• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      黃單胞菌III型分泌系統(tǒng)效應(yīng)蛋白的研究進(jìn)展

      2014-09-23 17:14:48易杰祥景曉輝吳倫英
      熱帶農(nóng)業(yè)科學(xué) 2014年8期

      易杰祥+景曉輝+吳倫英

      摘 要 黃單胞菌借助保守的III型分泌系統(tǒng),將多個(gè)效應(yīng)蛋白注入植物細(xì)胞,克服宿主的防衛(wèi),利于黃單胞菌在植物體內(nèi)發(fā)揮毒性功能。最近對(duì)III型效應(yīng)蛋白致病機(jī)理開展了大量研究,結(jié)果發(fā)現(xiàn)具有酶功能的效應(yīng)蛋白在黃單胞菌及其宿主間的相互作用中發(fā)揮非常重要的作用。此外,黃單胞菌存在一類獨(dú)特的III型效應(yīng)蛋白(AvrBs3家族)。迄今為止,僅在黃單胞菌和雷爾氏菌(Ralstonia solanacearum)中發(fā)現(xiàn)AvrBs3家族效應(yīng)蛋白,AvrBs3家族通過模擬轉(zhuǎn)錄激活子來操縱寄主植物易感基因的表達(dá)。

      關(guān)鍵詞 黃單胞菌 ;III型分泌系統(tǒng) ;效應(yīng)蛋白 ;AvrBs3 ;類轉(zhuǎn)錄激活子

      分類號(hào) S432.42

      Research Advances on Xanthomonas Type III Secretion System Effectors

      YI Jiexiang1) JING Xiaohui2) WU Lunying2)

      (1 Hainan Province Tropical Crops Research Institute for Baoting, Baoting, Hainan 572311

      2 Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources,

      Hainan University, Haikou, Hainan 570228, China)

      Abstract Pathogenicity of Xanthomonas and most other Gram-negative phytopathogenic bacteria depends on a conserved type III secretion (T3S) system which injects several different effector proteins into the plant cell. Extensive studies in the last years on the molecular mechanisms of type III effector function revealed that effector proteins with enzymatic functions seem to play important roles in the interaction of Xanthomonas with its host plants. In addition, Xanthomonas express a unique class of type III effectors to pursue another strategy. Effectors of the AvrBs3 family, so far only identified in Xanthomonas spp. and Ralstonia solanacearum, mimic plant transcriptional activators and manipulate the plant transcriptome.

      Keywords Xanthomonas ; type III secretion system ; effector ; AvrBs3 ; transcriptional activators

      黃單胞菌屬的致病細(xì)菌能夠侵染包括重要農(nóng)作物在內(nèi)的多種宿主植物。例如,水稻白葉枯病可由X. oryzae pv. oryzae(Xoo)引起。細(xì)菌可通過植物天然的孔口(氣孔、水孔或傷口)進(jìn)入,進(jìn)而在植物組織繁殖。病原細(xì)菌III型分泌系統(tǒng)在病原菌與其宿主的相互作用中發(fā)揮重要作用。黃單胞菌含有革蘭氏陰性細(xì)菌中所有已知的蛋白分泌系統(tǒng)——信號(hào)肽(信號(hào)識(shí)別粒子)和TAT通路,I型、II型、III型、IV型等不同類型的分泌系統(tǒng),V型自動(dòng)轉(zhuǎn)運(yùn)分泌系統(tǒng),兩個(gè)伴侶分泌系統(tǒng),和一個(gè)VI型分泌系統(tǒng)[1-2]。其中III型分泌系統(tǒng)在動(dòng)植物病原菌中高度保守且對(duì)黃單胞菌的致病性非常重要[3-4]。大多數(shù)III型分泌系統(tǒng)效應(yīng)蛋白,借助病原菌形成的“分子注射器”直接轉(zhuǎn)運(yùn)至植物細(xì)胞,然而,大多數(shù)III型分泌系統(tǒng)分泌的III型效應(yīng)蛋白及其在細(xì)菌毒性中發(fā)揮的功能尚未完全可知[5]。本文主要綜述了近幾年有關(guān)黃單胞菌III型效應(yīng)蛋白的研究,主要關(guān)注它們?cè)谥参锛?xì)胞中的作用模式。

