彭靜靜
摘要:以前期構(gòu)建的來源于嗜熱厭氧乙醇菌(Thermoanaerobacter ethanolicus JW200)的雙活性阿拉伯/木糖苷酶(XarB)和來源于疏棉狀嗜熱絲孢菌(Thermomyces lanuginosus DSM 5826)木聚糖酶A(XynA)融合酶為基礎(chǔ),在融合酶的兩個催化結(jié)構(gòu)域間插入多肽Linker,并通過優(yōu)化Linker組成和長度避免催化結(jié)構(gòu)域互相之間的干擾,以增強(qiáng)融合酶的催化效率。通過酶解燕麥木聚糖和麥麩試驗(yàn)發(fā)現(xiàn),帶有多肽Linker的融合酶催化效率得到了提高。
關(guān)鍵詞:半纖維素;阿拉伯/木糖苷酶;木聚糖酶;熱激表達(dá)載體pHsh;酶解
中圖分類號:Q78 文獻(xiàn)標(biāo)識碼:A 文章編號:0439-8114(2014)16-3933-03
Abstract:The trifunctional enzyme(XarB-S-XynA) associatied with xylosidasearabinosidase (XarB) of Thermoanaerobacter ethanolicus and xylanase (XynA) of Thermomyces lanuginosus was produced in E. coli to study the effects of the physical association of the fusion partners on the enzymatic efficiency. Recombinants XarB, XynA and XarB-S-XynA were purified to homogeneity and characterized. The fusion enzyme was inserted between the two catalytic domains of the polypeptide linker. Mutual interferences between the catalytic domain were avoided to enhance the catalytic efficiency of the fusion enzyme by optimizing the composition and length linker. The trifunctional hemicellulase was tested for degradating oat spelt xylan and wheat bran. Catalytic efficiency of trifunctional enzyme was improved by poly- peptide Linker.
Key words:hemicelluloses; arabinosidase-xylosidase; xylanase; heat shock expression vector pHsh; enzymolysis
農(nóng)業(yè)廢棄物是指農(nóng)業(yè)生產(chǎn)和農(nóng)副產(chǎn)品加工后的剩余物,主要包括農(nóng)作物或果樹的秸稈或枝條、雜草、落葉、果實(shí)外殼、玉米芯、甘蔗渣、麥麩皮、玉米麩等,其主要化學(xué)成分為纖維素、半纖維素、木質(zhì)素等。我國是一個農(nóng)業(yè)大國,每年秸稈產(chǎn)量達(dá)6.7億t,占世界秸稈總產(chǎn)量的20%~30%[1]。利用富含木聚糖類半纖維素的農(nóng)業(yè)廢棄物提取木糖(生產(chǎn)木糖醇)和制備低聚木糖的研究也成為當(dāng)前該領(lǐng)域的研究前沿和熱點(diǎn)問題。雖然已有上百種木聚糖酶被克隆或被提純,并且這些酶在底物特異性熱穩(wěn)定性及酶反應(yīng)的底物范圍等方面都各有優(yōu)勢,但是相對于半纖維素結(jié)構(gòu)及其降解的復(fù)雜特點(diǎn),僅靠細(xì)菌所產(chǎn)的單一酶類仍不能實(shí)現(xiàn)農(nóng)業(yè)廢棄物的高效利用,也不能滿足工業(yè)生產(chǎn)的需要。雙重活性的重組酶XarB與木聚糖酶協(xié)同作用而徹底降解阿拉伯木聚糖,是工業(yè)酶制劑的理想酶源,從而為構(gòu)建多功能半纖維素融合酶提供很好的酶材料[2]。在不改變酶自身優(yōu)良性質(zhì)的條件下,如果將有關(guān)的水解酶融合串聯(lián)成一個具有多種水解酶活性的多功能酶,或通過融合標(biāo)簽回收重復(fù)利用酶,來提高融合酶的酶解效率,將大大簡化了工序和降低成本[3-5]。
本研究以極端嗜熱菌(Thermophilic lanuginosus)為材料,利用熱激表達(dá)載體pHsh,將木聚糖酶基因(xynA)融合于雙活性阿拉伯/木糖苷酶(XarB)的C端,構(gòu)建了融合酶表達(dá)質(zhì)粒pHsh-xarB-xynA,為酶法降解半纖維素的工業(yè)化生產(chǎn)提供有效的技術(shù)路線和解決方案。
