吳 德 卓 勇 呂 剛 徐盛玉 林 燕車煉強 方正鋒 李 勇
(1.四川農(nóng)業(yè)大學(xué)動物營養(yǎng)研究所,雅安 625014;2.動物抗病營養(yǎng)教育部重點實驗室,雅安 625014;3.通威股份有限公司,成都 610000;4.廣西商大科技有限公司,南寧 530021)
母豬的繁殖活動是一項具有典型周期循環(huán)的系統(tǒng)工程,適時啟動發(fā)情周期是這項工程的樞紐。據(jù)報道,規(guī)模化豬場后備母豬不發(fā)情或發(fā)情推遲的比例達(dá)20% ~30%[1]。同時,因情期啟動失敗導(dǎo)致經(jīng)產(chǎn)母豬淘汰的比例高達(dá)30% ~40%,50%的母豬僅提供30~40頭斷奶仔豬就被淘汰[2-4]。雌性動物的情期啟動受復(fù)雜的神經(jīng)-內(nèi)分泌系統(tǒng)調(diào)控,情期啟動體現(xiàn)在3個層面[5]:1)下丘腦促性腺激素釋放激素(gonadotropin-releasing hormone,GnRH)神經(jīng)元脈沖分泌;2)垂體腺在GnRH刺激下脈沖分泌促卵泡素(follicle-stimulating hormone,F(xiàn)SH)和促黃體素(luteinizing hormone,LH);3)性腺軸接收來自FSH和LH的脈沖信號,刺激排卵,由卵巢分泌的性腺激素(雌二醇)對下丘腦GnRH神經(jīng)元進(jìn)行正、負(fù)反饋調(diào)控。作為動物情期啟動的關(guān)鍵因素,GnRH的分泌調(diào)控是深入揭示動物情期啟動奧秘的關(guān)鍵組成部分。營養(yǎng)是動物繁殖活動的物質(zhì)基礎(chǔ),但營養(yǎng)代謝信號并不直接作用于GnRH神經(jīng)元,這表明下丘腦存在介導(dǎo)營養(yǎng)調(diào)控GnRH分泌的中間信號途徑。Kisspeptin(最初名為metastin)是由Kiss-1基因編碼的神經(jīng)內(nèi)分泌肽類激素,由Kisspeptin神經(jīng)元分泌,為G蛋白偶聯(lián)受體54(GPR54)的內(nèi)源性配體[9]。大量研究揭示,由下丘腦Kiss-1基因編碼的蛋白質(zhì)Kisspeptin,與其受體GRP54結(jié)合啟動的信號途徑是下丘腦GnRH脈沖分泌的關(guān)鍵信號[6-33]。下丘腦Kisspeptin神經(jīng)元表達(dá)營養(yǎng)代謝信號如胰島素(insulin)、瘦素(leptin)、胰島素樣生長因子-1(insulin like growth factor-1,IGF-1)的 受 體[28],表 明Kisspeptin神經(jīng)元是營養(yǎng)調(diào)控動物情期啟動及卵泡發(fā)育的關(guān)鍵組成部分。
營養(yǎng)調(diào)控母豬情期啟動主要有2種代謝途徑:1)營養(yǎng)改變激素分泌(如瘦素、胰島素、胰島素樣生長因子),調(diào)控情期啟動;2)營養(yǎng)改變血液代謝底物(metabolites)濃度,參與情期啟動調(diào)控。因此,本文重點討論營養(yǎng)調(diào)控母豬情期啟動的理論假設(shè)及分子機制。
總結(jié)前人研究,營養(yǎng)調(diào)控后備母豬情期啟動主要存在2種理論假設(shè)。
理論假設(shè)一:組織器官發(fā)育理論假說。母豬各組織和器官發(fā)育到一定閾值后才能啟動情期(圖1)。該理論認(rèn)為母豬體重和體組成是營養(yǎng)累積的綜合效應(yīng),后備母豬在達(dá)到最低閾值的體重或者體組成之后才能啟動情期。“最低脂肪假說”提出雌性動物只有沉積一定比例的脂肪才會進(jìn)入青春期[34]。研究發(fā)現(xiàn),瘦肉組織沉積對后備母豬情期啟動亦非常重要[35-37]。Oury 等[38]證實骨骼處于合成代謝時性腺才能正常發(fā)育。依據(jù)此理論假設(shè),下丘腦存在響應(yīng)外周組織發(fā)育信號的組織和細(xì)胞,當(dāng)機體組織的生長和發(fā)育達(dá)到一定標(biāo)準(zhǔn)后,觸發(fā)下丘腦中Kisspeptin表達(dá)和GnRH、LH脈沖分泌,動物由生長轉(zhuǎn)向繁殖。
圖1 組織器官發(fā)育與情期啟動Fig.1 Tissue organ development and estrus onset
理論假設(shè)二:雌激素回饋理論(gonadostat hypothesis)(圖2)。生長期體組織尚未發(fā)育完善時,雌激素主要通過下丘腦弓狀核(arcuate nucleus,ARC)區(qū)域Kisspeptin神經(jīng)元產(chǎn)生負(fù)反饋效應(yīng),抑制性腺發(fā)育,防止早熟;當(dāng)體組織發(fā)育完善時,雌激素通過下丘腦前腹側(cè)室旁核(anteroventral periventricular nucleus,AVPV)Kisspeptin 神經(jīng)元產(chǎn)生正反饋效應(yīng),動物啟動情期,加速卵泡發(fā)育[39],雌激素回饋理論是確保動物體成熟和性成熟同步性的關(guān)鍵。下丘腦ARC是營養(yǎng)代謝信號作用靶點,生長期動物血液中營養(yǎng)代謝因子刺激ARC區(qū)域Kisspeptin的分泌,以保證對雌激素的負(fù)反饋抑制;當(dāng)動物體組織逐漸發(fā)育完善,營養(yǎng)儲備足夠時,雌激素負(fù)反饋抑制減弱,正反饋作用加強,動物性腺加速發(fā)育并啟動情期。
