孫阿龍等
摘要設(shè)計了一種兩極隔離式雙極電極電化學(xué)發(fā)光裝置,并以此裝置為基礎(chǔ),研究了電化學(xué)發(fā)光試劑魯米諾在此裝置中的電化學(xué)發(fā)光行為和分析特性。通過外加電場的誘導(dǎo),可以在雙極電極的兩極富集、分離對應(yīng)的陰、陽離子,使魯米諾陰離子富集于雙極電極的陽極端,待檢測的陽離子富集于雙極電極陰極端。根據(jù)魯米諾在陽極端的電化學(xué)發(fā)光信號定量分析陰極端所富集的陽離子的總量。\[15、16\]。其中非空間隔離式結(jié)構(gòu)的雙極電極的理論研究和應(yīng)用特別廣泛\[15\]。 Crooks等將非隔離式雙極電極與微流控技術(shù)結(jié)合,研究人員發(fā)展了雙極電極電化學(xué)發(fā)光化學(xué)\[8~14\]、生物傳感\[17\],分析物分離富集\[18~24\]等方法,極大拓寬了雙極電極的理論研究和分析應(yīng)用范圍\[15\]。
Zhang等系統(tǒng)研究了兩極空間隔離式雙極電極的電化學(xué)理論和分析特性\[16,25\],成功研制了兩極隔離式雙極納米、微米電極\[16\],研究了此類雙極電極的電化學(xué)傳感和超微空間傳感特性,極大拓展了兩極隔離式雙極電極的發(fā)展空間和應(yīng)用范圍。但是有關(guān)兩極隔離式雙極電極的電化學(xué)發(fā)光特性尚未見文獻(xiàn)報道。
本研究設(shè)計了一種兩極隔離式雙極電極電化學(xué)發(fā)光裝置,并以此裝置為基礎(chǔ),研究了兩極隔離式雙極電極在魯米諾電化學(xué)發(fā)光體系中電化學(xué)發(fā)光行為和分析特性。本方法具有如下的優(yōu)點:(1)與微流控雙極電極電化學(xué)發(fā)光裝置相比,本裝置具有設(shè)計簡單、便宜、易于加工的特點;(2)雙極電極的陽極端和陰極端被分隔在不同的電解室,分析物的富集、分離介質(zhì)和電化學(xué)發(fā)光傳感反應(yīng)的介質(zhì)可以完全依據(jù)各自反應(yīng)的要求、方便選擇,彼此沒有干擾,為優(yōu)化體系的分析特性和拓寬應(yīng)用范圍奠定了基礎(chǔ);(3)在此體系中,兩極分處不同空間,彼此隔開。因此,發(fā)生在經(jīng)典微流控雙電極體系中的電滲流等液體流動對雙極端的“擾動效應(yīng)”等可降低或消除,增強了體系分析信號的穩(wěn)定性和重現(xiàn)性。
2實驗部分
2.1儀器與試劑
MPIA型電泳電化學(xué)發(fā)光檢測儀(西安瑞邁公司);兩根鉑絲(驅(qū)動電極);自制隔離式雙極電極,1.5 mL離心管(驅(qū)動電極的電解池);內(nèi)徑0.5 mm的聚四氟乙烯管;25×25 稱量瓶(發(fā)光池); DDS11A型數(shù)字電導(dǎo)率儀(上海雷磁創(chuàng)益儀器儀表有限公司)。
魯米諾(美國Sigma公司);NaH2PO4Na2HPO4緩沖液(PBS, pH 7.4)。實驗所用試劑均為分析純。實驗用水為超純水。
2.2兩極隔離式雙極電極的制備
截取長約4 cm玻璃管,將長1 cm、直徑0.5 mm的鉑絲裝進(jìn)玻璃管(一半在玻璃管內(nèi)部,一半在玻璃管外部),將其放置在酒精噴燈上灼燒,直至玻璃管與鉑絲完全密封。
2.3測量方法
3結(jié)果與討論
3.1隔離式雙極電極電化學(xué)發(fā)光裝置的設(shè)計
隔離式雙極電極電化學(xué)發(fā)光裝置的設(shè)計如圖1所示。在陽極池和連接管a中注入分析物溶液,在陰極池、連接管b和發(fā)光池中裝入魯米諾溶液,將兩極隔離式雙極電極垂直插入發(fā)光池中。當(dāng)有一定的驅(qū)動電壓施加于驅(qū)動電極兩端時,在雙極電極附近將會產(chǎn)生一個電勢梯度,這個電勢梯度會導(dǎo)致陰、陽離子在雙極電極的兩極富集\[26\]。同時,當(dāng)施加的驅(qū)動電壓足夠大時,還會誘導(dǎo)雙極電極表面的法拉第電化學(xué)過程。富集于雙極電極陽極端的魯米諾就會產(chǎn)生電化學(xué)發(fā)光信號,從而傳感陰極端富集的陽離子?;诖搜b置的電化學(xué)發(fā)光信號可定量分析檢測水中雜質(zhì)離子的總量。
3.2雙極電極陽極端氧化魯米諾的電化學(xué)發(fā)光特性研究
為驗證上述裝置的預(yù)設(shè)功能,以魯米諾為電化學(xué)發(fā)光傳感試劑, 以低濃度且組成較為復(fù)雜的PBS緩沖溶液為分析物。當(dāng)向驅(qū)動電極施加足夠高的脈沖式電壓激發(fā)信號時,插入發(fā)光池中的雙極電極陽極端將產(chǎn)生強烈的發(fā)光信號,且當(dāng)脈沖電壓信號的施加時間為3 s、檢測電化學(xué)發(fā)光信號的時間為40 s時,可產(chǎn)生良好的峰型電化學(xué)發(fā)光信號,其發(fā)光動力學(xué)曲線如圖2所示。更為重要的是,當(dāng)連續(xù)脈沖信號施加時,相應(yīng)的電化學(xué)發(fā)光信號會持續(xù)增強,而當(dāng)分析物中不含電解質(zhì)溶液時,體系所產(chǎn)生電化學(xué)發(fā)光信號弱,且增強緩慢。因此,這一電化學(xué)發(fā)光信號可用于定量分析溶液中電解質(zhì)的總量。
