喻其炳 蘇迪 焦昭杰 李川
摘要[SS]近紅外光譜(NIRS)可以檢測(cè)溶解于油中的水分含量,但油中水分較多時(shí)會(huì)散射而非吸收NIRS,從而引起較大誤差。為此,篩選非離子型表面活性劑(Span80)將含水油液穩(wěn)定分散成小顆粒,利用其NIRS數(shù)據(jù)建立水分含量的支持向量回歸模型。實(shí)驗(yàn)中油水穩(wěn)定化將NIRS測(cè)定變壓器油中水分含量的上限從傳統(tǒng)的0.1%提升到1%(V/V),通過應(yīng)用連續(xù)投影算法,在511個(gè)NIRS變量中篩選出15個(gè)有效變量(占原變量的2.9%),建立的支持向量回歸模型對(duì)驗(yàn)證集的預(yù)測(cè)均方根誤差為2.93%,相關(guān)系數(shù)為0.99,相對(duì)分析誤差為9.732。
關(guān)鍵詞[SS]油水穩(wěn)定化;近紅外光譜;連續(xù)投影算法;支持向量機(jī),油中水分
1引言
水分嚴(yán)重影響了油液的品質(zhì), 例如變壓器油中水分會(huì)加速油液氧化、降低油液絕緣性能、降低設(shè)備運(yùn)行的可靠性和縮短使用壽命\[1\]。油中水分測(cè)定常用Karl ischer(K)法,但該方法具有操作復(fù)雜、費(fèi)時(shí)而且試劑不環(huán)保、不易保存等缺點(diǎn)\[2\]。隨著光譜技術(shù)的發(fā)展\[3~5\],近紅外光譜(NIRS)已經(jīng)成功應(yīng)用于測(cè)定油品中的微量水分\[6\]。與K法相比,NIRS可以快速測(cè)量油中含水量\[7\],但是,當(dāng)油中含水量較高(例如含水量0.1%以上的變壓器油或者0.2%以上的透平油)時(shí),水分在重力作用下析出和聚集,大顆粒的水分散射而非吸收NIRS,從而對(duì)NIRS測(cè)定造成較大誤差,嚴(yán)重時(shí)甚至不能獲得測(cè)定結(jié)果。
iggins等\[8\]發(fā)現(xiàn),同一油樣通過K法測(cè)定含水量時(shí),每2 h約減少100 μg/g。因此,目前NIRS對(duì)油中微量水分(一般以溶解狀態(tài)存在)測(cè)定精度較高\[9\],對(duì)油包水形式的乳化水也能夠檢測(cè),但當(dāng)用于油中含量較大的不穩(wěn)定水分(例如水包油形式的乳化水或者游離水)的測(cè)定時(shí),其局限性就非常明顯。
為此,本研究一方面在實(shí)驗(yàn)過程提出一種油水穩(wěn)定化技術(shù),使水分均勻穩(wěn)定分散到油液中;另一方面在建模算法上采用連續(xù)投影算法(SPA)結(jié)合支持向量回歸(SVR)建模,利用算法的非線性映射能力提升含水量測(cè)定的精度。通過實(shí)驗(yàn)和建模兩個(gè)方面的改進(jìn),提升近紅外光譜方法對(duì)更高含水量油品的檢測(cè)能力。本方法以變壓器油中含水量測(cè)定為例,將NIRS測(cè)定變壓器油中水分含量的上限從傳統(tǒng)的0.1%提高到1%(V/V, 下同),大幅提升了NIRS的測(cè)定范圍,提高測(cè)量精度和建模效率。
2實(shí)驗(yàn)部分
2.1儀器設(shè)備
采用NIRQuest512近紅外光譜儀(美國Ocean Optics公司)采集油液透射光譜,波長范圍900~1722 nm,分辨率3.1nm,LS1溴鎢燈光源,載樣器光程10 mm,InGaAs檢測(cè)器,512個(gè)點(diǎn)組成光譜數(shù)據(jù)。油水穩(wěn)定化性能以及水分含量分別用ZY901型石油和合成液抗乳化自動(dòng)測(cè)試儀、SYD2122B型微量水分測(cè)定儀(K法)測(cè)定。
2.2油水穩(wěn)定化實(shí)驗(yàn)
篩選油水穩(wěn)定劑并添加到含水油品中,使水分在油品中均勻分散,實(shí)現(xiàn)油水穩(wěn)定化\[10\]。實(shí)驗(yàn)中對(duì)陰離子型、陽離子型、兩性型和非離子型等穩(wěn)定劑進(jìn)行多次篩選,得到一種非離子型油水穩(wěn)定劑Span80(失水山梨糖醇脂肪酸酯)。
由于沒有標(biāo)準(zhǔn)方法確定油水穩(wěn)定化過程中油水穩(wěn)定劑的最佳含量,本研究參考國家標(biāo)準(zhǔn)\[11\]自行設(shè)計(jì)實(shí)驗(yàn),通過測(cè)定加入油水穩(wěn)定劑后的油液的破乳化時(shí)間,間接確定表面活性劑的最佳含量,具體為:(1) 室溫下向干凈的量筒中加入0 mL蒸餾水,0 mL油樣,分別加入油樣體積(0 mL)的以0.5%為公差的等差數(shù)列的油水穩(wěn)定劑。隨后放入(5±1)℃恒溫水浴中,將攪拌葉片放入量筒內(nèi),靜置20 min, 使油水溫度與水浴溫度一致。(2) 將攪拌葉片垂直插入靜置好后的樣品中,在(1500±15) r/min轉(zhuǎn)速下攪拌5 min后提起葉片,刮掉葉片上殘留的樣品至量筒內(nèi),從側(cè)面觀察并記錄量筒內(nèi)分離的油層、水層和乳化層體積。參考國家標(biāo)準(zhǔn)\[11\],定義量筒底部出現(xiàn)10 mL水層時(shí)所用時(shí)間為破乳化時(shí)間。破乳化時(shí)間越長,油液穩(wěn)定性越好,此時(shí)的油水穩(wěn)定劑含量即為最佳含量??紤]經(jīng)濟(jì)性,取增長速度拐點(diǎn)對(duì)應(yīng)的油水穩(wěn)定劑含量作為最佳添加量。
