積的計(jì)算方法[85]?;谏铄F濃密機(jī)內(nèi)部不同高度、不同濃度尾砂對(duì)耙子運(yùn)行的影響,對(duì)耙子進(jìn)行受力分析,提出復(fù)雜結(jié)構(gòu)耙子扭矩的計(jì)算模型[86]。采用深錐相似模型動(dòng)態(tài)沉降實(shí)驗(yàn)及流變參數(shù)測(cè)定方法研究深錐濃密機(jī)壓耙原因[87]。針對(duì)梅山選礦廠的深錐濃密機(jī),通過采用高效深錐濃密機(jī)進(jìn)行尾礦濃縮實(shí)驗(yàn),提出了采用濃密機(jī)高效化處理方案[88]。借用CFD中的Fluent對(duì)攪拌反應(yīng)罐流場(chǎng)的各影響因素(如槳間距、罐槳徑比等)進(jìn)行分析和研究,提出了攪拌反應(yīng)罐內(nèi)部結(jié)構(gòu)的改進(jìn)方向和措施。
同時(shí),國內(nèi)外學(xué)者對(duì)于高徑比對(duì)深錐濃密機(jī)沉降機(jī)理的影響進(jìn)行了深入的研究。國外有學(xué)者認(rèn)為該類濃密機(jī)高徑比在1~2之間,而國內(nèi)學(xué)者認(rèn)為深錐濃密機(jī)高徑比為2.1~2.4。 但是,隨著尾礦處置規(guī)模的加大,深錐濃密機(jī)的直徑也在不斷增大,高徑比則會(huì)隨之減小。在此基礎(chǔ)上,國內(nèi)學(xué)者提出了有別于傳統(tǒng)認(rèn)識(shí)中的高徑比概念,即泥層高度與濃密機(jī)直徑之比,使得高徑比這一概念工程意義更加明確,同時(shí)在深錐膏體濃密機(jī)底流濃度和外形結(jié)構(gòu)高徑比之間建立聯(lián)系得出其數(shù)學(xué)模型。
3.1 存在問題
縱觀國內(nèi)外的研究現(xiàn)狀,雖然針對(duì)顆粒的沉降行為、絮團(tuán)的壓縮沉降、尾礦的沉降機(jī)理及其生產(chǎn)應(yīng)用的實(shí)踐等方面開展了大量的研究工作,取得了一定的進(jìn)展,但其成果還有一定的局限性,對(duì)于細(xì)觀層面研究不夠深入,如絮團(tuán)與全尾顆粒的細(xì)觀表征、絮團(tuán)的內(nèi)部細(xì)觀結(jié)構(gòu)在不同沉降階段的改變、顆粒到絮團(tuán)的發(fā)展演變、全尾顆粒的動(dòng)態(tài)運(yùn)移沉降行為等問題,仍需進(jìn)一步開展研究和創(chuàng)新。目前仍然存在以下問題與不足:
(1)顆粒沉降行為方面的現(xiàn)有研究還限于固相顆粒所受液相流體單項(xiàng)作用下的宏觀效果,尚未進(jìn)行尾礦顆粒在自由沉降—干涉沉降—壓縮沉降的全過程中因液-固兩相耦合作用下的時(shí)空運(yùn)動(dòng)行為研究,更未從三維可視化的角度進(jìn)行顆粒實(shí)際運(yùn)移沉降過程的動(dòng)態(tài)仿真。
(2)還原和表征絮團(tuán)的真實(shí)結(jié)構(gòu)是揭示壓縮沉降機(jī)理的基礎(chǔ),現(xiàn)有研究中利用二維掃描圖片對(duì)絮團(tuán)的結(jié)構(gòu)進(jìn)行觀測(cè)與識(shí)別,但是尚未洞悉絮團(tuán)的三維細(xì)觀結(jié)構(gòu)。
(3)對(duì)于尾礦沉降機(jī)理方面的現(xiàn)有研究基本是宏觀規(guī)律,且動(dòng)態(tài)連續(xù)沉降機(jī)理仍較薄弱,尚未結(jié)合顆粒和絮團(tuán)的細(xì)觀結(jié)構(gòu)效應(yīng)開展沉降規(guī)律的研究。
3.2 研究趨勢(shì)
(1)在現(xiàn)有的二維、宏觀研究基礎(chǔ)上,利用三維重構(gòu)技術(shù)建立絮團(tuán)的三維空間結(jié)構(gòu)模型,開展絮團(tuán)結(jié)構(gòu)的細(xì)觀力學(xué)行為研究,來揭示全尾砂濃密沉降的機(jī)理,實(shí)現(xiàn)由宏觀到微觀、由二維到三維的研究。
(2)在現(xiàn)有靜態(tài)間歇沉降研究基礎(chǔ)上,利用深錐濃密機(jī)模擬裝置進(jìn)行試驗(yàn),以及利用流體軟件進(jìn)行動(dòng)態(tài)連續(xù)沉降模擬,研究全尾砂在液固兩相耦合條件下的時(shí)空運(yùn)移行為,進(jìn)行全尾砂動(dòng)態(tài)連續(xù)沉降機(jī)理的研究。
[1] 古德生,周科平.現(xiàn)代金屬礦業(yè)的發(fā)展主題[J].金屬礦山,2012(7):1-8. Gu Desheng,Zhou Keping.Development theme of the modern metal mining[J].Metal Mine,2012(7):1-8.