圖2 雌激素回饋理論與情期啟動Fig.2 Estrogen feedback hypothesis and estrus onset
2.1.1 能量負(fù)平衡
能量負(fù)平衡導(dǎo)致后備母豬發(fā)情推遲甚至乏情。Zhou等[40]將已有2個正常發(fā)情周期的長大二雜后備母豬分別飼喂1.00和2.86 kg/d飼糧,連續(xù)限飼4個發(fā)情周期后,母豬出現(xiàn)營養(yǎng)性乏情。下丘腦 ARC和 AVPV區(qū)域上 Kiss-1、GPR54和GnRH mRNA表達(dá)量,以及垂體和卵巢上IGF-1R、FSH和LH mRNA表達(dá)量均發(fā)生了顯著變化,表明Kisspeptin/GPR54信號系統(tǒng)參與營養(yǎng)調(diào)控后備母豬情期啟動。Castellano等[41]發(fā)現(xiàn)禁食小鼠的情期啟動嚴(yán)重紊亂,血液中GnRH和LH等繁殖激素的水平下降,對小鼠中樞灌注Kisspeptin后,小鼠血液中GnRH和LH的水平顯著提高,并重新表現(xiàn)正常情期循環(huán)。繁殖系統(tǒng)處于養(yǎng)分分配末端,營養(yǎng)不足時養(yǎng)分優(yōu)先用于維持需要,并抑制繁殖活動。Owen等[42]研究了營養(yǎng)缺乏情況下繁殖活動受到抑制的分子機理,發(fā)現(xiàn)成纖維細(xì)胞生長因子21(fibroblast growth factor 21,F(xiàn)GF21)是營養(yǎng)不足情況下肝臟分泌的關(guān)鍵信號,營養(yǎng)不足時肝臟分泌的FGF21作用于視交叉上核(suprachiasmatic nucleus,SCN)神經(jīng)元,抑制 Kisspeptin分泌,推遲雌性動物的情期啟動及卵泡發(fā)育。同時,F(xiàn)GF21增加外周組織如骨骼肌、脂肪組織的胰島素敏感性,有利于機體在營養(yǎng)不足情況下優(yōu)先保證生存需要[43]。
母豬泌乳期情期循環(huán)終止,卵泡發(fā)育受到抑制,有2個方面的原因(圖3):1)Kisspeptin神經(jīng)元存在催乳素受體(PRL-R),泌乳期高濃度催乳素通過其受體抑制 Kisspeptin分泌[44],抑制下丘腦-垂體-性腺軸活性;2)泌乳母豬采食量低,泌乳量大,機體處于分解代謝,血液中瘦素、胰島素樣生長因子-1濃度降低,情期啟動和卵泡發(fā)育受阻。泌乳母豬能量負(fù)平衡導(dǎo)致實際生產(chǎn)中斷奶母豬不發(fā)情、受胎率低,增加母豬的淘汰率。有學(xué)者將泌乳期血液瘦素、胰島素等濃度恢復(fù)至正常生理水平,但是并未發(fā)現(xiàn)下丘腦Kiss-1基因表達(dá)量及卵泡發(fā)育恢復(fù)[45-46]。上述結(jié)果表明泌乳期乏情是一個復(fù)雜且多因素綜合作用的結(jié)果,只有動物機體組織恢復(fù)到“標(biāo)準(zhǔn)”體況后動物的情期啟動才能恢復(fù)。目前有關(guān)營養(yǎng)對泌乳母豬代謝狀態(tài)、雌激素正負(fù)反饋途徑、斷奶-發(fā)情分子機理的研究較少,待進(jìn)一步探索。
圖3 泌乳或營養(yǎng)限制導(dǎo)致母豬生理性乏情機制Fig.3 Mechanisms of the phvsiological anestrus of sows in lactation or nutrient restriction
動物機體發(fā)展了一套精準(zhǔn)的適應(yīng)性機制,讓下丘腦能夠準(zhǔn)確地感知外周組織的營養(yǎng)代謝狀態(tài)。能量負(fù)平衡時,外周代謝信號能夠快速、準(zhǔn)確地傳遞至下丘腦,養(yǎng)分分配轉(zhuǎn)向生存需要,繁殖軸活性抑制,說明下丘腦存在一套能量負(fù)平衡響應(yīng)機制感知并調(diào)控機體的繁殖活動(圖4)。Roland等[47]研究表明,GnRH神經(jīng)元細(xì)胞中的能量感受器腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)能夠感知細(xì)胞內(nèi)葡萄糖濃度,低葡萄糖濃度通過AMPK途徑抑制GnRH分泌。Zhang等[48]發(fā)現(xiàn)下丘腦ATP敏感型鉀離子通道可能參與機體能量負(fù)平衡對LH濃度的調(diào)控。哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)是機體廣泛表達(dá)的一種蛋白質(zhì),通過中樞雷帕霉素處理抑制mTOR活性,下丘腦ARC區(qū)域的Kiss-1基因表達(dá)量受到顯著抑制,卵巢和子宮萎縮,小鼠的初情日齡顯著推遲[49]。Altarejos等[50]通過基因敲除模型,特異性敲除下丘腦環(huán)AMP響應(yīng)元件結(jié)合蛋白-1轉(zhuǎn)錄調(diào)控因子[cyclic AMP responsive element-binding protein-1(Creb1)-regulated transcription coactivator-1,CRTC-1],阻斷下丘腦對外周代謝狀態(tài)響應(yīng)通路,發(fā)現(xiàn)小鼠表現(xiàn)出肥胖且不育。進(jìn)一步研究證實,CRTC-1對繁殖活動的調(diào)控主要依賴Kisspeptin信號途徑,當(dāng)瘦素處理增加Kiss-1基因表達(dá)量的同時,CRTC-1與Kiss-1基因啟動子區(qū)域出現(xiàn)非常緊密的結(jié)合[50]。