      1 III型效應(yīng)蛋白是重要的毒性因子

      III型分泌系統(tǒng)缺失的病原菌不能在植物體內(nèi)很好的生長(zhǎng),且在感病寄主上不引發(fā)癥狀,這說明III型分泌系統(tǒng)分泌的效應(yīng)蛋白對(duì)病原菌致病至關(guān)重要[6-7]。雖然單個(gè)黃單胞菌菌株分泌多個(gè)III型效應(yīng)蛋白[1-8],但是只有少數(shù)效應(yīng)蛋白是重要的毒力因子,因?yàn)樗鼈兊那贸龝?huì)顯著降低細(xì)菌毒力。例如,來自辣椒和西紅柿病原菌(X. campestris pv. vesicatoria,Xcv)的AvrBs2對(duì)寄主的致病性至關(guān)重要,AvrBs2的毒性功能依賴保守的glycerolphosphodiesterase(GDE)結(jié)構(gòu)域,AvrBs2強(qiáng)烈地促進(jìn)細(xì)菌在植物體內(nèi)的增殖,而寄主抗性蛋白Bs2特異識(shí)別AvrBs2后調(diào)節(jié)Xcv的TTSS,進(jìn)而抑制TTSS分泌的效應(yīng)蛋白[9-10]。Xcv效應(yīng)蛋白XopQ能夠抑制MAP kinase cascade MAPKKKα誘導(dǎo)的細(xì)胞死亡。XopQ 能夠抑制無毒Xcv在抗性胡椒(Capsicum annuum)上激發(fā)的ETI相關(guān)的細(xì)胞死亡,并促進(jìn)在抗性胡椒和番茄(Solanum lycopersicum)上的細(xì)菌生長(zhǎng)[11]。番茄蛋白14-3-3 SlTFT4 能夠與XopQ互作。TFT4在寄主植物對(duì)Xcv的抗性中發(fā)揮重要作用,沉默煙草NbTFT4也顯著降低 MAPKKKα誘發(fā)的細(xì)胞死亡,沉默胡椒CaTFT4也推遲ETI相關(guān)的細(xì)胞死亡表型[11]。XopQ 的毒性功能依賴于其與TFT4互作,進(jìn)而抑制ETI及免疫相關(guān)的細(xì)胞死亡[11]。相比之下,編碼其他效應(yīng)蛋白(來自X. campestris pv. campestris的AvrXccC及XopXccN)基因的突變只會(huì)微弱地影響細(xì)菌的生長(zhǎng)[12-13]。最新的多個(gè)研究表明,假單胞菌的許多效應(yīng)蛋白通過抑制植物的防衛(wèi)機(jī)制來發(fā)揮毒性功能[14]。至今只有少數(shù)Xanthomonas的III型效應(yīng)蛋白具有推測(cè)的防衛(wèi)抑制作用。如來自X. campestris pv. vesicatoria的XopX,它促進(jìn)壞死斑的形成,這意味著XopX抑制植物的基礎(chǔ)防衛(wèi)反應(yīng)[15]。endprint

      2 黃單胞菌效應(yīng)蛋白的酶功能

      多個(gè)丁香假單胞菌的效應(yīng)蛋白表現(xiàn)出酶活性,通過修飾寄主蛋白來實(shí)現(xiàn)它們的生物學(xué)功能[14]。例如,HopAO1是丁香假單胞菌的一個(gè)效應(yīng)蛋白,它具有酪氨酸磷酸酶活性,而且抑制基礎(chǔ)防衛(wèi)和過敏性反應(yīng),現(xiàn)已發(fā)現(xiàn)與HopAO1具有同源性的效應(yīng)蛋白[16-17]。XopE1和XopE2屬于假谷氨酰胺酶的HopX家族 (AvrPphE),有對(duì)發(fā)揮其功能至關(guān)重要的基于半胱氨酸的具有催化活性的triad[18-19]。然而,黃單胞菌效應(yīng)蛋白已表現(xiàn)出酶活性,但是尚不清楚它們的毒力作用。