[2] 張德洲.尾礦膏體堆存技術(shù)的發(fā)展和應(yīng)用[J].中國礦山工程,2010(2):49-53. Zhang Dezhou.Development and application of paste tailings stacking technology[J].China Mine Engineering,2010(2):49-53.
[3] 吳愛祥,楊盛凱,王洪江,等.超細(xì)全尾膏體處置技術(shù)現(xiàn)狀與趨勢(shì)[J].采礦技術(shù),2011(3):4-8. Wu Aixiang,Yang Shengkai,Wang Hongjiang,et al.Present situation and the trend on ultrafine full tail paste disposal technology [J].Mining Technology,2011(3):4-8.
[4] Brackebusch F W.Basics of paste backfill systems[J].Mining Engineering,1994,296:1175-1178.
[5] Verburg R,Newman P,F(xiàn)ordham M.Surface paste disposal of high-sulphide tailings-Field cell monitoring and pilot plant testing[C]∥Presented at the 7th International Conference on Acid Rock Drainage(ICARD).St Louis,MO:[s.n.],2006(3):26-30.
[6] 金大安.撰山子金礦尾礦壓濾新工藝的應(yīng)用[J].有色礦山,1998(5):22-25. Jin Daan.Application of new process of tailings filtration in Zhuanshanzi Gold Mine[J].Nonferrous Mines,1998(5):22-25.
[7] 洪 飛,劉渝燕,曲鴻魯.三山島金礦尾礦開發(fā)利用研究[J].礦產(chǎn)保護(hù)與利用,2002,8(4):46-49. Hong Fei,Liu Yuyan,Qu Honglu.Processing and application of the tailings in Sanshandao Gold Mine[J].Conservation and Utilization of Mineral Resources,2002,8(4):46-49.
[8] 李 娟,律清陽.大安河金礦釆用板框壓濾機(jī)處理尾礦的生產(chǎn)實(shí)踐[J].黃金,2000,21(3):40-42. Li Juan,Lu Qingyang.The operation practice to treat tailing by means of plate frame pressure filter in Da-An-He gold mine[J].Gold,2000,21(3):40-42.
[9] 邢萬芳,金英豪,姚 香.黃金尾礦干堆技術(shù)若干問題探討[J].有色金屬:礦山部分,2008,60(1):48-49. Xing Wanfang,Jin Yinghao,Yao Xiang.Discussion on some issues in dry stack technology of tailings from gold mines[J].Nonferrous Metals:Mine Section,2008,60(1):48-49.
[10] 鄧政斌,童 雄.淺述尾礦干堆技術(shù)的前景[J].礦冶,2011(2):10-14. Deng Zhengbin,Tong Xiong.Introduction of dry-tailings stack piling technique and prospect[J].Mining and Metallurgy,2011(2):10-14.
[11] 吳愛祥.膏體充填與尾礦處置技術(shù)研究進(jìn)展[J].礦業(yè)裝備,2011(4):32-35. Wu Aixiang.Review on paste filling with tailings disposal technology [J].Mining Equipment,2011(4):32-35.
[12] Grabinsky M W.In situ monitoring for ground truthing paste backfill designs[C]∥Proceedings of the 13th International Seminar on Paste and Thickened Tailings.Perth:Australian Centre for Geomechanics,2010:85-98.