為了使魯米諾的電化學(xué)發(fā)光信號具有較好的重現(xiàn)性和穩(wěn)定性,研究了各種實驗條件(如電極在電解池和發(fā)光池中的位置等)對魯米諾電化學(xué)發(fā)光行為的影響。結(jié)果表明,當(dāng)陰極池和陽極池中鉑電極的位置、連接管在陰極池和陽極池中位置、雙極電極的位置等均需保持穩(wěn)定不變時,魯米諾的電化學(xué)發(fā)光信號具有良好的重現(xiàn)性(圖3),相對標(biāo)準(zhǔn)偏差為1.6%。
3.5發(fā)光池中支持電解質(zhì)對雙極電極體系中魯米諾的ECL的影響
在本研究中,雙極電極陽極端的電化學(xué)發(fā)光強度與其富集的魯米諾有關(guān),當(dāng)發(fā)光池中有其它電解質(zhì)存在時,必然導(dǎo)致富集的魯米諾減少,從而使雙極電極陽極端電化學(xué)發(fā)光強度降低。在發(fā)光池中加入支持電解質(zhì)KCl溶液,魯米諾的電化學(xué)發(fā)光強度
隨KCl溶液濃度增加而降低,這可能是由于隨著Cl
Symbolm@@ 的加入,雙極電極陽極端富集的陰離子將產(chǎn)生競爭效應(yīng),使富集的魯米諾陰離子減少,電化學(xué)發(fā)光強度降低。
3.6電化學(xué)發(fā)光分析特性
在最佳實驗條件下,研究了魯米諾電化學(xué)發(fā)光信號與水溶液中雜質(zhì)離子濃度(以PBS溶液為代表)的關(guān)系(圖5)。
3.7兩極隔離式雙極電極上魯米諾電化學(xué)發(fā)光體系可能的發(fā)光機理
當(dāng)施加脈沖電壓時,兩極隔離式雙極電極通過溶液使整個回路暢通,此時,[TS(]圖6電化學(xué)發(fā)光傳感電導(dǎo)原理
此外,雙極電極的陰、陽兩極富集的陽陰離子需保持電荷平衡狀態(tài)\[28\],樣品中陽離子濃度越大,陽極富集的魯米諾越多,發(fā)生氧化的魯米諾就越多,產(chǎn)生的電化學(xué)發(fā)光信號越強;因此,體系中魯米諾的ECL強度與雙極電極陰極端富集的陽離子總量有關(guān),因此,可根據(jù)發(fā)光信號定量分析溶液中的陽離子總量。
4結(jié)論
設(shè)計的兩極隔離式雙極電極電化學(xué)發(fā)光裝置可廣泛應(yīng)用于分離富集領(lǐng)域;與已知的非隔離式雙極電極電化學(xué)發(fā)光裝置相比,此裝置具有將分離、富集與電化學(xué)傳感集于一體的特點,拓寬了電化學(xué)發(fā)光檢測法的應(yīng)用范圍。
References
1Ghoroghchian J, Pons S, Fleischmann M J. Electroanal. Chem., 1991, 317(12): 101-108
2Bradley J C, Chen H M, Crawford J, Eckert J, Ernazarova K, Kurzeja T, Lin M D, McGee M, Nadler W, Stephens S G. Nature, 1997, 389(6648): 268-271
3Wang Y, Hernandez R M, Bartlett D J, Bingham J M, Kline T R, Sen A, Mallouk T E. Langmuir, 2006, 22(25): 10451-10456
4Ulrich C, Andersson O, Nyholm L, Bjoerefors F. Angew. Chem. Int. Ed, 2008, 47(16): 3034-3036
5Warakulwit C, Nguyen T, Majimel J, Delville M H, Lapeyre V, Garrigue P, Ravaine V, Limtrakul J, Kuhn A. Nano Lett., 2008, 8(2): 500-504
6Ulrich C, Andersson O, Nyholm , Bjoerefors F. Anal. Chem., 2009, 81(1): 453-459
7Ishiguro Y, Inagi S, Fuchigami T. Langmuir, 2011, 27(11): 7158-7162
8Arora A, Eijkel J C T, Morf W E, Manz A. Anal. Chem., 2001, 73(14): 3282-3288
9Zhan W, Alvarez J, Crooks R M. J. Am. Chem. Soc., 2002, 124(44): 13265-13270
10Chow K F, Mavre F, Crooks R M. J. Am. Chem. Soc., 2008, 130(24): 7544-7545
11Wu M S, Qian G S, Xu J J, Chen H Y. Anal. Chem., 2012, 84(12): 5407-5414
12Chow K F, Chang B Y, Zaccheo B A, Mavre F, Crooks R M. J. Am. Chem. Soc., 2010, 132(27): 9228-9229
13Wu M S, Xu B Y, Shi H W, Xu J J, Chen H Y. Lab Chip, 2011, 11(16): 2720-2724