      2.1 SUMO蛋白酶 XopD

      最近人們?cè)敿?xì)研究了源自X. campestris pv. vesicatoria的效應(yīng)蛋白XopD。有趣的是,這個(gè)效應(yīng)蛋白利于細(xì)菌在番茄中生長(zhǎng),并推遲番茄感染后期的葉片缺綠及壞死[20]。XopD蛋白有一個(gè)模塊化結(jié)構(gòu),而且具有不同的生化活性。C末端包含一個(gè)C48家族的半胱氨酸蛋白酶域,它和酵母類泛素蛋白酶(ubiquitin-like protease,ULp1)具有同源性,ULp1是一個(gè)小的類泛素修飾因子(SUMO)蛋白酶[20]。已在離體及活體條件下證明XopD具有植物SUMO蛋白酶活性[20-21]。類似泛素共價(jià)結(jié)合,SUMO共價(jià)結(jié)合到靶蛋白,但是不同于泛素修飾,SUMO修飾靶蛋白后常增加蛋白的穩(wěn)定性。在植物中,SUMO修飾和deSUMOylation調(diào)控一系列生物學(xué)過程。例如,對(duì)非生物脅迫做出的反應(yīng),病原菌防衛(wèi),開花誘導(dǎo)等[23]。XopD在植物細(xì)胞的亞細(xì)胞核定位表明,它可能靶向核SUMO共軛蛋白。此外,XopD包含:N末端與DNA結(jié)合的螺旋-環(huán)-螺旋結(jié)構(gòu)域,還有EAR motif[20]。最近發(fā)現(xiàn),XopDXccB100 N端DNA結(jié)合結(jié)構(gòu)域能夠與正調(diào)植物先天免疫的擬南芥轉(zhuǎn)錄因子MYB30互作,穩(wěn)定MYB30蛋白,但改變MYB30的亞細(xì)胞定位,導(dǎo)致MYB30不能正常發(fā)揮轉(zhuǎn)錄激活的功能,進(jìn)而抑制MYB30靶基因的表達(dá),達(dá)到抑制擬南芥防衛(wèi)的目的[20]。2013年Kim等[21]發(fā)現(xiàn),XopDXcv催化番茄PTI信號(hào)通路正調(diào)因子SlERF4賴氨酸K53上SUMO的水解,導(dǎo)致SlERF4蛋白不穩(wěn)定,進(jìn)而阻斷了植物對(duì)Xcv的PTI抗性。這進(jìn)一步表明,XopD家族效應(yīng)蛋白功能的多樣,既可改變靶蛋白的亞細(xì)胞定位,又可降解靶蛋白,還能夠穩(wěn)定靶蛋白。

      2.2 YopJ/AvrRxv 家族效應(yīng)蛋白

      植物和哺乳動(dòng)物病原菌中YopJ/AvrRxv家族的效應(yīng)蛋白常有SUMO蛋白酶的活性。在X. campestris pv. vesicatoria中有四個(gè)預(yù)測(cè)的C55肽酶YopJ/AvrRxv家族—AvrRxv、AvrXv4、AvrBsT和XopJ[9]。每個(gè)蛋白都含有推測(cè)的催化triad(組氨酸、谷氨酸和半胱氨酸)[9]。如果在植物體內(nèi)過表達(dá)AvrXv4,導(dǎo)致SUMO修飾蛋白的減少[22-23]。源自人類病原菌Yersinia spp.的YopJ(一個(gè)研究的最清楚的效應(yīng)蛋白),也降低SUMO修飾蛋白的數(shù)量[24-26]。然而,YopJ/AverRxv家族蛋白酶的作用是一個(gè)有爭(zhēng)議的問題,因?yàn)閅opJ有乙酰轉(zhuǎn)移酶活性[27]。YopJ調(diào)控有絲分裂原激活的蛋白激酶(MAPK)中重要絲氨酸和蘇氨酸殘基的乙酰化,這種MAPK激酶在免疫反應(yīng)阻止YopJ磷酸化和活化。在AvrBsT的研究中證實(shí),YopJ/AvrRxv家族成員是乙酰轉(zhuǎn)移酶[28]。植物中抗性基因介導(dǎo)的AvrBsT識(shí)別需要催化triad,這說明它依賴于效應(yīng)蛋白酶的功能[24,28]。Cunna等找出一種特異的抑制子—SOBER1(suppressor of AvrBsT-elicited resistance),它作用于AvrBsT導(dǎo)致的過敏反應(yīng),由離體試驗(yàn)發(fā)現(xiàn)其編碼羧化酶,導(dǎo)致底物的去乙酰[28]。