1 材料與方法
1.1 材料
大腸桿菌(E. coli)DH10B、JM109,PCR所用擴(kuò)增酶及T4 DNA磷酸激酶均購于寶生物工程(大連)有限公司;木瓜蛋白酶(≥50萬IU)購自北京索萊寶科技有限公司;α-淀粉酶(≥4 000 IU)購自北京奧博星生物技術(shù)有限責(zé)任公司。
熱激表達(dá)載體pHsh由泰山學(xué)院生物與釀酒工程學(xué)院構(gòu)建并保存,該表達(dá)載體是由大腸桿菌σ32因子調(diào)控,包括一個熱激啟動子和終止子,通過熱激誘導(dǎo)外源基因表達(dá)[6-9]。
含有嗜熱厭氧乙醇菌(T. ethanolicus JW200)的雙活性阿拉伯/木糖苷酶(XarB)基因的質(zhì)粒pHsh-xarB和含有來源于疏棉狀嗜熱絲孢菌(T.lanuginosus DSM 5826)木聚糖酶A(XynA)基因的質(zhì)粒pHsh-xynA以及同時含有這兩個基因的質(zhì)粒pHsh-xarB-xynA均為泰山學(xué)院生物與釀酒工程學(xué)院構(gòu)建并保存。
1.2 方法
1.2.1 重組表達(dá)質(zhì)粒pHsh-xarB-s-xynA的構(gòu)建 根據(jù)長度為12個氨基酸的連接肽L1(SAGSSAAGSGSG)相應(yīng)的堿基序列設(shè)計xynA-N的N端引物,即為xynA-s-N:5-CCCGATATCAGCendprint
GCGGGCAGCAGCGCGGCGGGCAGCGGCAGCGGC
ATGCAGACTACCCCGAAC-3,下劃線為EcoR V酶切位點(diǎn);xynA-C:5-CCGCTCGAGGCCAACGTCAG
CAACA -3,下劃線為XhoⅠ酶切位點(diǎn)。以xynA-s-N和xynA-C為引物,重組表達(dá)質(zhì)粒pHsh-xynA為模板,PCR擴(kuò)增pHsh-s-xynA片段。根據(jù)GenBank中嗜熱厭氧乙醇菌(T. ethanolicus JW200)雙活性阿拉伯/木糖苷酶(XarB)的基因序列(GenBank accession no. AF135015)設(shè)計引物xarB-N和xarB-C:xarB-N:5'- GCAAGCCATTATATTTAGATTC-3';xarB-C:5'-CTATTTATTCTCTACCCTTAC-3';以重組表達(dá)質(zhì)粒pHsh-xarB為模板,擴(kuò)增基因xarB,為提高所擴(kuò)增片段的保真性,用Pyrobest DNA聚合酶對模板進(jìn)行擴(kuò)增, PCR產(chǎn)物用T4 DNA磷酸激酶進(jìn)行磷酸化處理。將以上所得片段用T4 DNA連接酶16 ℃連接6~12 h后,將連接產(chǎn)物轉(zhuǎn)化入大腸桿菌DH10B。挑取陽性克隆,提取質(zhì)粒用XhoⅠ限制性內(nèi)切酶單酶切驗(yàn)證,并將陽性質(zhì)粒送至上海美吉生物技術(shù)公司測序。
1.2.2 重組蛋白的表達(dá)與純化 將重組質(zhì)粒pHsh-xarB、pHsh-xynA、pHsh-xarB-xynA、pHsh-xarB-s-xynA電轉(zhuǎn)化到大腸桿菌JM109中,挑取重組單菌落接種于含100 μg/mL的Amp的LB培養(yǎng)液中30 ℃振蕩培養(yǎng)。當(dāng)培養(yǎng)至OD600 nm為0.6~0.8時轉(zhuǎn)入42 ℃水浴搖床進(jìn)行熱激表達(dá)繼續(xù)培養(yǎng)8 h后離心收集菌體。用50 mmol/L pH 7.5的Tris-HCl緩沖液洗滌細(xì)胞2次,并用相同緩沖液重懸細(xì)胞,置于冰浴中用超聲波破碎儀破碎細(xì)胞。細(xì)胞碎片于12 000 r/min離心10 min,去除上清液即為粗酶液。將粗酶液在60 ℃熱處理30 min后,4 ℃、12 000 r/min離心30 min去除變性蛋白。
1.2.3 游離酶及融合酶的燕麥木聚糖(OSX)和去淀粉麥麩(WB)酶解試驗(yàn) 分別稱取燕麥木聚糖(OSX)400 mg和去淀粉麥麩(WB)200 mg溶于5 mL 100 mmol/L的磷酸緩沖液(pH 6.2)中,分別加入純化的游離酶和融合酶形成XynA、XarB-XynA、XarB-S-XynA、XarB+XynA處理,以不加入任何融合酶對照。為了進(jìn)一步檢測不同反應(yīng)時間釋放的還原糖量,分別將各反應(yīng)體系放置于65 ℃下反應(yīng)1、 3、 5、 8、 12 h后取樣,并利用DNS法測還原糖濃度。
2 結(jié)果與分析
2.1 重組表達(dá)質(zhì)粒pHsh-xarB-s-xynA的構(gòu)建
