• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      矩陣方程的約束Hermitian最小二乘解

      2014-08-28 13:33:23王方圓許洲慧查秀秀
      關(guān)鍵詞:教學(xué)部方圓聊城市

      王方圓,李 瑩,許洲慧,查秀秀

      (1.聊城大學(xué)數(shù)學(xué)科學(xué)學(xué)院,山東聊城 252000;2.聊城市技師學(xué)院基礎(chǔ)教學(xué)部,山東聊城 252000)

      王方圓1,李 瑩1,許洲慧2,查秀秀1

      (1.聊城大學(xué)數(shù)學(xué)科學(xué)學(xué)院,山東聊城 252000;2.聊城市技師學(xué)院基礎(chǔ)教學(xué)部,山東聊城 252000)

      矩陣函數(shù);矩陣方程;秩;慣性指數(shù);最小二乘解

      1 預(yù)備知識(shí)

      引理2[10]設(shè)A∈Cm×n,B∈Cm×k,C∈Cl×n。則:

      由引理2可得到以下秩公式:

      引理3[11]設(shè)A∈Cm×n,B∈Cm×k,C∈Cl×n。則有:

      引理4[12]設(shè)A∈Cm×n,B∈Cm×k,C∈Cl×n。若R(AQ)=R(A),R((PA)*)=R(A*)。則:

      b)[12]設(shè)A,B,C,D,P與Q使得矩陣表達(dá)式D-CP+AQ+B有意義。則有:

      引理7[13]給定A∈Cm×n,B∈Cn×p與C∈Cm×p,設(shè)X∈Cn×n為變量矩陣,假設(shè)矩陣方程AXB=C相容,則下列各項(xiàng)等價(jià)。

      a)矩陣方程AXB=C存在Hermitian解;

      c)矩陣方程AYB=C與B*YA*=C*有公共解Y。

      X=A+B(A+)*+FAV+V*FA,

      其中V∈Cn×n為任意矩陣。

      2 約束Hermitian最小二乘解

      由文獻(xiàn)[6]知A1XB1=C1的Hermitian最小二乘解的通解表達(dá)式為

      (1)

      (2)

      式(2)是一個(gè)關(guān)于3個(gè)變量U1,U2與U3的線性Hermitian矩陣函數(shù),將其表示為

      (3)

      (4)

      對(duì)式(3)應(yīng)用引理9可得:

      (5)

      (6)

      (7)

      證明在式(4)的條件下,對(duì)式(3)應(yīng)用引理9得:

      (8)

      利用矩陣的初等變換可得:

      (9)

      (10)

      利用引理2—引理6及引理9計(jì)算得:

      (11)

      r(A1)-r(B1)=r(M2)-2r(A1)-2r(B1),

      (12)

      2r(A1)-r(B1)=r(N1)-3r(A1)-r(B1),

      (13)

      r(A1)-2r(B1)=r(N2)-2r(A1)-3r(B1),

      (14)

      (15)

      將式(9)—式(15)分別代入式(8)即得式(5)—式(7)。

      利用以上秩與慣性指數(shù)極值與引理1即得如下結(jié)論。

      定理2矩陣A1,B1,C1,A2,C2如定理1所述,記M1,M2,N1,N2,M,G,N為定理1所定義。則

      i+(N)=2r(A1)+2r(B1)+m2。

      i-(N)=2r(A1)+2r(B1)+m2。

      特別的,在定理2中,當(dāng)A2=Im2時(shí)有如下推論。

      推論1矩陣A1,B1,C1如定理1所述。M3,N3如下定義:

      則: a)A1XB1=C1存在滿足X

      b)A1XB1=C1存在滿足X>C2的Hermitian最小二乘解當(dāng)且僅當(dāng)i-(N3)=2r(A1)+2r(B1)+m2;

      c)A1XB1=C1存在滿足X≤C2的Hermitian最小二乘解當(dāng)且僅當(dāng)r(M3)=i+(N3)-m2;

      d)A1XB1=C1存在滿足X≥C2的Hermitian最小二乘解當(dāng)且僅當(dāng)r(M3)=i-(N3)-m2。

      如果在定理1中有A2=Im2,C2=0,則可得到矩陣方程A1XB1=C1存在(半)正(負(fù))定Hermitian最小二乘解的等價(jià)條件如下。

      推論2矩陣A1,B1,C1如定理1所述。M4,N4如下定義:

      則: a)方程A1XB1=C1存在負(fù)定Hermitian最小二乘解當(dāng)且僅當(dāng)i+(N4)=2r(A1)+2r(B1)+m2;

      b)方程A1XB1=C1存在正定Hermitian最小二乘解當(dāng)且僅當(dāng)i-(N4)=2r(A1)+2r(B1)+m2;

      c)方程A1XB1=C1存在半負(fù)定Hermitian最小二乘解當(dāng)且僅當(dāng)r(M4)=i+(N4)-m2;

      d)方程A1XB1=C1存在半正定Hermitian最小二乘解當(dāng)且僅當(dāng)r(M4)=i-(N4)-m2。

      /

      [1] XIE X.A new matrix in control theory[A].IEEE CDC[C].[S.l.]:[s.n.],1985.539-541.