2.3樣品制備及光譜采集
采用#25變壓器油作為油液樣品。量取200個(gè)50 mL新變壓器油于100 mL三角燒瓶中,平均分成組A與組B,分別用0.5~100 μL的微量進(jìn)樣器向樣品中注射超純水(I級(jí)水),配制成100個(gè)不同濃度梯度的含水油樣(加水量分布范圍為0~500 μL),添加超純水可減少一般水中微量元素對(duì)NIRS的影響。A組加水后不處理,B組加水后再加最佳含量油水穩(wěn)定劑(3%,具體結(jié)果見3.1節(jié)),磁力攪拌器攪拌15 min。兩組樣品均超聲振蕩10 min,使試樣混合均勻后作為實(shí)驗(yàn)樣品。
2.油中含水量的測(cè)定采集完光譜的樣品,用SYD2122B型油中水分測(cè)定儀(K法)測(cè)定樣品的含水量作為標(biāo)準(zhǔn)值。
2.5數(shù)據(jù)建模與處理
考慮到全譜數(shù)據(jù)不僅變量多建模復(fù)雜,而且包含的大量冗余信息會(huì)降低分析精度,研究采用SPA從全譜中篩選特征波長變量;對(duì)篩選的建模變量采用SVR進(jìn)行建模。
SPA是一種向前循環(huán)變量篩選方法,它從一個(gè)波長開始,循環(huán)計(jì)算其在未選入波長上的投影,使選擇的每一個(gè)新波長都與之前一個(gè)線性關(guān)系最小,最后得到投影向量最大的波長組合。目前,已有許多近紅外光譜的特征變量選擇算法\[12, 13\],其中SPA能在嚴(yán)重重疊的光譜信息中有效剔除冗余信息,削弱非目標(biāo)因素的影響,減少建模變量、提高建模效率\[1\],在近紅外光譜的多元定量和定性分析中應(yīng)用廣泛。
支持向量回歸(SVR)是一種機(jī)器學(xué)習(xí)算法\[15\],可以在非線性框架下建立回歸模型,研究采用SVR的最小二乘變種,即最小二乘支持向量回歸(LSSVR)算法建模。與標(biāo)準(zhǔn)的SVR算法相比,LSSVR降低了訓(xùn)練時(shí)間、提高了泛化能力、減少計(jì)算復(fù)雜程度,常應(yīng)用于光譜定性或定量分析中。
本實(shí)驗(yàn)采用高斯核函數(shù)的LSSVR進(jìn)行建模,對(duì)過程涉及的正則化參數(shù)γ和內(nèi)核函數(shù)σ2使用10fold Cross Validation將數(shù)據(jù)集分成10份,輪流選9份訓(xùn)練、1份測(cè)試,每次試驗(yàn)都會(huì)得出一個(gè)正確率。10次正確率的平均值作為對(duì)算法精度的估計(jì),選出最優(yōu)γ和σ2。
3結(jié)果與討論
3.1最優(yōu)油水穩(wěn)定劑實(shí)驗(yàn)結(jié)果
油水穩(wěn)定劑添加量與破乳化時(shí)間的實(shí)驗(yàn)結(jié)果見圖1。油水穩(wěn)定劑超過3%后,油液破乳化時(shí)間延長,速度減小。從經(jīng)濟(jì)性角度,取3%作為油水穩(wěn)定化的最佳添加量,實(shí)驗(yàn)中破乳化時(shí)間為119.6 min。
3.2樣品含水量及其光譜
用SYD2122B型油中水分測(cè)定儀測(cè)定200個(gè)樣品(分為A、B兩組,每一組取75個(gè)為校正集,25個(gè)為驗(yàn)證集)的含水量。兩組的含水量范圍都在0.001%~1%之間??鄢倒庾V后用透射法采集兩組樣品的近紅外光譜,光譜積分時(shí)間79ms,主板溫度31.51 ℃,平滑度2,空氣作參比,平均次數(shù)30次。A組100個(gè)不同含水量樣品(未進(jìn)行油水穩(wěn)定化處理)的近紅外光譜見圖2a,圖中部分吸光度紊亂,可能是油中含水量過高使水分在油液中分散不均,此時(shí)油樣不再是真溶液,形成了非均勻散射體系。取A組中含水量最低的70個(gè)樣品(全部低于0.1%)的近紅外光譜在圖2(b)示出,圖中吸光度還不至于紊亂,表明即使不添加油水穩(wěn)定劑,NIRS也可以測(cè)量含水量低的樣品。
3.SVR建模測(cè)定