[13] 于潤滄.我國充填工藝創(chuàng)新成就與尚需深入研究的課題[J].采礦技術(shù),2011,11(3):1-3. Yu Runcang.Further research topics on the innovation achievements and filling technology in China [J].Mining Technology,2011,11(3):1-3.
[14] 張欽禮,周登輝,王新民,等.超細(xì)全尾砂絮凝沉降實(shí)驗(yàn)研究[J].廣西大學(xué)學(xué)報(bào):自然科學(xué)版,2013,38(2):452-455. Zhang Qinli,Zhou Denghui,Wang Xinmin,et al.Experimental study on flocculating sedimentation of ultra-fine unclassified tailings[J].Journal of Guangxi University:Natural Science Edition,2013,38(2):452-455.
[15] 王新民,古德生,張欽禮.深井礦山充填理論與管道輸送技術(shù)[M].長(zhǎng)沙:中南大學(xué)出版社,2010. Wang Xinmin,Gu Desheng,Zhang Qinli.Theory of Backfilling Activity and Pipeline Transportation Technology of Backfill in Deep Mines[M].Changsha:Central South University Press,2010.
[16] 周華強(qiáng),侯朝炯,孫希奎,等.固體廢物膏體充填不遷村采煤[J].中國礦業(yè)大學(xué)學(xué)報(bào),2004,33(2):154-158. Zhou Huaqiang,Hou Chaojiong,Sun Xikui,et al.Solid waste paste filling for none-village-relocation coal mining[J].Journal of China University of Mining & Technology,2004,33(2):154-158.
[17] 王洪江,吳愛祥,肖衛(wèi)國,等.粗粒級(jí)膏體充填的技術(shù)進(jìn)展及存在的問題[J].金屬礦山,2009(11):1-5. Wang Hongjiang,Wu Aixiang,Xiao Weiguo,et al.The progresses of coarse paste fill technology and its existing problem[J].Metal Mine,2009(11):1-5.
[18] Lerche R,Renetzeder H.The Development of pumped fill at grund mine[C]∥Proceedings of the 9th International Conference on the Hydraulic Transport of Solids in Pipes.Rome:[s.n.],1984:17-19.
[19] Bloss M L,Rankine R.Paste fill operations and research at Cannington mine[C]∥The 9th Aus IMM Underground Operators Conference.Perth:[s.n.],2005:141-150.
[20] Nasir O,F(xiàn)all M.Coupling binder hydration,temperature and compressive strength development of underground cemented paste backfill at early ages[J].Tunnelling and Underground Space Technology,2010,25(1):9-20.
[21] Fall M,Célestin J,Sen H F.Potential use of densified polymer-pastefill mixture as waste containment barrier materials[J].Waste Management,2010,30(12):2570-2578.
[22] Jewell R J,F(xiàn)ourie A B,Lord E R.Paste and Thickened Tailings-A Guide[M].Perth:Australian Centre for Geomechanics(ACG),2002.
[23] 王洪江,王 勇,吳愛祥,等.從飽和率和泌水率角度探討膏體新定義[J].武漢理工大學(xué)學(xué)報(bào),2011,33(6):86-89. Wang Hongjiang,Wang Yong,Wu Aixiang,et al.Research of paste new definition from the view point of saturation ratio and bleeding rate[J].Journal of Wuhan University of Technology,2011,33(6):86-89.
[24] 王洪江,李 輝,吳愛祥,等.基于全尾砂級(jí)配的膏體新定義[J].中南大學(xué)學(xué)報(bào):自然科學(xué)版,2014(2):557-562. Wang Hongjiang,Li Hui,Wu Aixiang,et al.New paste definition based on grading of full tailings[J].Journal of Central South University:Science and Technology,2014(2):557-562.
[25] 惠學(xué)德,謝紀(jì)元.膏體技術(shù)及其在尾礦處理中的應(yīng)用[J].中國礦山工程,2011,40(2):50-54. Hui Xuede,Xie Jiyuan.Paste technology and its application in tailing treatment[J].China Mine Engineering,2011,40(2):50-54.
[26] 盧壽慈.工業(yè)懸浮液:性能,調(diào)制及加工[M].北京:化學(xué)工業(yè)出版社,2003. Lu Shouci.Industrial Suspensions:Properties,Preparation and Processing [M].Beijing: Chemical Industry Press,2003.
[27] Almedeij J.Drag coefficient of flow around a sphere:Matching asymptotically the wide trend[J].Powder Technology,2008,186(3):218-223.