14Chang B Y, Chow K F, Crooks J A, Mavre F, Crooks R M. Analyst, 2012, 137(12): 2827-2833
15Mavre F, Anand R K, Laws D R, Chow K F, Chang B Y, Crooks J A, Crooks R M. Anal. Chem., 2010, 82(21): 8766-8774
16Guerrette J P, Oja S M, Zhang B. Anal. Chem., 2012, 84(3): 1609-1616
17Adams K L, Puchades M, Ewing A G. Annu. Rev. Anal. Chem., 2008, 1: 329-355
18Hlushkou D, Perdue R K, Dhopeshwarkar R, Crooks R M, Tallarek U. Lab Chip, 2009, 9(13): 1903-1913
19Laws D R, Hlushkou D, Perdue R K, Tallarek U, Crooks R M. Anal. Chem., 2009, 81(21): 8923-8929
20Perdue R K, Laws D R, Hlushkou D, Tallarek U, Crooks R M. Anal. Chem., 2009, 81(24): 10149-10155
21Anand R K, Sheridan E, Hlushkou D, Tallarek U, Crooks R M. Lab Chip, 2011, 11(3): 518-527
22Anand R K, Sheridan E, Knust K N, Crooks R M. Anal. Chem., 2011, 83(6): 2351-2358
23Sheridan E, Hlushkou D, Anand R K, Laws D R, Tallarek U, Crooks R M. Anal. Chem., 2011, 83(6): 6746-6753
24Sheridan E, Knust K N, Crooks R M. Analyst, 2011, 136(20): 4134-4137
25Cox J T, Guerrette J P, Zhang B. Anal. Chem., 2012, 84(20): 8797-8804
26Dhopeshwarkar R, Hlushkou D, Nguyen M, Tallarek U, Crooks R M. J. Am. Chem. Soc., 2008, 130(32): 10480-10481
27GUO ZiCheng. The Second Volume of Physical Chemistry. Beijing: Chemical Industry Press, 2013: 7-11
郭子成. 物理化學(xué)(下冊), 北京: 化學(xué)工業(yè)出版社, 2013: 7-11
28Mavre F, Chow K F, Sheridan E, Chang B Y, Crooks J A, Crooks R M. Anal. Chem., 2009, 81(15): 6218-6225
AbstractA new closed bipolar electrode electrochemiluminescence (ECL)based device was designed, and further used to investigate the ECL behaviors of luminol in this device. Our results showed that, while a suitable voltage was applied to the two poles of the closed bipolar electrode, both the positively charged ions and luminolbased anionic ions could be enriched on the two poles of the closed bipolar electrode, respectively. More importantly, the ECL signals, generated from the electrooxidation of luminol on anodic pole, were found to be related to the total amount of positively charged ions on the cathodic pole of the closed bipolar electrode. Under the optimum experimental conditions, the ECL response was linearly to the concentration of analyte in the range of 1.0×10
Based on this finding, a new ECL method for sensing the solution conductance was developed.