通過隨機(jī)抽樣,按校正集:驗(yàn)證集=75∶25(3∶1)的數(shù)量比,將75個(gè)校正集光譜矩陣與含水量向量導(dǎo)入LSSVR中進(jìn)行訓(xùn)練。再將25個(gè)驗(yàn)證集光譜矩陣輸入LSSVR回歸模型,得出油中含水量結(jié)果。將其與K法標(biāo)準(zhǔn)值比較,可以判定模型的精度。A組前70號(hào)中也按校正集:驗(yàn)證集=53∶17(約3∶1)采取相同操作。驗(yàn)證集建模精度的評(píng)價(jià)指標(biāo)采用預(yù)測(cè)均方根誤差RMSEP、驗(yàn)證集的相關(guān)系數(shù)Rv(無量綱)、相對(duì)分析誤差RPD(無量綱)。RMSEP越小越好; Rv越接近1越好;而RPD<2表示預(yù)測(cè)結(jié)果不可接受,RPD>5表示預(yù)測(cè)結(jié)果可以接受,RPD>8表示預(yù)測(cè)結(jié)果很好。圖示出了A組100個(gè)樣品、B組100個(gè)樣品、A組前70個(gè)樣品、B組前70個(gè)樣品的K方法(標(biāo)準(zhǔn)值)與NIRS方法的測(cè)定結(jié)果對(duì)比。
[S(]圖K方法和NIRS測(cè)定結(jié)果比較:(a) A組100個(gè)樣品;(b) B組100個(gè)樣品;(c) A組前70個(gè)樣品;(d) B組前70個(gè)樣品
對(duì)比圖c和圖d可知,0.1%以下含水油液分散均勻,是否進(jìn)行油水穩(wěn)定化處理對(duì)建模效果幾乎無影響。對(duì)比圖a和圖b可知,當(dāng)水分高于0.1%后,不加Span80的NIRS建模結(jié)果不準(zhǔn)確,而且誤差主要出現(xiàn)在含水量高于0.1%部分的油樣中。當(dāng)加入Span80后,NIRS建模效果明顯變好。除了圖形化的直觀比較,表2定量比較了不同的實(shí)驗(yàn)數(shù)據(jù)和建模方法的測(cè)定精度,結(jié)果表明,油水穩(wěn)定化可以大幅提升NIRS測(cè)定油中水分的能力。對(duì)于光譜數(shù)據(jù)直接用SVR建模(表2第行數(shù)據(jù)),雖然測(cè)定精度高,但是全譜數(shù)據(jù)(511維)建模將會(huì)增加計(jì)算負(fù)擔(dān)。當(dāng)采用SPA降維(表2第5行數(shù)據(jù))后,建模變量從初始的511維減少到15個(gè)特征變量(占原變量的2.9%),但是測(cè)定精度與全譜建模精度基本一致,甚至其RESEP誤差還減少了0.01%。以上分析表明,本研究從實(shí)驗(yàn)和建模兩個(gè)方面改進(jìn)油中水分的NIRS測(cè)定方法,將含水量的測(cè)定上限從0.1%提高到1%,而且對(duì)測(cè)定下限沒有影響,其測(cè)定范圍提升了10倍。本方法可以用于實(shí)際的變壓器油中水分快速檢測(cè),在保證測(cè)量精度的同時(shí),還提高了建模效率。
References
1ofana I, Wasserberg V, Borsi , Gockenbach E, arzaneh M. IEEE Electrical Insulation Magazine, 2002, 8(): 5-16
2LIU WeiYing, YANG Zhiong. Guangxi Journal of Light Industry, 2011, 15(9): 3, 81
劉維英, 陽志紅. 廣西輕工業(yè), 2011, 15(9): 3, 81
3ZANG Zhen, WANG Zheng, ZOU uiJun, SI Ying. Chinese J. Anal. Chem., 2013, 1(10): 1606-1613
張 真, 汪 正, 鄒慧君, 施 鷹. 分析化學(xué), 2013, 1(10): 1606-1613
Mottaleb M A, Yang J S, Kim J. Appli. Spectros. Rev., 2002, 37 (3): 27-273
5Noda I. Appl. Spectrosc, 2000, 5(7): 99-999
6SU Di, LI Chuan, JIAO ZhaoJie. Chinese Journal of Analysis Laboratory, 2013, 32(8): 77-81
蘇 迪, 李 川, 焦昭杰. 分析試驗(yàn)室, 2013, 32(8): 77-81
7CEN Bin, LIU Ge, ZANG XianMing. Spectroscopy and Spectral Analysis, 2013, 33(11): 2959-2963
陳 彬, 劉 閣, 張賢明. 光譜學(xué)與光譜分析, 2013, 33(11): 2959-2963
8iggins , Seelenbinder J. Analytical Instrumentation, IR spotlight, September 2008