[28] Coneha F,Barrientos A.Settling velocities of particulate systems,3.Power-series expansion for the drag coefficient of a sphere and pred fiction of the setting velocity[J].International Journal of Mineral Processing,1982,9(2):167-172.
[29] Oesterle B,BuiDinh T.Experiments on the lift of a spinning sphere in a rang of intermediate Reynolds numbers[J].Experiments in Fluids,1998,25:16-22.
[30] Lane G L,Schwarz M P,Evans G M.Numerical modeling of gas-liquid flow in stirred tanks[J].Chemical Engineering Scieces,2005(8/9):2203-2214.
[31] Tanaka T,Yonemura S,Tsuji Y.Experiments of fluid forces on a rotating sphere and spheroid[C]∥ Proceedings of the 2nd KSME-JSME Fluids Engineering Conference.Seoul:[s.n.],1990:10-13.
[32] Jorge Gabitto,Costas Tsouris.Drag coefficient and settling velocity for particles of cylindrical shape[J].Powder Technology,2008,183:314-322.
[33] Maa J P Y,Kwon J I.Using ADV for cohesive sediment settling velocity measurements[J].Estuarine,Coastal and Shelf Science,2007,73(1/2):351-354.
[34] Cheng Niansheng.Comparison of formulas for drag coefficient and settling velocity of spherical particles[J].Powder Technology,2009,189(3):395-398.
[35] Terfous A,Hazzab A, Ghenaim A.Predicting the drag coefficient and settling velocity of spherical particles[J].Powder Technology,2013,239,12-20.
[36] Debasish Pal,Koeli Ghoshal.Hindered settling with an apparent particle diameter concept[J].Advances in Water Resources,2013,60:178-187.
[37] Zeng S,Kems E,Davis R H.The nature of particle in sedimentation[J].Physical Fluids,1996,8:1389-1396.
[38] Ekiel-Jezewska M F,F(xiàn)euillebois F,Lecoq N,et al.Hydro-dynamic interactions between two spheres in contact[J].Physical Review E,1999,59:3182-3192.
[39] Ekiel-Jezewska M F,F(xiàn)euillebois F,Lecoq N,et al.Rotation due to hydrodynamic interactions between two spheres in contact[J].Physical Review E.2002,66:1-14.
[40] Zhang J,F(xiàn)an L,Zhu C,et al.Dynamic behavior of collision of elastic spheres in viscous fluids[J].Powder Technology,1999,106:98-109.
[41] Ardekani A M,Dabiri S,Rangel R H.Collision of multi-particle and general shape objects in a viscous fluid[J].Journal of Computational Physics,2008,227:10094-10107.
[42] Alex R Heath,Peter T L Koh.Combined population balance and CFD modelling of particle aggregation by polymeric flocculant[C]∥ Third International Conference on CFD in the Minerals and Process Industries.Mel-bourne:CSIRO,2003:339-344.
[43] 柴朝暉,楊國錄,陳 萌,等.黏性細(xì)顆粒泥沙靜水絮凝-沉降模擬[J].四川大學(xué)學(xué)報(bào):工程科學(xué)版,2012(S1):48-53. Chai Zhaohui,Yang Guolu,Chen Meng,et al.Simulation of flocculation-settling for cohesive fine sediment in still water[J].Journal of Sichuan University:Engineering Science Edition,2012(S1):48-53.
[44] 黃忠釗,譚立新.基于群體平衡模型的污泥絮凝-沉降三維模擬[J].西安理工大學(xué)學(xué)報(bào),2013(4):469-474. Huang Zhongzhao,Tan Lixin.Three-dimensional simulation of flocculation-settling for sludge on population balance model[J].Journal of Xi'an University of Technology,2013(4):469-474.
[45] White R B,Sutalo I D,Nguyen T.Fluid flow in thickener feedwell models[J].Minerals Engineering,2003,16(2):145-150.
[46] Owen A T,Nguyen T V,F(xiàn)awell P D.The effect of flocculant solution transport and addition conditions on feedwell performance in gravity thickeners[J].International Journal of Mineral Processing,2009,93(2):115-127.
[47] White R B,Sutalo I D,Nguyen T V.Modelling fluid flows in split-feed feedwells[C]∥Fifth International Conference on CFD in the Process Industries.Mel-bourne:CSIRO,2006:1-6.