圖4 下丘腦能量響應(yīng)機制對動物情期啟動的影響Fig.4 Influence of hypothalamic energy sensing mechanism on estrus onset
2.1.2 能量正平衡
本課題組研究表明,后備母豬飼糧中添加脂肪,可提高血液中瘦素濃度,增強下丘腦ARC區(qū)域瘦素信號途徑,后備母豬的初情日齡提前[51]。瘦素是反映能量代謝的關(guān)鍵代謝信號,對母豬的繁殖軸存在非常廣泛的影響[52]。體外培養(yǎng)大鼠的ARC神經(jīng)元,培養(yǎng)基中添加生理水平瘦素可通過蛋白酪氨酸激酶2(janus kinase 2,JAK2)/磷酸化信號轉(zhuǎn)導(dǎo)子與激活子3(signal transducer and activator of transcription 3,STAT3)信號途徑促進(jìn)Kisspeptin表達(dá),誘導(dǎo)GnRH的體外分泌[53]。隨著瘦素對Kisspeptin信號途徑影響研究的深入,發(fā)現(xiàn)瘦素可直接作用于Kiss-1基因促進(jìn)Kisspeptin表達(dá)[54]。
過度飼喂或肥胖對會動物繁殖活動產(chǎn)生負(fù)面影響。本課題組體外培養(yǎng)下丘腦ARC神經(jīng)元后發(fā)現(xiàn)(圖5),培養(yǎng)基中瘦素濃度過高時會抑制Kiss-1基因的表達(dá)豐度。高脂飼糧誘導(dǎo)DBA/2J小鼠肥胖[55],下丘腦ARC神經(jīng)元Kiss-1的基因表達(dá)量顯著下調(diào),且小鼠表現(xiàn)出不育。目前有關(guān)肥胖對動物情期啟動的分子機理的報道較少,肥胖者血液中FGF21濃度顯著提高,因此可能通過FGF21抑制下丘腦Kisspeptin表達(dá)抑制動物的下丘腦-垂體-性腺軸活性,但該假設(shè)尚待進(jìn)一步證實。
由于遺傳選育更趨向于選擇瘦肉型豬種,后備母豬蛋白質(zhì)沉積對情期啟動更為重要。后備母豬飼喂10%蛋白質(zhì)水平組比14%蛋白質(zhì)水平組的初情日齡推遲18.7 d[56]。研究發(fā)現(xiàn),后備母豬瘦肉沉積量與初情日齡呈顯著負(fù)相關(guān)關(guān)系[57]。小鼠限制采食量40%誘導(dǎo)營養(yǎng)性乏情后,分別給予富含碳水化合物、脂肪、蛋白質(zhì)的飼糧,結(jié)果發(fā)現(xiàn)飼喂富含蛋白質(zhì)飼糧的小鼠能更快地恢復(fù)情期循環(huán)[58]。飼糧中單一氨基酸缺乏同樣導(dǎo)致情期啟動紊亂,研究發(fā)現(xiàn),某一特定的氨基酸如蘇氨酸、賴氨酸、色氨酸、蛋氨酸、纈氨酸缺乏將導(dǎo)致發(fā)情周期紊亂[59]。由于氨基酸或者蛋白質(zhì)缺乏會導(dǎo)致機體蛋白質(zhì)處于分解代謝,當(dāng)Kisspeptin神經(jīng)元感知這種分解代謝時,繁殖軸活性減低,繁殖活動受到抑制(圖6)。
圖5 瘦素信號調(diào)控下丘腦ARC區(qū)域Kisspeptin表達(dá)的機制Fig.5 Mechanism of Kisspeptin expression in ARC area regulated by leptin signal
氨基酸對動物情期啟動的影響可能通過肝臟內(nèi)分泌胰島素樣生長因子-1介導(dǎo)。肝臟是動物機體的首要代謝器官,是感知動物能量平衡和代謝狀態(tài)的第1道“門”。胰島素樣生長因子-1是肝臟在機體處于合成代謝時分泌的代謝激素,血液循環(huán)中的胰島素樣生長因子-1有70%來自肝臟。胰島素樣生長因子-1廣泛參與動物的繁殖活動,對卵泡發(fā)育、胚胎存活均表現(xiàn)出積極效果。有關(guān)胰島素樣生長因子-1對后備母豬情期啟動的研究較少,已有的研究結(jié)果表明高濃度的胰島素樣生長因子 -1與雌性動物的早熟有關(guān)[60]。Roongsitthichai等[61]對80頭后備母豬按照初情日齡進(jìn)行劃分,發(fā)現(xiàn)初情日齡早于200 d的后備母豬血液中胰島素樣生長因子-1濃度高于初情日齡晚于200 d的后備母豬[(30.2±1.2)nmol/L vs.(25.4±1.1)nmol/L,P=0.002]。在牛上的研究表明,初情日齡與18月齡時的血清胰島素樣生長因子 -1濃度呈顯著負(fù)相關(guān)關(guān)系[62]。Fortes等[63]應(yīng)用單核苷酸多態(tài)性(single nucleotide polymorphism,SNP)技術(shù),發(fā)現(xiàn)胰島素樣生長因子-1受體的SNP與動物初情日齡顯著相關(guān)。