KeywordsElectrochemiluminescnce; Closed bipolar electrode; Luminol; Solution conductance
25Cox J T, Guerrette J P, Zhang B. Anal. Chem., 2012, 84(20): 8797-8804
26Dhopeshwarkar R, Hlushkou D, Nguyen M, Tallarek U, Crooks R M. J. Am. Chem. Soc., 2008, 130(32): 10480-10481
27GUO ZiCheng. The Second Volume of Physical Chemistry. Beijing: Chemical Industry Press, 2013: 7-11
郭子成. 物理化學(xué)(下冊), 北京: 化學(xué)工業(yè)出版社, 2013: 7-11
28Mavre F, Chow K F, Sheridan E, Chang B Y, Crooks J A, Crooks R M. Anal. Chem., 2009, 81(15): 6218-6225
AbstractA new closed bipolar electrode electrochemiluminescence (ECL)based device was designed, and further used to investigate the ECL behaviors of luminol in this device. Our results showed that, while a suitable voltage was applied to the two poles of the closed bipolar electrode, both the positively charged ions and luminolbased anionic ions could be enriched on the two poles of the closed bipolar electrode, respectively. More importantly, the ECL signals, generated from the electrooxidation of luminol on anodic pole, were found to be related to the total amount of positively charged ions on the cathodic pole of the closed bipolar electrode. Under the optimum experimental conditions, the ECL response was linearly to the concentration of analyte in the range of 1.0×10
Based on this finding, a new ECL method for sensing the solution conductance was developed.
KeywordsElectrochemiluminescnce; Closed bipolar electrode; Luminol; Solution conductance
25Cox J T, Guerrette J P, Zhang B. Anal. Chem., 2012, 84(20): 8797-8804
26Dhopeshwarkar R, Hlushkou D, Nguyen M, Tallarek U, Crooks R M. J. Am. Chem. Soc., 2008, 130(32): 10480-10481
27GUO ZiCheng. The Second Volume of Physical Chemistry. Beijing: Chemical Industry Press, 2013: 7-11
郭子成. 物理化學(xué)(下冊), 北京: 化學(xué)工業(yè)出版社, 2013: 7-11
28Mavre F, Chow K F, Sheridan E, Chang B Y, Crooks J A, Crooks R M. Anal. Chem., 2009, 81(15): 6218-6225
AbstractA new closed bipolar electrode electrochemiluminescence (ECL)based device was designed, and further used to investigate the ECL behaviors of luminol in this device. Our results showed that, while a suitable voltage was applied to the two poles of the closed bipolar electrode, both the positively charged ions and luminolbased anionic ions could be enriched on the two poles of the closed bipolar electrode, respectively. More importantly, the ECL signals, generated from the electrooxidation of luminol on anodic pole, were found to be related to the total amount of positively charged ions on the cathodic pole of the closed bipolar electrode. Under the optimum experimental conditions, the ECL response was linearly to the concentration of analyte in the range of 1.0×10
Based on this finding, a new ECL method for sensing the solution conductance was developed.
KeywordsElectrochemiluminescnce; Closed bipolar electrode; Luminol; Solution conductance