      3 AvrBs3 家族:宿主轉(zhuǎn)錄的操控者

      部分效應(yīng)蛋白通過III型分泌系統(tǒng)進(jìn)入真核生物細(xì)胞核,并在細(xì)胞核內(nèi)發(fā)揮轉(zhuǎn)錄因子的功能,激活靶基因的表達(dá)。最近,報(bào)道了源自Xanthomonas campestris pv. vesicatoria(Xcv)的AvrBs3具有類轉(zhuǎn)錄激活子(transcription activator-like-TAL)活性,起著轉(zhuǎn)錄因子的作用,直接誘導(dǎo)植物基因的表達(dá)[29-30]。AvrBs3家族是目前研究最清楚的、數(shù)量最多的一類具有TAL活性的III型效應(yīng)蛋白[31]。AvrBs3家族多個(gè)成員具有毒性功能。例如,AvrXa7、PthXo1和其他源自水稻白葉枯病菌(Xanthomonas oryzae pv. oryzae, Xoo)的類AvrBs3蛋白強(qiáng)烈促進(jìn)細(xì)菌在水稻的生長(zhǎng)以及壞死斑的形成[32-37]。Avrb6和其他源自棉花病原菌X. campestris pv. malvacearum的 AvrBs3同源物,會(huì)促進(jìn)葉片水浸斑的發(fā)展[38]。同樣會(huì)導(dǎo)致細(xì)菌從質(zhì)外體釋放到植物體[39]。源自Xcv的AvrBs3會(huì)導(dǎo)致葉肉細(xì)胞肥大,也會(huì)促使侵染后期植物表面細(xì)菌的擴(kuò)散釋放[38],導(dǎo)致細(xì)菌在田間的擴(kuò)散[40]。

      4 AvrBs3及其它相關(guān)效應(yīng)蛋白的靶標(biāo)是植物啟動(dòng)子

      AvrBs3和相關(guān)蛋白包含一中間重復(fù)結(jié)構(gòu)域,該重復(fù)域常由幾乎完全相同的34個(gè)氨基酸組成,并介導(dǎo)蛋白質(zhì)的二聚化[41]及DNA的結(jié)合[29]。該重復(fù)序列只在氨基酸位點(diǎn)的12位和13位存在差異,重復(fù)的數(shù)量及順序決定了蛋白質(zhì)與DNA的特異性結(jié)合[9,42]。另外,這些蛋白質(zhì)的C末端包含核定位信號(hào)(Nuclear Localization Signal, NLS)和酸激活結(jié)構(gòu)域(Acidic Activation Domain, AD),它們分別介導(dǎo)效應(yīng)蛋白進(jìn)入細(xì)胞核及激活植物基因的表達(dá),對(duì)蛋白質(zhì)的功能很重要[9]。最近對(duì)水稻的微陣列分析識(shí)別了Xoo中幾個(gè)類AvrBs3蛋白的靶基因[43-44]。例如,受PthXo1誘導(dǎo)的Os8N3。因?yàn)檫@個(gè)植物基因是細(xì)菌毒性所必需的,所以它被認(rèn)為是感病基因[43]。UPA20編碼堿性螺旋-環(huán)-螺旋(basic helix-loop-helix, bHLH)家族的轉(zhuǎn)錄因子,bHLH家族是AvrBs3引起的植物細(xì)胞肥大的關(guān)鍵調(diào)節(jié)子[29]。啟動(dòng)子分析顯示在UPA20及其他AvrBs3靶基因存在一個(gè)保守的AvrBs3反應(yīng)元件,即UPA框,該UPA框直接和效應(yīng)蛋白結(jié)合[29-30]。迄今為止,AvrBs3是唯一的已證實(shí)直接結(jié)合植物啟動(dòng)子的TAL效應(yīng)蛋白。然而,我們相信AvrBs3的同源物具有一樣的分子作用機(jī)理,即啟動(dòng)子為它們的直接靶標(biāo)。endprint