      [2] 張國(guó)山,張慶靈,趙植武.矩陣束A+BKC的最小秩及其應(yīng)用[J].控制與決策,1998,13(sup):508-511. ZHANG Guoshan,ZHANG Qingling,ZHAO Zhiwu.The minimum rank of the matrix pencilA+BKCand its applications[J].Control and Decision,1998,13(sup):508-511.

      [3] 朱建棟.通過輸出反饋使廣義系統(tǒng)變?yōu)闊o脈沖模系統(tǒng)的一種新方法[J].山東大學(xué)學(xué)報(bào)(自然科學(xué)版),2001,36(3):247-250. ZHU Jiandong.A new method to make descriptor systems regular and impulsive-free by output feedback[J].Journal of Shandong University (Natural Sciences),2001,36(3):247-250.

      [4] WANG D H,XIE Xukai.Elimination of impulsive modes by output feedback in descriptor systems[J].Control Theory and Applications,1995,12(3):371-376.

      [5] HUA D,LANCASTER P.Linear matrix equations from an inverse problem of vibration theory[J].Linear Algebra and Its Applications,1996,246:31-47.

      [6] LI Ying, GAO Yan,GUO Wenbin.A Hermitian least squares solution of the matrix equationAXB=Csubject to inequality restrictions[J].Computers and Mathematics with Applications,2012,64(6):1752-1760.

      [7] TIAN Yongge,WANG Hongxing.Relations between least-squares and least-rank solutions of the matrix equationAXB=C[J].Applied Mathematics and Computation,2013,219(20):10293-10301.

      [8] LIU Yonghui,TIAN Yongge,TAKANE Y.Ranks of Hermitian and skew-Hermition solutions to the matrix equationAXA*=B[J].Linear Algebra and Its Applications,2009,431(12):2359-2372.

      [9] TIAN Y.Equalities and inequalities for inertias of Hermitian matrices with applications[J].Linear Algebra Apple,2010,433(1):263-296.

      [10] MARSAGLIA G,STYAN G P H.Equalities and inequalities for ranks of matrices[J].Linear and Multilinear Algebra,1974(2):269-292.

      [11] KHATSKEVICH V A,OSTROVSKII M I ,SHULMAN V S.Quadratic inequalities for Hilbert space operators[J].Integral Equations and Operator Theory,2007,59(1):19-34.

      [12] TIAN Yongge.Rank equalities related to generalized inverses of matrices and their applications[J].Master Thesis,2000,30(3):245-256.

      [13] TIAN Yongge.Maximization and minimization of the rank and inertia of the Hermitian matrix expressionA-BX-(BX)*with applications[J].Linear Algebra and Its Applications,2011,434(10):2109-2139.

      [14] BJERHAMMAR A.Rectangular reciprocal matrices with special reference to geodetic calculations[J]. Bulletin Geodesique,1951,20(1):188-220.

      [15] GROB J.Nonnegative-definite and positive-definite solution to matrix equationAXA*=B-revisited[J].Linear Algebra and Its Applications,2000,321(1/2/3):123-129.

      WANG Fangyuan1, LI Ying1, XU Zhouhui2, CHA Xiuxiu1

      (1.School of Mathematical Sciences,Liaocheng University,Liaocheng Shandong 252000,China;2.Department of Foundation Education,Technician College of Liaocheng City,Liaocheng Shandong 252000,China)

      matrix function; matrix equation; rank; inertia; least-squares solution

      2014-03-28;

      2014-04-24;責(zé)任編輯:張 軍

      國(guó)家自然科學(xué)基金(11301247)

      王方圓(1987-),女,河南許昌人,碩士研究生,主要從事線性系統(tǒng)理論方面的研究。

      李 瑩副教授。 E-mail:liyingld@163.com

      1008-1542(2014)06-0529-09

      10.7535/hbkd.2014yx06007

      O151.21MSC(2010)主題分類15A60

      A

      猜你喜歡
      教學(xué)部方圓聊城市
      十月打了霜
      幼兒100(2022年42期)2022-11-24 06:55:10
      大禹治水
      幼兒100(2022年18期)2022-05-18 07:10:04
      撞不周山
      幼兒100(2021年34期)2021-12-06 03:24:20
      聊城市召開2021年度部門聯(lián)合“雙隨機(jī)、一公開”監(jiān)管聯(lián)席會(huì)議
      山東省聊城市老年大學(xué)校歌
      聊城市夏秋季大氣VOCs特征及OFP分析
      公共教學(xué)部
      Factors Affecting Memory Efficiency in EFL
      On the Importance of English Vocabulary
      On Memory Theory in English Vocabulary Learning
      宁夏| 桑日县| 左贡县| 集贤县| 武川县| 望都县| 永昌县| 尼玛县| 桐城市| 毕节市| 平利县| 库车县| 岢岚县| 太仆寺旗| 古田县| 林州市| 科尔| 泸水县| 张家口市| 通州区| 丰台区| 乌鲁木齐市| 漳平市| 平江县| 开远市| 光泽县| 崇阳县| 香河县| 资溪县| 静乐县| 马鞍山市| 工布江达县| 镇宁| 宣恩县| 南漳县| 仙桃市| 乌拉特中旗| 涟水县| 文水县| 玉田县| 澳门|