[48] Tanguay M,F(xiàn)awell P,Adkins S.Modelling the impact of two different flocculants on the performance of a thickener feedwell[J].Applied Mathematical Modelling,2014,38:17-18.
[49] Zhu Guihua,Zhang Yuzhu,Ren Jiliang,et al.Flow simulation and analysis in a vertical- flow sedimentation tank [C]∥2012 International Conference on Future Energy,Environment,and Materials.[S.l.]:Energy Procedia,2012,16:197-202.
[50] Owen A T,Nguyen T V,F(xiàn)awell P D.The effect of focculant solution transport and addition conditions on feedwell performance in gravity thickeners[J].International Journal of Miner Process,2009,93(2):115-127.
[51] 王 勇,王洪江,吳愛祥,等.細(xì)粒全尾礦絮凝沉降特性研究[J].黃金,2012,33(1):48-51. Wang Yong,Wang Hongjiang,Wu Aixiang,et al.Research on flocculation sedimentation characteristics of fine unclassified-tailings[J].Gold,2012,33(1):48-51
[52] 王 勇,王洪江,吳愛祥,等.細(xì)粒尾礦泌水特性及其影響因素[J].黃金,2011,32(9):51-54. Wang Yong,Wang Hongjiang,Wu Aixiang,et al.Research on fine tailings bleeding characteristics and the influencing factors [J].Gold,2011,32(9):51-54.
[53] Buscall R,White L R.The consolidation of concentrated suspensions.Part 1.The theory of sedimentation [J].Journal of the Chemical Society,F(xiàn)araday Transactions 1:Physical Chemistry in Condensed Phases,1987,83(3):873-891.
[54] Kretser R G de,Boger D V,Scales P J.Compressive rheology:an overview[J].Rheology Reviews,2003:125-166.
[55] Zhou Z,Scales P J,Boger D V.Chemical and physical control of the rheology of concentrated metal oxide suspensions [J].Chemical Engineering Science,2001,56(9):2901-2920.
[56] Bürger R,Concha F.Mathematical model and numerical simulation of the settling of flocculated suspensions[J].International Journal of Multiphase,1998,24:1005-1023.
[58] Vold M J.Computer simulation of floc formation in a colloidal suspension[J].Journal of Colloid Science,1963,18(7):684-695.
[59] Sutherland D N.A theoretical model of floc structure[J].Journal of Colloid and Interface Science,1967,25(3):373-380.
[60] Lee D G,Bonner J S,Garton L S,et al.Modeling coagulation kinetics incorporating fractal theories:a fractal rectilinear approach[J].Water Research,2000,34(7):1987-2000.
[61] 王國文.基于分形理論的鈦鐵尾礦絮凝沉降試驗(yàn)研究[D].昆明:昆明理工大學(xué),2009. Wang Guowen.Research on the Titanium Iron Tailings Flocculation Sedimentation Experiment Based on the Theory of Fractal[D].Kunming:Kunming University of Science and Technology,2009.
[62] Selomuya C,Jia X,Williams R A.Direct prediction of structure and permeability of flocculated structures and sediments using 3D tomographic imaging[J].Chemical Engineering Research and Design,2005,83(7):844-860.
[63] Eswaraiah C,Biswal S K,Mishra B K.Settling characteristics of ultrafine iron ore slimes[J].Int J Miner Metall Mater,2012,19(2):95-110.
[64] Mpofu P,Addai-Mensah J,Ralston J.Temperature influence of nonionic polyethylene oxide and anionic polyacrylamide on flocculation and dewatering behavior of kaolinite dispersions[J].Journal of Colloid and Interface Science,2004,271(1):145-156.
[65] Zbik M S,Smart R S C,Morris G E.Kaolinite flocculation structure[J].Journal of Colloid and Interface Science,2008,328(1):73-80.
[66] Du J,Pushkarova R A,Smart R S C.A cryo-SEM study of aggregate and floc structure changes during clay settling and raking processes[J].International Journal of Mineral Processing,2009,93(1):66-72.
[67] 王 星,瞿圓媛,胡偉偉,等.尾礦漿絮凝沉降影響因素的試驗(yàn)研究[J].金屬礦山,2008(5):149-151. Wang Xing,Qu Yuanyuan,Hu Weiwei,et al.experimental research on factors influencing pulp flocculation setting[J].Metal Mine,2008(5):149-151.