下丘腦胰島素樣生長因子-1信號途徑直接參與雌激素正負(fù)反饋途徑對Kisspeptin神經(jīng)元的影響。通過中樞和外周灌注胰島素樣生長因子-1,6 h后小鼠AVPV區(qū)域的Kiss-1基因的表達(dá)量顯著提高。當(dāng)處理胰島素樣生長因子-1受體拮抗劑JB-1之后,胰島素樣生長因子-1對Kisspeptin神經(jīng)元的激活作用消失,雌激素的正負(fù)反饋調(diào)節(jié)效應(yīng)中斷[64]。胰島素樣生長因子-1的作用主要通過其受體介導(dǎo)的信號途徑發(fā)揮作用,Todd等[65]和Sun等[66]通過中樞灌注胰島素樣生長因子-1及其受體拮抗劑JB-1,證實了胰島素樣生長因子-1受體是雌激素正反饋作用和GnRH神經(jīng)元激活的必需組成部分,下丘腦胰島素樣生長因子-1信號途徑減弱,則動物的情期循環(huán)受到干擾。
實際生產(chǎn)中,光照影響后備母豬的情期啟動。光照影響體內(nèi)維生素D3的代謝,因此維生素D3可能參與調(diào)控動物的情期啟動。下丘腦-垂體-性腺軸均表達(dá)維生素D3受體,已有研究表明維生素D3缺乏動物繁殖能力受損,但是機理不詳[67-88]。最新研究證實,維生素D3缺乏導(dǎo)致雌性小鼠初情日齡推遲6 d,此外,維生素D3缺乏導(dǎo)致雌性成年小鼠無法維持正常的情期循環(huán)[69]。維生素D3廣泛參與下丘腦-垂體-性腺軸的細(xì)胞增殖和分化、激素分泌等活動,為了進(jìn)一步探索維生素D3影響小鼠情期啟動的作用靶點,對維生素D3缺乏或Cyp27b1基因缺失小鼠進(jìn)行外源促性腺激素處理,發(fā)現(xiàn)小鼠的垂體及卵巢功能并未受損,證實了下丘腦GnRH分泌抑制是維生素D3影響小鼠情期啟動的關(guān)鍵靶點[69]。骨骼代謝與維生素D3密切相關(guān),因此維生素D3可能通過影響骨骼代謝影響動物情期啟動。Patterson等[70]觀察了431頭后備母豬初情啟動與骨骼發(fā)育的關(guān)系,發(fā)現(xiàn)317頭180日齡之前啟動初情期的后備母豬無腿病發(fā)生;180日齡后發(fā)情的母豬中,高達(dá)16%的后備母豬因發(fā)生腿病而被淘汰。骨骼分泌蛋白骨鈣素(osteocalcin)已被證明可以調(diào)控動物的能量代謝,同時可作用于雄性動物繁殖組織而影響睪丸細(xì)胞的功能[39],因此也可能參與雌性動物情期啟動的調(diào)節(jié),但此領(lǐng)域研究甚少,有待進(jìn)一步證實。
圖6 蛋白質(zhì)限制推遲情期啟動的理論假設(shè)Fig.6 Theory hypothesis of estrus onset delayed by protein restriction
礦物元素廣泛參與調(diào)控細(xì)胞的增殖和分化、組織器官的發(fā)育。眾多微量元素如鐵、鋅、硒等被發(fā)現(xiàn)廣泛參與動物的繁殖活動,但是否調(diào)控動物的情期啟動及卵泡發(fā)育,相關(guān)研究較少。鎂是動物骨代謝和骨膠原生長和發(fā)育的必需礦物元素,其缺乏會導(dǎo)致生長和發(fā)育停滯。血液中鎂在生長發(fā)育期跨過血腦屏障的效率是成年期的4倍,更有趣的是,鎂十分容易在下丘腦中沉積。Pine等[71]在雌性生長大鼠第3腦室中灌注氯化鎂,發(fā)現(xiàn)可顯著刺激下丘腦促黃體素釋放激素(luteinizing hormone-releasing hormone,LHRH)基因表達(dá)量及血液LH濃度;此外,生長大鼠飼糧中添加10 mg/kg氯化鎂,血液中LH、FSH、雌二醇等繁殖激素的濃度顯著提高,且初情日齡顯著提前。通過體外研究[72]及體內(nèi)研究[73]進(jìn)一步證實了氯化鎂通過下丘腦鳥苷酸環(huán)化酶、胰島素樣生長因子受體、環(huán)氧合酶-2刺激下丘腦分泌LHRH及垂體分泌 LH。Srivastava等[74]進(jìn)一步證實,在飼糧中添加10 mg/kg的氯化鎂,大鼠血液GnRH濃度顯著提高,并且引起下丘腦情期啟動相關(guān)基因Kiss-1表達(dá)顯著上調(diào),并誘發(fā)大鼠早熟(圖8)。在母豬養(yǎng)殖過程中,妊娠母豬便秘是困擾母豬健康的一大難題,在母豬飼糧中通常添加2~3 kg/t硫酸鎂以防止便秘。鑒于鎂對神經(jīng)內(nèi)分泌及繁殖系統(tǒng)的干擾效應(yīng),因此在母豬飼糧配制時需足夠謹(jǐn)慎。
圖7 血液鎂干擾下丘腦GnRH分泌及性早熟機制Fig.7 Mechanism of GnRH secretion and precocious puberty interfered by blood manganese
雌性動物由生長向繁殖轉(zhuǎn)換過程中,表觀遺傳修飾發(fā)揮著決定性作用。Tomikawaa等[75]分別觀察了雌激素對下丘腦AVPV和ARC區(qū)域Kiss-1基因的表觀遺傳修飾狀態(tài),發(fā)現(xiàn)雌激素對AVPV神經(jīng)元的正反饋調(diào)控與Kiss-1基因的表觀遺傳修飾有關(guān)[75]。不同區(qū)域Kiss-1基因表達(dá)模式的改變反映了雌激素受體誘導(dǎo)的正負(fù)反饋調(diào)控敏感性的改變,是觸發(fā)情期啟動的關(guān)鍵生理過程[34]。Lomniczi等[76]對小鼠注射甲基化抑制劑,小鼠初情期推遲甚至消失。進(jìn)一步研究證實,小鼠正常情期啟動依賴于PcG(polycomb group)蛋白對Kiss-1基因啟動區(qū)域的一系列表觀遺傳修飾,導(dǎo)致Kiss-1基因表達(dá)量上調(diào),促進(jìn)性腺發(fā)育及初情期來臨。