      5 植物抵御TAL效應(yīng)蛋白的防衛(wèi)策略

      為應(yīng)對(duì)TAL效應(yīng)蛋白毒性的分子機(jī)理,植物進(jìn)化出了一個(gè)復(fù)雜的識(shí)別策略,即利用抗性基因啟動(dòng)子作為分子誘捕。特定的TAL效應(yīng)蛋白激活啟動(dòng)子,進(jìn)而誘導(dǎo)抗性基因的表達(dá)及隨后的細(xì)胞死亡[30,45]。Bs3和Bs3-E分別識(shí)別AvrBs3和AvrBs3的衍生物AvrBs3Δrep16,研究證實(shí)了Bs3和Bs3-E啟動(dòng)子序列的差異(UPA框附近存在一個(gè)13 bp的缺失),而不是編碼區(qū)存在的差異引起相應(yīng)抗性胡椒植物中各個(gè)效應(yīng)蛋白的特異結(jié)合[30]。相反,水稻的遺傳抗性基因Xa13賦予的抗性不是由抗性基因啟動(dòng)子誘導(dǎo)的,而是依賴于誘導(dǎo)性的喪失[46]。Xa13與易感基因Os8N3極可能是等位基因,Os8N3是由TAL效應(yīng)蛋白PthXo1誘導(dǎo)的[43]。啟動(dòng)子序列差異導(dǎo)致xa13的誘導(dǎo),因此水稻對(duì)依賴于PthXo1作為毒力因子的Xoo菌株表現(xiàn)出抗性[42,45]。有趣的是,這種抗性可以被另外一種TAL效應(yīng)蛋白(AvrXa7)克服,AvrXa7并不誘導(dǎo)Os8N3,很可能誘導(dǎo)水稻中另一個(gè)易感基因[43]??傊?,對(duì)于Bs3和Xa13(Os8N3),植物抗性是由效應(yīng)蛋白靶啟動(dòng)子突變介導(dǎo)的。然而,對(duì)Bs3來說,抗性的結(jié)果是誘導(dǎo)一個(gè)自殺基因的表達(dá)[31]或者喪失基因誘導(dǎo)[43,46]。

      另外一種植物抗性機(jī)理是基于一個(gè)基礎(chǔ)轉(zhuǎn)錄元件的亞單位,它是水稻TAL效應(yīng)蛋白識(shí)別的成分。水稻隱性抗性基因Xa5編碼轉(zhuǎn)錄因子TFIIA的γ亞單位,TFIIA與易感等位基因Xa5的產(chǎn)物只存在一個(gè)氨基酸(E39V)的不同[47]。TFIIA γ參與到真核轉(zhuǎn)錄因子轉(zhuǎn)錄機(jī)制。來自Xoo的Avrxa5很可能是AvrBs3家族的成員[33],可能由于Avrxa5不能與Xa5蛋白互作,因此,在水稻Xa5/xa5中不能促進(jìn)感病基因的轉(zhuǎn)錄。

      6 結(jié)論

      黃單胞菌常利用III型效應(yīng)蛋白提高致病性。迄今為止,在其他病原菌T3SS尚未發(fā)現(xiàn)這種新的活性。然而,XopD效應(yīng)蛋白以及YopJ/AvrRxv家族成員顯示了酶的活性,AvrBs3家族成員起著真核轉(zhuǎn)錄激活子的功能,而且通過結(jié)合靶基因啟動(dòng)子的方式直接調(diào)節(jié)宿主基因的轉(zhuǎn)錄。對(duì)于III型效應(yīng)蛋白靶標(biāo)的深入分析可進(jìn)一步闡明黃單胞菌毒性機(jī)理,甚至可能有助于闡明到植物存在的普遍抗性機(jī)理。

      參考文獻(xiàn)

      [1] Thieme F, Koebnik R, Bekel T et al. Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence[J]. JOURNAL OF BACTERIOLOGY BACTERIOLOGY,2005,187(21):7 254-7 266.

      [2] Shrivastava S, and Mande S S. Shrivastava S et al.Identification and functional characterization of gene components of type VI secretion system in bacterial genomes[J]. PLoS PLOS ONE ONE,2008, 3(8):e2955.

      [3] Buttner D, Noel L, Thieme F, and Bonas U.Genomic approaches in Xanthomonas campestris pv. vesicatoria allow fishing for virulence genes[J]. JOURNAL OF BIOTECHNOLOGYJ. Biotechnol. 2003, 106(2-3):203-214.