9CU XiaoLi. Molecular Spectroscopy Analytical echnology Combined with Chemometrics and Its Applications, Beijing: Chemical Industrial Press, 2011
褚小立. 化學(xué)計(jì)量學(xué)方法與分子光譜分析技術(shù), 北京: 化學(xué)工業(yè)出版社, 2011
10YU GuoXian, ZOU XiaoLong, YU LiPing, JIN YaQing. Acta Petrolei Sinca (Petroleum Processing Section), 2006, 22(): 99-103
余國賢, 周曉龍, 余立平, 金亞青. 石油學(xué)報(bào)(石油加工), 2006, 22(): 99-103
11 Determination of Demulsibility Characteristics of urbine Oils in Service. National Standards of the People′s Republic of China. GB/ 76052008
運(yùn)行中汽輪機(jī)油破乳化度測(cè)定法. 中華人民共和國標(biāo)準(zhǔn). GB/ 76052008
12GUO ZhiMing, UANG WenQian, PENG YanKun, WANG Xiu, ANG XiuYing. Chinese J. Anal. Chem., 201, 2(): 513-518
郭志明, 黃文倩, 彭彥昆, 王 秀, 湯修映. 分析化學(xué), 201, 2(): 513-518
13ranco A, Olivieri A C. Anal. Chim. Acta, 2011, 699(1): 18-25
1ilhoa A D, Galvaob R K , Araujo M C U. Chemometrics and Intelligent Laboratory Systems, 200, 72(1): 83-91
15BAO Xin, DAI LianKui. Chinese J. Anal. Chem., 2008, 36(1): 75-78
包 鑫, 戴連奎. 分析化學(xué), 2008, 36(1): 75-78
16Wu D, e Y, eng S J, Sun D W. Journal of ood Engineering, 2008, 8(1): 12-131
AbstractNear infrared spectroscopy (NIRS) is capable of determining water contents in oils. owever, too much moisture contents in the oils will scatter rather than absorb the NIRS. his may cause greater measurement error. or this reason, a nonionic surfactant (Span80) was screened to make the water in the oils evenly dispersed into small droplets. he NIRS analysis was subsequently employed to build support vector regression (SVR) model of the water content. In this experiments, the upper limit of the water content determination was improved from the conventional 0.1% to 1.0% (V/V) by the oilwater stabilization. Applying successive projection algorithm, 15 valid variables (2.9% of the original ones) from 511 NIRS variables were selected. With the proposed SVR model, the measurement precision criteria for the validation dataset were root mean squares error percentage 2.93%, correlation coefficient 0.99, and relative percent derivation 9.732%.
KeywordsOilwater stabilization; Near infrared spectroscopy; Successive projection algorithm; Support vector regression; Water content in oil