值得注意的是,基因的表觀遺傳修飾對外界環(huán)境十分敏感,尤其是具有內(nèi)分泌干擾效應(yīng)的化學(xué)物質(zhì)。多酚A是廣泛存在于食品、飼料中的一種化學(xué)物質(zhì),可誘導(dǎo)基因啟動子富含雙核苷酸“CG”的區(qū)域(即 CpG島)低甲基化。研究表明[77],在 小 鼠 飼 糧 中 添 加 低 劑 量 多 酚 A(50 μg/kg),可通過影響Kiss-1基因表達(dá)及GnRH神經(jīng)元數(shù)量誘發(fā)性早熟。苯甲雌二醇和甲氧氯具有明顯的類雌激素結(jié)構(gòu),可顯著干擾動物的內(nèi)分泌狀態(tài)并誘發(fā)早熟[76]。研究表明,當(dāng)動物在發(fā)育早期被苯甲雌二醇和甲氧氯干擾時,下丘腦Kiss-1的基因表達(dá)及雌激素受體α(estrogen receptor α,ERα)基因啟動區(qū)域的甲基化模式改變,導(dǎo)致情期循環(huán)紊亂,繁殖系統(tǒng)提前衰退(圖8),繁殖功能提前終止[78]。因此,母豬飼糧中應(yīng)特別關(guān)注重金屬、霉菌毒素、內(nèi)分泌干擾因子對母豬情期啟動及繁殖系統(tǒng)的損害。
情期啟動是提高母豬終身繁殖成績的關(guān)鍵環(huán)節(jié)。體組織的生長和發(fā)育是營養(yǎng)積累的結(jié)果,各器官組織只有在營養(yǎng)儲備達(dá)到一定標(biāo)準(zhǔn)后才能激活下丘腦Kisspeptin神經(jīng)元并觸發(fā)下丘腦-垂體-性腺軸活性,推動母豬由生長轉(zhuǎn)向繁殖,或由泌乳轉(zhuǎn)向發(fā)情。雌激素正負(fù)反饋效應(yīng)參與了營養(yǎng)調(diào)控情期啟動,但機理不詳,待進(jìn)一步研究。
圖8 毒素與內(nèi)分泌干擾因子干擾繁殖功能的理論假設(shè)Fig.8 Theoryhypothesis of reproduction function interfered by toxins and endocrine disruptors
[1]TUMMARUK P,TANTASUPARUKW,TECHAKUMPHU M,et al.Age,body weight and backfat thickness at first observed oestrus in crossbred Landrace × Yorkshire gilts,seasonal variations and their influence on subsequence reproductive performance[J].Animal Reproduction Science,2007,99(1/2):167-181.
[2]LE COZLER Y,DAGORN J,LINDBERG J E,et al.Effect of age at first farrowing and herd management on long-term productivity of sows[J].Livestock Production Science,1998,53(2):135-142.
[3]TUMMARUK P,LUNDEHEIM N,EINARSSON S,et al.Effect of birth litter size,birth parity number,growth rate,backfat thickness and age at first mating of gilts on their reproductive performance as sows[J].Animal Reproduction Science,2001,66(3/4):225-237.
[4]ROONGSITTHICHAIA,CHEUCHUCHART P,CHATWIJITKUL S,et al.Influence of age at first estrus,bodyweight,and average daily gain of replacement gilts on their subsequent reproductive performance as sows[J].Livestock Science,2013,151(2/3):238-245.
[5]PINILLA L,AGUILAR E,DIEGUEZC,etal.Kisspeptins and reproduction:physiological roles and regulatory mechanisms[J].Physiological Reviews,2012,92(3):1235-1316.
[6]GOTTSCH M L,CLIFTON D K,STEINER R A.Kisspepeptin-GPR54 signaling in the neuroendocrine reproductive axis[J].Molecular and Cellular Endocrinology,2006,254/255:91-96.
[7]PLANT T M,BARKER-GIBB M L.Neurobiological mechanisms of puberty in higher primates[J].Human Reproduction Update,2004,10(1):67-77.