[68] 王 華,李宋江,李國民,等.礦漿絮凝沉降影響因數(shù)研究[J].湖南有色金屬,2013(2):12-14. Wang Hua,Li Songjiang,Li Guomin,et al.Research on factors influencing pulp flocculation setting[J].Hunan Nonferrous Metal,2013(2):12-14.
[69] 史秀志,胡海燕,杜向紅,等.立式砂倉尾砂漿液絮凝沉降試驗(yàn)研究[J].礦冶工程,2010,30(3):1-3. Shi Xiuzhi,Hu Haiyan,Du Xianghong,et al.Experimental study on flocculating sedimentation of tailings slurry in a vertical sand tank[J].Mining and Metallurgical Engineering,2010,30(3):1-3.
[70] 焦華喆,王洪江,吳愛祥,等.全尾砂絮凝沉降規(guī)律及其機(jī)理[J].北京科技大學(xué)學(xué)報(bào),2010,32(6):702-707. Jiao Huazhe,Wang Hongjiang,Wu Aixiang,et al.Rule and mechanism of flocculation sedimentation of unclassified tailings[J].Journal of University of Science and Technology Beijing,2010,32(6):702-707.
[71] 焦華喆,吳愛祥,王洪江,等.全尾砂絮凝沉降特性實(shí)驗(yàn)研究[J].北京科技大學(xué)學(xué)報(bào),2011,33(12):1437-1441. Jiao Huazhe,Wu Aixiang,Wang Hongjiang,et al.Experiment study on the flocculation settlement characteristic of unclassified tailings[J].Journal of University of Science and Technology Beijing,2011,33(12):1437-1441.
[72] 尹升華,王 勇.泥層高度對(duì)細(xì)粒全尾濃密規(guī)律的影響[J].科技導(dǎo)報(bào),2012(7):29-33. Yin Shenghua,Wang Yong.Influence of mud height on the concentration of the fine tailing[J].Science & Technology Review,2012(7):29-33.
[73] 張欽禮,周登輝,王新民,等.超細(xì)全尾砂絮凝沉降實(shí)驗(yàn)研究[J].廣西大學(xué)學(xué)報(bào):自然科學(xué)版,2013(2):451-455. Zhang Qinli,Zhou Denghui,Wang Xinmin,et al.Experimental study on flocculating sedimentation of ultra-fine unclassified tailings[J].Journal of Guangxi University:Natural Science Edition,2013(2):451-455.
[74] 王洪江,陳琴瑞,吳愛祥,等.全尾砂濃密特性研究及其在濃密機(jī)設(shè)計(jì)中的應(yīng)用[J].北京科技大學(xué)學(xué)報(bào),2011,33(6):676-681. Wang Hongjiang,Chen Qinrui,Wu Aixiang,et al.Study on the thickening properties of unclassified tailings and its application to thickener design[J].Journal of University of Science and Technology Beijing,2011,33(6):676-681.
[75] 王 勇,吳愛祥,王洪江,等.絮凝劑用量對(duì)尾礦濃密的影響機(jī)理[J].北京科技大學(xué)學(xué)報(bào),2013,35(11):1419-1423. Wang Yong,Wu Aixiang,Wang Hongjiang,et al.Influence mechanism of flocculent dosage on tailings thickening[J].Journal of University of Science and Technology Beijing,2013,35(11):1419-1423.
[76] Coe H S,Clevenger G H.Methods for determining the capacities of slime settling tanks[J].Transactions AIME,1916,55:356-384.
[77] Kynch G J.A theory of sedimentation[J].Transactions of the Faraday Society,1952,48:166-176.
[78]Fitch B.Sedimentation process fundamentals[J].Transactions AIME,1962,223:129-137.
[79] Tory E M,Shannon P T.Reappraisal of concept of settling in compression:Settling behavior and concentration profiles for initially concentrated calcium carbonate slurries[J].Industrial & Engineering Chemistry Fundamentals,1965,4(2):194-204.
[80] Landman K A,White L R,Buscall R.The continuous-flow gravity thickener:steady state behavior[J].AIChE Journal,1988,34(2):239-252.
[81] Usher S P,Spehar R,Scales P J.Theoretical analysis of aggregate densification:impact on thickener performance[J].Chemical Engineering Journal,2009,151(1):202-208.
[82] Gladman B R,Rudman M,Scales P J.The effect of shear on gravity thickening:pilot scale modelling[J].Chemical Engineering Science,2010,65(14):4293-4301.