      [4] Tampakaki A P, Fadouloglou V E, Gazi A D Tampakaki AP et al.Conserved features of type III secretion[J]. CELLULAR MICROBIOLOGYCell Microbiol. 2004, 6(9):805-816.

      [5] Greenberg J T and Yao, Net al. The role and regulation of programmed cell death in plant–pathogen interactions[J]. CELLULAR MICROBIOLOGYCell Microbiol. 2004,6(3):201-211.

      [6] Bonas BONAS U, SCHULTE R, FENSELAU S et al. Isolation of a gene cluster from Xanthomonas campestris pv. vesicatoria that determines pathogenicity and the hypersensitive response on pepper and tomato[J]. MOLECULAR PLANT-MICROBE INTERACTIONS.Mol. Plant- Microbe Interact 1991, 4(1): 81-88.

      [7] Lindgren P B. The role of hrp genes during plant-bacterial interactions[J]. ANNUAL REVIEW OF PHYTOPATHOLOGY Annu. Rev. Phytopathol. 1997, 35:129-152.endprint

      [8] He Y Q, Zhang L , Jiang B L et al. Comparative and functional genomics reveals genetic diversity and determinants of host specificity among reference strains and a large collection of Chinese isolates of the phytopathogen Xanthomonas campestris pv. campestris[J]. GENOME BIOLOGYGenome Biol. 2007, 8(10): R218.

      [9] Gurlebeck D, Thieme F and Bonas U et al.Type III effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant[J]. JOURNAL OF PLANT PHYSIOLOGYJ Plant Physiol. 2006,163(3):233-255.

      [10] Doron Teper, Salomon D, Sunitha S et al. Xanthomonas euvesicatoria type III effector XopQ interacts with tomato and pepper 14–3–3 isoforms to suppress effector-triggered immunity[J]. PLANT JOURNALPlant J 2013,77(2):297-309.

      [11] Zhao B Y, Dahlbeck D, Krasileva K V Bingyu Zhao et al.Computational and Biochemical Analysis of the Xanthomonas Effector AvrBs2 and Its Role in the Modulation of Xanthomonas Type Three Effector Delivery[J]. PLOS PATHOGENS.Plos pathogen 2011,287(12): 735-744

      [12] Wang L F, Tang X Y and He C ZWang L et al. The bifunctional effector AvrXccC of Xanthomonas campestris pv. campestris requires plasma membrane-anchoring for host recognition[J]. MOLECULAR PLANT PATHOLOGYMol Plant Pathol. 2007, 8(4): 491-501.

      [13] Jiang B L, He Y Q, Cen W J Jiang B-L et al.The type III secretion effector XopXccN of Xanthomonas campestris pv. campestris is required for full virulence[J]. RESEARCH IN MICROBIOLOGY Res Microbiol. 2008, 159(3): 216-220.

      [14] Gohre V and Robatzek S. Breaking the barriers: microbial effector molecules subvert plant immunity[J]. ANNUAL REVIEW OF PHYTOPATHOLOGY. 2008 ,46:189-215.

      [15] Metz M M, Dahlbeck D , Morales C Q et al. The conserved Xanthomonas campestris pv. vesicatoria effector protein XopX is a virulence factor and suppresses host defense in Nicotiana benthamiana[J]. PLANT JOURNALPlant J. 2005, 41(6): 801-814.

      [16] Espinosa A, Guo M, Tam V C et al. The Pseudomonas syringae type III-secreted protein HopPtoD2 possesses protein tyrosine phosphatase activity and suppresses programmed cell death in plants[J]. MOLECULAR MICROBIOLOGYMol. Microbiol. 2003, 49(2):377-387.

      [17] Underwood W, Zhang S Q and He S Y et al. The Pseudomonas syringae type III effector tyrosine phosphatase HopAO1 suppresses innate immunity in Arabidopsis thaliana[J]. PLANT JOURNALPlant J. 2007, 52(4): 658-672.