[8]TENA-SEMPERE M.GPR54 and kisspeptin in reproduction[J].Human Reproduction Update,2006,12(5):631-639.
[9]OHTAKI T,SHINTANI Y,HONDA S,et al.Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor[J].Nature,2001,411(6837):613-617.
[10]LEE J H,MIELE M E,HICKS D J,et al.KiSS-1,a novel human malignant melanoma metastasis-suppres-sor gene[J].Journal of the National Cancer Institute,1996,88(23):1731-1737.
[11]KOTANI M,DETHEUX M,VANDENBOGAERDE A,et al.The metastasis suppressor gene KiSS-1 encodes kisspeptins,the natural ligands of the orphan G protein-coupled receptor GPR54[J].The Journal of Biological Chemistry,2001,276:34631-34636.
[12]SEMINARA S B,MESSAGER S,CHATZIDAKI E E,et al.The GPR54 gene as a regulator of puberty[J].The New England Journal of Medicine,2003,349:1614-1627.
[13]DE ROUX N,GENIN E,CAREL J C,et al.Hypogonadotropichypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54[J].The Proceedings of the National Academy of Sciences of the United States of America,2003,100(19):10972-10976.
[14]KINOSHITA M,TSUKAMURA H,ADACHI S,et al.Involvement of central metastin in the regulation of preovulatory luteinizing hormone surge and estrous cyclicity in female rats[J].Endocrinology,2005,146(10):4431-4436.
[15]DHILLO W S,CHAUDHRI O B,PATTERSON M,et al.Kisspeptin-54 stimulates the hypothalamic-pituitarygonadal axis in human males[J].The Journal of Clinical Endocrinology and Metabolism,2005,90(12):6609-6615.
[16]NAVARRO V M, CASTELLANO J M,F(xiàn)ERNáNDEZ-FERNáNDEZR,etal.Effectsof KiSS-1 peptide,the natural ligand of GPR54,on follicle-stimulating hormone secretion in the rat[J].Endocrinology,2005,146(4):1689-1697.
[17]NAVARRO V M, CASTELLANO J M,F(xiàn)ERNáNDEZ-FERNáNDEZ R,et al.Characterization of the potent luteinizing hormone-releasing activity of KiSS-1 peptide,the natural ligand of GPR54[J].Endocrinology,2005,146(1):156-163.
[18]SHAHAB M,MASTRONARDI C,SEMINARA S B,et al.Increased hypothalamic GPR54 signaling:a potential mechanism for initiation of puberty in primates[J].The Proceedings of the National Academy of Sciences of the United States of America,2005,102(6):2129-2134.
[19]GREIVES T J,MASON A O,SCOTTI M A L,et al.Environmental control of kisspeptin:implications for seasonal reproduction[J].Endocrinology,2007,148(3):1158-1166.
[20]KAUFFMANAS,PARK JH,MCPHIE-LALMANSINGH A A,et al.The kisspeptin receptor GPR54 is required for sexual differentiation of the brain and behavior[J].The Journal of Neuroscience:the Official Journal of the Society for Neuroscience,2007,27(33):8826-8835.
[21]XU S Y,LINHER-MELVILLE K,YANG B B,et al.Micro-RNA378(miR-378)regulates ovarian estradiol production by targeting aromatase[J].Endocrinology,2011,152(10):3941-3951.
[22]IRWIG M S,F(xiàn)RALEY G S,SMITH J T,et al.Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat[J].Neuroendocrinology,2004,80(4):264-272.
[23]HAN S K,GOTTSCH M L,LEE K J,et al.Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty[J].The Journal of Neuroscience,2005,25(49):11349-11356.
[24]PIELECHA-FORTUNNA J,CHU Z G,MOENTER S M.Kisspeptin acts directly and indirectly to increase gonadotropin-releasing hormone neuron activity and its effects are modulated by estradiol[J].Endocrinology,2008,149(4):1979-1986.
[25]CLARKSON J,HERBISON A E.Postnatal development of kisspeptin neurons in mouse hypothalamus;sexual dimorphism and projections to gonadotropin-releasing hormone neurons[J].Endocrinology,2006,147(12):5817-5825.
[26]DECOURTC,TILLETY,CARATY A,etal.Kisspeptinimmunoreactive neurons in the equine hypothalamus interactions with GnRH neuronal system[J].Journal of Chemical Neuroanatomy,2008,36(3/4):131-137.
[27]RAMASWAMY S,GUERRIERO K A,GIBBS R B,et al.Structural interactions between kisspeptin and GnRH neurons in the mediobasal hypothalamus of the male rhesus monkey(Macaca mulatta)as revealed by double immunofluorescence and confocal microscopy[J].Endocrinology,2008,149(9):4387-4395.
[28]NAVARROV M,TENA-SEMPERE M.Neuroendocrine control by kisspeptins:role in metabolic regulation of fertility[J].Nature Reviews Endocrinology,2012,8(1):40-53.
[29]LENTS C A,HEIDORN N L,BARB C R,et al.Central andperipheral administration of kisspeptin activates go-nadotropinbut not somatotropin secretion in prepubertal gilts[J].Reproduction,2008,135:879-887.
[30]ADACHI S,YAMADA S,TAKATSU Y,et al.Involvement of anteroventral periventricular metastin/kisspeptin neurons in estrogen positive feedback action on luteinizing hormonerelease in female rats[J].The Journal of Reproduction and Development,2007,53(2):367-378.
[31]TOMIKAWA J,HOMMA T,TAJIMA S,et al.Molecular characterization and estrogen regulation of hypothalamic KISS1 gene in the pig[J].Biology of Reproduction,2010,82(2):313-319.