以xynA-s-N和xynA-C為引物,重組質(zhì)粒pHsh-xynA為模板,PCR擴(kuò)增出帶有連接肽(s)的線性pHsh-s-xynA,約3 000 bp(圖1A),將經(jīng)磷酸化處理后的xarB經(jīng)電泳檢測,基因大小為2 300 bp(圖1A)。將pHsh-s-xynA和磷酸化處理后的xarB進(jìn)行連接,陽性轉(zhuǎn)化子抽提質(zhì)粒,采用XhoⅠ單酶切表達(dá)質(zhì)粒pHsh-xarB-s-xynA后釋放出5 300 bp左右的條帶(圖1B),測序結(jié)果顯示兩個基因已正確插入到正確位置。
2.2 重組多功能半纖維素酶的表達(dá)
將重組質(zhì)粒pHsh-xarB,pHsh-xynA,pHsh-xarB-s-xynA電轉(zhuǎn)化到大腸桿菌JM109,中挑取重組單菌落接種于含100 μg/mL的Amp的LB培養(yǎng)液中30 ℃振蕩培養(yǎng)。當(dāng)培養(yǎng)至OD600 nm為0.6~0.8時轉(zhuǎn)入42 ℃水浴搖床進(jìn)行熱激表達(dá)繼續(xù)培養(yǎng)8 h后離心收集菌體。SDS-PAGE分析結(jié)果(圖2)表明,含有質(zhì)粒pHsh-xarB的重組菌能產(chǎn)生86 ku的特異性條帶,含有質(zhì)粒pHsh-xynA的重組菌能產(chǎn)生22 ku的特異性條帶。本試驗(yàn)構(gòu)建的重組菌能產(chǎn)生約108 ku的特異條帶,與預(yù)期的蛋白相對分子質(zhì)量(86 ku+22 ku)一致,表明成功構(gòu)建帶有連接肽的多功能半纖維素酶。
2.3 融合酶的酶解試驗(yàn)
燕麥木聚糖(OSX)作為酶解底物時(圖3A),在65 ℃下酶解12 h,游離酶XynA釋放的還原糖濃度為7.1 mg/mL;而XarB+XynA酶解12 h釋放的還原糖濃度為8.1 mg/mL;XarB-XynA酶解12 h釋放的還原糖濃度為6.8 mg/mL;XarB-S-XynA酶解12 h釋放的還原糖濃度為7.4 mg/mL。所以以燕麥木聚糖(OSX)為酶解底物時,XarB+XynA的酶解效率最高。
去淀粉麥麩作為酶解底物時(圖3B),在65 ℃下酶解12 h,游離酶XynA釋放的還原糖濃度為0.8 mg/mL;而XarB+XynA酶解12 h釋放的還原糖濃度為1.0 mg/mL;XarB-XynA酶解12 h釋放的還原糖濃度為1.2 mg/mL;XarB-S-XynA酶解12 h釋放的還原糖濃度為1.4 mg/mL。綜合分析可知,以去淀粉麥麩作為酶解底物時,XarB-XynA的酶解效率高于游離酶的組合XarB+XynA,更高于游離酶XynA單獨(dú)酶解作用,而添加了一段多肽Linker的XarB-S-XynA能夠增強(qiáng)融合酶XarB-XynA的酶解效率,在試驗(yàn)組中釋放還原糖濃度達(dá)到最高。
3 小結(jié)與討論
木聚糖主鏈和側(cè)鏈含有不同的側(cè)枝,主要有乙酰基、阿拉伯糖基和葡萄糖醛酸基等。木聚糖完全降解需要多種水解酶的協(xié)同作用,當(dāng)內(nèi)切木聚糖酶隨機(jī)作用木聚糖時便受到這些基團(tuán)的空間阻礙,而不能到達(dá)所作用的木糖苷鍵,所形成的產(chǎn)物只能是帶側(cè)枝的低聚糖。在不改變酶自身優(yōu)良性質(zhì)的條件下,如果將有關(guān)的水解酶融合串聯(lián)成一個具有多種水解酶活性的多功能酶,或通過融合標(biāo)簽回收重復(fù)利用酶,來提高融合酶的綜合效率[10,11],將大大簡化了工序和降低成本。因此本研究將木聚糖降解需要的多種水解酶進(jìn)行基因融合,力求使用基因工程和蛋白質(zhì)工程手段得到多功能高效率耐高溫的木聚糖降解的融合酶。目前常用的連接肽是柔性Linker,其主要組分是甘氨酸(Gly)和絲氨酸(Ser),并且考慮到連接肽在表達(dá)宿主中的穩(wěn)定性,本研究設(shè)計了連接肽氨基酸序列為SAGSSAAGSGSG。在優(yōu)選的兩個催化結(jié)構(gòu)域XarB和XynA間插入Linker連接肽構(gòu)建了融合酶XarB-S-XynA,試驗(yàn)結(jié)果表明,該融合酶有著比其他融合酶更高的熱穩(wěn)定性和酶解效率,其生物活性能夠得到改善,表明在只含有Gly和Ser的連接肽中加入Ala,使融合酶XarB-xynA的功能得到優(yōu)化,該方法是有效可行的。endprint
參考文獻(xiàn):
[1] BASTAWDE K B. Xylan structure, microbial xylanase, and their mode of action [J]. World J Microbiol Biotechnol,1992, 8:353-368.
[2] YIN E K., LE Y L, PEI J J, et al. High-level expression of the xylanase from Thermomyces lanuginosus in Escherichia coli [J]. World J Microbiol Biotechnol, 2008, 24 (2): 275-280.