      [18] Thieme F, Szczesny R, Urban A et al. et al. New type III effectors from Xanthomonas campestris pv. vesicatoria trigger plant reactions dependent on a conserved N-myristoylation motif[J]. MOLECULAR PLANT-MICROBE INTERACTIONS .Mol. Plant-Microbe Interact 2007,20(10): 1 250-1 261.endprint

      [19] Nimchuk Z L, Fisher E J , Desveaux D et al. The HopX (AvrPphE) family of Pseudomonas syringae type III effectors require a catalytic triad and a novel N-terminal domain for function[J]. MOLECULAR PLANT-MICROBE INTERACTIONS .Mol. Plant-Microbe Interact 2007,20(4): 346-357.

      [20] Canonne J, Marino D, Jauneau A et al. The Xanthomonas type III effector XopD targets the Arabidopsis transcription factor MYB30 to suppress plant defense[J]. PLANT CELLPlant Cell[J]. 2011, 23(9): 3498-3511.

      [21] Kim J G ,Stork W, Mudgett M B et al. Xanthomonas Type III Effector XopD Desumoylates Tomato Transcription Factor SlERF4 to Suppress Ethylene Responses and Promote Pathogen Growth[J]. Cell Host & Microbe[J], 2013, 13(2): 143-154.

      [22] Novatchkova M, Budhiraja R, Coupland G et al. SUMO conjugation in plants[J]. Planta 2004, 220(1): 1-8.

      [23] Roden J, Eardley L, Hotson A et al. Characterization of the Xanthomonas AvrXv4 effector, a SUMO protease translocated into plant cells[J]. MOLECULAR PLANT-MICROBE INTERACTIONS.Mol Plant- Microbe Interact 2004, 17(6):633-643.

      [24] Orth K, Xu Z H, Mudgett M B et al. Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease[J]. SCIENCE.Science 2000, 290(5496): 1 594-1 597.

      [25] Zhou H, Monack D M, Kayagaki N et al. Yersinia virulence factor YopJ acts as a deubiquitinase to inhibit NF-kB activation[J]. JOURNAL OF EXPERIMENTAL MEDICINE. J. Exp Med 2005, 202(10):1 327-1 332.17: 1 192-1 200.

      [26] Sweet C R, Conlon J, Golenbock D T et al. YopJ targets TRAF proteins to inhibit TLR-mediated NF-kB, MAPK and IRF3 signal transduction[J]. CELLULAR MICROBIOLOGY . Cell Microbiol 2007, 9(11): 2 700-2 715. 20: 934-943.

      [27] Mukherjee S, Keitany G , Li Y et al. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation[J].SCIENCE.2006,312(5777):1211-1214.

      [28] Cunnac S, Wilson A, Nuwer J et al. A conserved carboxylesterase is a SUPPRESSOR OF AVRBST-ELICITED RESISTANCE in Arabidopsis[J]. PLANT CELL. Plant Cell 2007, 19(2):688-705.

      [29] Kay S, Hahn S, Marois E et al. A bacterial effector acts as a plant transcription factor and induces a cell size regulator[J]. SCIENCE .Science 2007, 318(5 850): 648-651.

      [30] Romer P, Hahn S, Jordan T et al. Plant-pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene[J]. SCIENCE .2007, 318(5850): 645-648.

      [31] Nissan G G, Manulis-Sasson S, Weinthal D et al. The type III effectors HsvG and HsvB of gall-forming Pantoea agglomerans determine host specificity and function as transcriptional activators[J]The type III effectors HsvG and HsvB of gall-forming for pollen development result in disease resistance in rice. MOLECULAR MICROBIOLOGYGenes Dev. 2006, 2061(5): 1 118-1 131,1 250-1 255.endprint

      [32] Bai J F, Choi S H, Ponciano G et al. Xanthomonas oryzae pv. oryzae avirulence genes contribute differently and specifically to pathogen aggressiveness[J]. MOLECULAR PLANT-MICROBE INTERACTIONS.Mol. Plant-Microbe Interact 2000, 13(12): 1 322-1 329.

      [33] Yang B et al and White F F. Diverse members of the AvrBs3/PthA family of type III effectors are major virulence determinants in bacterial blight disease of rice[J]. MOLECULAR PLANT-MICROBE INTERACTIONS .Mol. Plant-Microbe Interact 2004,,17(11): 1 192-2 000.

      [34] SWARUP S, DEFEYTER R, BRLANSKY R H Swarup S et al. A pathogenicity locus from Xanthomonas citri enables strains from several pathovars of X. campestris to elicit cankerlike lesions on citrus[J]. PHYTOPATHOLOGY .Phytopathology 1991, 81(8):802-809.