[32]IEDA N,UENOYAMA Y,TAJIMA Y,et al.KISS1 gene expression in the developing brain of female pigs in pre-and peripubertal periods[J].The Jounal of Reproduction and Development,2014,60(4):312-316.
[33]SMITH J T,CUNNINGHAM M J,RISSMAN E F,et al.Regulation of Kiss1 gene expression in the brain of the female mouse[J].Endocrinology,2005,146(9):3686-3692.
[34]FRISH R E.Body fat,menarche,fitness and fertility[J].Human Reproduction,1987,2(6):521-533.
[35]ARMSTRONG J D,BRITT J H.Nutritionally-induced anestrus in gilts:metabolic and endocrine changes associated with cessation and resumption of estrous cycles[J].Journal of Animal Science,1987,65(2):508-523.
[36]ROZEBOOM D W,MOSER R L,CORNELIUS S G,et al.Body composition of postpubertal gilts at nutritionally induced anestrus[J].Journal of Animal Science,1993,71(2):426-435.
[37]LENTS C A,REMPEL L A,KLINDT J,et al.The relationship of plasma urea nitrogen with growth traits and age at first estrus in gilts[J].Journal of Animal Science,2013,91(7):3137-3142.
[38]OURY F,SUMARA G,SUMARA O,et al.Endocrine regulationof male fertility by the skeleton[J].Cell,2011,144(5):796-809.
[39]MAYER C,ACOSTA-MARTINEZ M,DUBOIS S L,et al.Timing and completion of puberty in female mice depend on estrogen receptor α-signaling in kisspeptin neurons[J].The Proceedings of the National Academy of Sciences of the United States of America,2010,107(52):22693-22698.
[40]ZHOU D,ZHUO Y,CHE L.Nutrient restriction induces failure of reproductive functionand molecular changes in hypothalamus-pituitary-gonadal axisin postpubertal gilts[J].Molecular Biology Reprots,2014,41(7):4733-4742.
[41]CASTELLANO J M,NAVARRO V M R,F(xiàn)ERNANDEZ-FERNANDEZ R,et al.Changes in hypothalamic KiSS-1 system and restoration of pubertal activation of the reproductive axis by kisspeptin in undernutrition[J].Endocrinology,2005,146(9):3917-3925.
[42]OWEN B M,BOOKOUT A L,DING X S,et al.FGF21 contributes to neuroendocrine control of female reproduction[J].Nature Medicine,2013,19(9):1153-1156.
[43]POTTHOFF M J,INAGAKI T,SATAPATI S,et al.FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response[J].The Proceedings of the National Academy of Sciences of the United States of America,2009,106(26):10853-10858.
[44]SONIGO C,BOUILLY J,CARRéN,et al.Hyperprolactinemia-induced ovarian acyclicity is reversed by kisspeptin administration[J].The Journal of Clinical Investigation,2012,122(10):3791-3795.
[45]XU J,KIRIGITI M A,GROVE K L,et al.Regulation of food intake and gonadotropin-releasing hormone/luteinizing hormone during lactation:role of insulin and leptin[J].Endocrinology,2009,150(9):4231-4240.
[46]TRUE C,KIRIGITI M A,KIEVIT P,et al.Leptin is not the critical signal for kisspeptin or luteinising hormone restoration during exit from negative energy balance[J].Journal of Neuroendocrinology,2011,23(11):1099-1112.
[47]ROLAND A V,MOENTER S M.Glucosensing by GnRH neurons:inhibition by androgens and involvement of AMP-activated protein kinase[J].Molecular Endocrinology,2011,25(5):847-858.
[48]ZHANG C G,BOSCH M A,LEVINE J E,et al.Gonadotropin-releasing hormone neurons express KATP channels that are regulatedby estrogen and responsive to glucose and metabolic inhibition[J].The Journal of Neuroscience,2007,27(38):10153-10164.
[49]ROA J,GARCIA-GALIANO D,VARELA L,et al.The mammalian target of rapamycin as novel central regulator of puberty onset via modulation of hypothalamic Kiss1 system[J].Endocrinology,2009,150(11):5016-5026.
[50]ALTAREJOS J Y,GOEBEL N,CONKRIGHT M D,et al.The Creb1 coactivator Crtc1 is required for ener-gybalance and fertility[J].Nature Medicine,2008,14(10):1112-1117.
[51]ZHUO Y,ZHOU D S,CHE L Q,et al.Feeding prepubescent gilts a high-fat diet induces molecularchanges in the hypothalamus-pituitary-gonadal axis and predictsearly timing of puberty[J].Nutrition,2014,30(7/8):890-896.
[52]BARB C R,HAUSMAN G J,LENTS C A.Energy metabolism and leptin:effects on neuroendocrine regulation of reproduction in the gilt and sow[J].Reproduction in Domestic Animals,2008,43(Suppl.2):324-330.
[53]李方方.日糧能量來源對大鼠初情啟動的影響及調(diào)控機理研究[D].博士學(xué)位論文.雅安:四川農(nóng)業(yè)大學(xué),2012.
[54]SMITH J T,ACOHIDO B V,CLIFTON D K,et al.KiSS-1 neurones are direct targets for leptin in the ob/ob mouse[J].Journal of Neuroendocrinology,2006,18(4):298-303.
[55]QUENNELL J H,HOWELL C S,ROA J,et al.Leptindeficiency and diet-induced obesity reduce hypothalamic kisspeptinexpression in mice[J].Endocrinology,2011,152(4):1541-1550.