[83] Gladman B R,Rudman M,Scales P J.Experimental validation of a 1-D continuous thickening model using a pilot column[J].Chemical Engineering Science,2010,65(13):3937-3946.
[84] 王 衛(wèi),劉叢生.深錐濃密機(jī)槽體高度計(jì)算方法的研究[J].黃金,2013(7):44-47. Wang Wei,Liu Congsheng.Research on the calculation method of tank height of deep-cone thickener[J].Gold,2013(7):44-47.
[85] 王 勇,吳愛祥,王洪江,等.深錐濃密機(jī)體積確定方法及其應(yīng)用[J].中國礦業(yè)大學(xué)學(xué)報(bào),2013(1):45-49. Wang Yong,Wu Aixiang,Wang Hongjiang,et al.A method to determine deep cone thickener volume and its application [J].Journal of China University of Mining & Technology,2013(1):45-49.
[86] 吳愛祥,焦華喆,王洪江,等.深錐濃密機(jī)攪拌刮泥耙扭矩力學(xué)模型[J].中南大學(xué)學(xué)報(bào):自然科學(xué)版,2012( 4):1469-1474. Wu Aixiang,Jiao Huazhe,Wang Hongjiang,et al.Mechanical model of scraper rake torque in deep-cone thickener[J].Journal of Central South University:Science and Technology,2012(4):1469-1474.
[87] 李 輝,王洪江,吳愛祥,等.基于尾砂沉降與流變特性的深錐濃密機(jī)壓耙分析[J].北京科技大學(xué)學(xué)報(bào),2013(12):1553-1558. Li Hui,Wang Hongjiang,Wu Aixiang,et al.Pressure rake analysis of deep cone thickeners based on tailings settlement and rheological characteristics[J].Journal of University of Science and Technology Beijing,2013(12):1553-1558.
[88] 于 發(fā),曹沛萍.梅山尾礦濃縮輸送試驗(yàn)研究與優(yōu)化改造[J].梅山科技,2007(4):55-58. Yu Fa,Cao Peiping.Experimental study on tailings thickening delivery and its optimization reconstruction at Meishan[J].Meishan Science and Technology,2007(4):55-58.
(責(zé)任編輯 石海林)
DevelopmentProgressandTrendofWhole-TailingsParticles'MigrationBehaviorduringPreparationofWhole-TailingsPaste
Ruan Zhuen1,2Li Cuiping1,2Zhong Yuan1,2
(1.SchoolofCivil&EnvironmentalEngineering,UniversityofScience&TechnologyBeijing,Beijing100083,China;2.MinistryofEducationKeyLaboratoryofHighEfficiencyMining&SafetyforMetalMines,Beijing100083,China)
The large bulk key metallic mineral resources in China is in a low average grade.Coupled with sustainable growth in demand of mineral resources and constant pursuit for comprehensive utilization ratio of resources in recent years,tailing particles become more and more fine and tailing emissions continue to be grown.As a result,tailing has become a major hazard source of metal mines in our country.Currently,the disposal of whole-tailings basically includes over-ground stockpiling at lower concentration and underground filling.However,there are many problems in preparation and delivery of tailings in lower tailings concentration.With the consideration of safe production and environmental protection,pasty tailings stockpiling and whole-tailing paste filling will be the most effective and promising methods.Due to the low sedimentation velocity and poor permeability of whole-tailing with ultrafine particle,dewatering and thickening become difficult.So dewatering and thickening rapidly for whole-tailings with ultrafine particles is the key technology for preparation of whole-tailings paste.The development status of whole-tailings particles' migration behavior during whole-tailings paste preparation is outlined,including whole-tailings particle sedimentation,flocculation sedimentation,particle migration as well as sedimentation mechanism.Finally,the problems in and trend of development are analyzed.
Preparation of whole tailings paste,Particle sedimentation,F(xiàn)locculation sedimentation,Sedimentation mechanism,Particle migration
2014-09-11
國家自然科學(xué)基金項(xiàng)目(編號(hào):51174032),教育部新世紀(jì)優(yōu)秀人才支持計(jì)劃項(xiàng)目(編號(hào):NCET-10-0225),中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(編號(hào):FRF-TP-09-001A)。
阮竹恩(1989—),男,碩士研究生。
TD926.4
A
1001-1250(2014)-12-013-07