      [35] Kanamori H et al and Tsuyumu S. Comparison of nucleotide sequences of canker-forming and non-canker-forming pthA homologues in Xanthomonas campestris pv. citri[J]. Annals of the Phytopathological Society of Japan. Ann Phytopathol Soc Jpn 1998, 64(5): 462-470.

      [36] El Yacoubi B , Brunings A M , Yuan Q et al. In planta horizontal transfer of a major pathogenicity effector gene[J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY.Appl Environ Microbiol 2007, 73(5):1612-1621.

      [37] Al-Saadi A, Reddy J D, Duan Y P et al. All five host-range variants of Xanthomonas citri carry one pthA homolog with 17.5 repeats that determines pathogenicity on citrus, but none determine host-range variation[J]. MOLECULAR PLANT-MICROBE INTERACTIONS Mol Plant-Microbe Interact 2007, 20(8):934-943.

      [38] Marois E, Van den Ackerveken G and Bonas U et al. The Xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host[J]. MOLECULAR PLANT-MICROBE INTERACTIONS .Mol Plant-Microbe Interact 2002, 15(7): 637-646.

      [39] Yang Y Y N,Yuan Q P,Gabriel D W et al. Watersoaking function(s) of XcmH1005 are redundantly encoded by members of the Xanthomonas avr/pth gene family[J]. MOLECULAR PLANT-MICROBE INTERACTIONS. Mol Plant-Microbe Interact 1996, 9(2):105-113.

      [40] Wichmann G et al and Bergelson J. Effector genes of Xanthomonas axonopodis pv. vesicatoria promote transmission and enhance other fitness traits in the field[J]. Genetics GENETICS.2004, 166(2):693-706.

      [41] Gurlebeck D, Szurek B, Bonas U. Dimerization of the bacterial effector protein AvrBs3 in the plant cell cytoplasm prior to nuclear import[J]. PLANT JOURNAL.2005, 42(2): 175-187.endprint

      [42] Schornack S S, Meyer A, Romer P et al. Gene-for-gene-mediated recognition of nuclear-targeted AvrBs3-like bacterial effector proteins[J]. JOURNAL OF PLANT PHYSIOLOGY. Plant Physiol 2006, 163(3):256-272.

      [43] Yang B et al, Sugio A, White F F. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice[J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA .Proc Natl Acad Sci U S A 2006, 103(27): 10 503-10 508.

      [44] Sugio A A, Yang Bing, Zhu T et al. Two type III effector genes of Xanthomonas oryzae pv. oryzae control the induction of the host genes OsTFIIAg1 and OsTFX1 during bacterial blight of rice[J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA .Proc Natl Acad Sci USA 2007, 104(25): 10 720-10 725.

      [45] Gu K K, Yang B, Tian D S et al. R gene expression induced by a type-III effector triggers disease resistance in rice[J]. Nature NATURE.2005, 435(7045): 1 122-1 125.

      [46] Chu Z, Yuan M, Yao L L et al. Promoter mutations of an essential gene for pollen development result in disease resistance in rice[J]. GENES & DEVELOPMENT. Genes & Dev 2006, 20(10): 1 250-1 255.

      [47] Jiang G H H, Xia Z H, Zhou Y L et al. Testifying the rice bacterial blight resistance gene xa5 by genetic complementation and further analyzing xa5(Xa5) in comparison with its homolog TFIIAg1[J]. MOLECULAR GENETICS AND GENOMICS.Mol Genet Genomics 2006,275(4):1-13354-366.endprint

      马尔康县| 房产| 上饶市| 阿拉善左旗| 新竹市| 江口县| 商南县| 蓝田县| 东源县| 朝阳区| 乐平市| 进贤县| 金堂县| 谢通门县| 北宁市| 汤阴县| 繁峙县| 崇文区| 彰武县| 鄂尔多斯市| 大埔区| 蓝田县| 同德县| 晋江市| 板桥市| 华坪县| 额敏县| 永新县| 延长县| 石林| 北京市| 雅安市| 屯门区| 邵东县| 凯里市| 新野县| 开封县| 通山县| 高邮市| 婺源县| 揭西县|