[56]CUNNINGHAM P J,NABER C H,ZIMMERMAN D R,et al.Influence of nutritional regime on age at puberty in gilts[J].Journal of Animal Science,1974,39(1):63-67.
[57]PATTERSON J L,BALL R O,WILLIS H J,et al.The effect of lean growth rate on puberty attainment in gilts[J].Journal of Animal Science,2002,80(5):1299-1310.
[58]TORRE S D,RANDO G,MEDA C,et al.Amino acid-dependent activation of liver estrogen receptor alpha integrates metabolic and reproductive functions via IGF-1[J].Cell Metabolism,2011,13(2):205-214.
[59]NARITA K,NAGAO K,BANNAI M,et al.Dietary deficiency of essential amino acids rapidly induces cessation of the rat estrous cycle[J].PLoS One,2011,6(11):e28136.
[60]ROLDAN M B,WHITE C,WITCHEL S F.Association of the GAA1013→GAG polymorphism of the insulin-like growth factor-1 receptor(IGF1R)gene with premature pubarche[J].Fertility and Sterility,2007,88(2):410-417.
[61]ROONGSITTHICHAI A,KOONJAENAK S,TUMMARUK P.Association among serum insulin-like growth factor-Ⅰ,backfat thickness,and age at first observed estrus in gilts[J].Thai Journal of Veterinary Medicine,2013,43(1):41-48.
[62]JOHNSTON D J,BARWICK S A,CORBET N J,et al.Genetics of heifer puberty in two tropical beef genotypes in northern Australia and associations with heifer-and steer-production traits[J].Animal Production Science,2009,49(6):399-412.
[63]FORTES M R S,LI Y T,COLLIS E,et al.The IGF1 pathway genes and their association with age of puberty in cattle[J].Animal Genetics,2013,44(1):91-95.
[64]HINEY J K,SRIVASTAVA V K,PINE M D,et al.Insulin-like growth factor-Ⅰactivates KiSS-1 gene expression in the brain of the prepubertal female rat[J].Endocrinology,2009,150(1):376-384.
[65]TODD B J,MERHI Z O,SHU J,et al.Hypothalamic insulin-like growth factor-Ⅰreceptors are necessary for hormone-dependent luteinizing hormone surges:implications for female reproductive aging[J].Endocrinology,2010,151(3):1356-1366.
[66]SUN Y,TODD B J,THORNTON K,et al.Differential effects of hypothalamic IGF-Ⅰon gonadotropin releasing hormone neuronal activation during steroid-induced LH surges in young and middle-aged female rats[J].Endocrinology,2011,152(11):4276-4287.
[67]OZKAN S,JINDAL S,GREENSEID K,et al.Replete vitamin D stores predict reproductive success following in vitro fertilization[J].Fertility and Sterility,2009,94(5):1314-1319.
[68]SUN W,XIE H,JI J,et al.Defective female reproductive function in 1,25(OH)2D-deficient mice results from indirect effect mediated by extracellular calcium and/or phosphorus[J].American Journal of Physiology:Endocrinology and Metabolism,2011,299(6):E928-E935.
[69]DICKEN C L,ISRAEL D D,DAVIS J B,et al.Peripubertalvitamin D3deficiency delays puberty and disrupts the estrous cycle in adult female mice[J].Biology of Reproduction,2012,87(2):51.
[70]PATTERSON J L,BELTRANENA E,F(xiàn)OXCROFT G R.The effect of gilt age at first estrus and breeding on third estruson sow body weight changes and long-term reproductive performance[J].Journal of Animal Science,2010,88(7):2500-2513.
[71]PINE M,LEE B,DEARTH R,et al.Manganese acts centrally to stimulate luteinizing hormonesecretion:a potential influence on female pubertaldevelopment[J].Toxicological Science,2005,85(2):880-885.
[72]LEE B,HINEY J K,PINE M D,et al.Manganese stimulates luteinizing hormone releasing hormone secretion in prepubertal female rats:hypothalamic site and mechanism of action[J].Journal of Physiology,2007,578:765-772.
[73]HINEY J K,SRIVASTAVA V K,DEES W L.Manganese induces IGF-1 and cyclooxygenase-2 gene expressionsin the basal hypothalamus during prepubertalfemale development[J].Toxicological Science,2011,121(2):389-396.
[74]SRIVASTAVA V K,HINEY J K,DEES W L.Early life manganese exposure upregulatestumor-associated genes in the hypothalamus of female rats:relationship to manganese-induced precocious puberty[J].Toxicological Science,2013,136(2):373-381.
[75]TOMIKAWAA J,YOSHIHISA U,OZAWAA M,et al.Epigenetic regulation of Kiss1 gene expression mediating estrogen-positive feedback action in the mouse brain[J].The Proceedings of the National Academy of Sciences of the United States of America,2012,109(20):E1294-E1301.
[76]LOMNICZI A,LOCHE A,CASTELLANO J M,et al.Epigenetic control of female puberty[J].Nature Neuroscience,2013,16(3):281-289.
[77]LOSA-WARD S M,TODD K L,MCCAFFREY K A,et al.Disrupted organization of Rfami depathways in the hypothalamus is associated with advanced puberty in female rats neonatallyexposed to bisphenol A[J].Biology of Reproduction,2012,87(2):28.
[78]GORE A C,WALKER D M,ZAMA A M,et al.Early life exposure to endocrine-disrupting chemicals causes lifelong molecular reprogramming of the hypothalamus and premature reproductive aging[J].Molecular Endocrinology,2011,25(12):2157-2168.