9CU XiaoLi. Molecular Spectroscopy Analytical echnology Combined with Chemometrics and Its Applications, Beijing: Chemical Industrial Press, 2011
褚小立. 化學(xué)計(jì)量學(xué)方法與分子光譜分析技術(shù), 北京: 化學(xué)工業(yè)出版社, 2011
10YU GuoXian, ZOU XiaoLong, YU LiPing, JIN YaQing. Acta Petrolei Sinca (Petroleum Processing Section), 2006, 22(): 99-103
余國賢, 周曉龍, 余立平, 金亞青. 石油學(xué)報(bào)(石油加工), 2006, 22(): 99-103
11 Determination of Demulsibility Characteristics of urbine Oils in Service. National Standards of the People′s Republic of China. GB/ 76052008
運(yùn)行中汽輪機(jī)油破乳化度測(cè)定法. 中華人民共和國標(biāo)準(zhǔn). GB/ 76052008
12GUO ZhiMing, UANG WenQian, PENG YanKun, WANG Xiu, ANG XiuYing. Chinese J. Anal. Chem., 201, 2(): 513-518
郭志明, 黃文倩, 彭彥昆, 王 秀, 湯修映. 分析化學(xué), 201, 2(): 513-518
13ranco A, Olivieri A C. Anal. Chim. Acta, 2011, 699(1): 18-25
1ilhoa A D, Galvaob R K , Araujo M C U. Chemometrics and Intelligent Laboratory Systems, 200, 72(1): 83-91
15BAO Xin, DAI LianKui. Chinese J. Anal. Chem., 2008, 36(1): 75-78
包 鑫, 戴連奎. 分析化學(xué), 2008, 36(1): 75-78
16Wu D, e Y, eng S J, Sun D W. Journal of ood Engineering, 2008, 8(1): 12-131
AbstractNear infrared spectroscopy (NIRS) is capable of determining water contents in oils. owever, too much moisture contents in the oils will scatter rather than absorb the NIRS. his may cause greater measurement error. or this reason, a nonionic surfactant (Span80) was screened to make the water in the oils evenly dispersed into small droplets. he NIRS analysis was subsequently employed to build support vector regression (SVR) model of the water content. In this experiments, the upper limit of the water content determination was improved from the conventional 0.1% to 1.0% (V/V) by the oilwater stabilization. Applying successive projection algorithm, 15 valid variables (2.9% of the original ones) from 511 NIRS variables were selected. With the proposed SVR model, the measurement precision criteria for the validation dataset were root mean squares error percentage 2.93%, correlation coefficient 0.99, and relative percent derivation 9.732%.
KeywordsOilwater stabilization; Near infrared spectroscopy; Successive projection algorithm; Support vector regression; Water content in oil
9CU XiaoLi. Molecular Spectroscopy Analytical echnology Combined with Chemometrics and Its Applications, Beijing: Chemical Industrial Press, 2011
褚小立. 化學(xué)計(jì)量學(xué)方法與分子光譜分析技術(shù), 北京: 化學(xué)工業(yè)出版社, 2011
10YU GuoXian, ZOU XiaoLong, YU LiPing, JIN YaQing. Acta Petrolei Sinca (Petroleum Processing Section), 2006, 22(): 99-103
余國賢, 周曉龍, 余立平, 金亞青. 石油學(xué)報(bào)(石油加工), 2006, 22(): 99-103
11 Determination of Demulsibility Characteristics of urbine Oils in Service. National Standards of the People′s Republic of China. GB/ 76052008
運(yùn)行中汽輪機(jī)油破乳化度測(cè)定法. 中華人民共和國標(biāo)準(zhǔn). GB/ 76052008
12GUO ZhiMing, UANG WenQian, PENG YanKun, WANG Xiu, ANG XiuYing. Chinese J. Anal. Chem., 201, 2(): 513-518
郭志明, 黃文倩, 彭彥昆, 王 秀, 湯修映. 分析化學(xué), 201, 2(): 513-518
13ranco A, Olivieri A C. Anal. Chim. Acta, 2011, 699(1): 18-25
1ilhoa A D, Galvaob R K , Araujo M C U. Chemometrics and Intelligent Laboratory Systems, 200, 72(1): 83-91
15BAO Xin, DAI LianKui. Chinese J. Anal. Chem., 2008, 36(1): 75-78
包 鑫, 戴連奎. 分析化學(xué), 2008, 36(1): 75-78
16Wu D, e Y, eng S J, Sun D W. Journal of ood Engineering, 2008, 8(1): 12-131
AbstractNear infrared spectroscopy (NIRS) is capable of determining water contents in oils. owever, too much moisture contents in the oils will scatter rather than absorb the NIRS. his may cause greater measurement error. or this reason, a nonionic surfactant (Span80) was screened to make the water in the oils evenly dispersed into small droplets. he NIRS analysis was subsequently employed to build support vector regression (SVR) model of the water content. In this experiments, the upper limit of the water content determination was improved from the conventional 0.1% to 1.0% (V/V) by the oilwater stabilization. Applying successive projection algorithm, 15 valid variables (2.9% of the original ones) from 511 NIRS variables were selected. With the proposed SVR model, the measurement precision criteria for the validation dataset were root mean squares error percentage 2.93%, correlation coefficient 0.99, and relative percent derivation 9.732%.
KeywordsOilwater stabilization; Near infrared spectroscopy; Successive projection algorithm; Support vector regression; Water content in oil