[3] MAKRIDES S C. Strategies for achieving high-level expressionof genes in Escherichia coli [J]. Microbiol Rev, 1996, 60 (3): 512-538.
[4] SPAG A, WOUTERS J, LAMBERT C, et al. The endoxylanases from family 11: Computer analysis of protein sequences reveals important structure and phylogenetic relationships[J]. J Biotechnol. 2002, 95 (2): 109-131.
[5] BANEYX F. Recombinant protein expression in Escherichia coli[J]. Curr Opin Biotechnol, 1999, 10(5): 411-421.
[6] 蔣鈺瑤,何嘉榮,王未未,等.新型大腸桿菌高效表達(dá)載體pHsh的構(gòu)建與應(yīng)用[J].微生物學(xué)通報,2012,39(3):394-400.
[7] WU H W, PEI J J, WU G G, et al. Overexpression of GH10 endoxylanase XynB from T. maritima in E. coli by a novel vector with potential for industrial application[J]. Enzyme Microb Technology, 2008, 42(3): 230-234.
[8] SHAO W L, WU H W, PEI J J. Novel expression vector system regulated by sigma32 and methods for using it to produce recombinant protein[P]. US patent:US 2007/0254335A1.2007-11-07.
[9] WU H W, PEI J J, JIANG Y, et al. pHsh vectors, a novel expression system of Escherichia coli for the large-scale production of recombinant enzymes[J]. Biotechnology Letters,2010,42(3):795-801.
[10] JIN M A, YOUNG K K,WOO J L, et al. Evaluation of a novel bifunctional xylanase–cellulose constructed by gene fusion[J]. Enzyme Microb Technol, 2005, 36(7):989-995.
[11] LU P, FENG M G, LI W F, et al. Construction and characterization of a bifunctional fusion enzyme of Bacillus-sourced β-glucanase and xylanase expressed in Escherichia coli[J]. FEMS Microbiol Lett, 2006, 261(2): 224-230.endprint
參考文獻(xiàn):
[1] BASTAWDE K B. Xylan structure, microbial xylanase, and their mode of action [J]. World J Microbiol Biotechnol,1992, 8:353-368.
[2] YIN E K., LE Y L, PEI J J, et al. High-level expression of the xylanase from Thermomyces lanuginosus in Escherichia coli [J]. World J Microbiol Biotechnol, 2008, 24 (2): 275-280.
[3] MAKRIDES S C. Strategies for achieving high-level expressionof genes in Escherichia coli [J]. Microbiol Rev, 1996, 60 (3): 512-538.
[4] SPAG A, WOUTERS J, LAMBERT C, et al. The endoxylanases from family 11: Computer analysis of protein sequences reveals important structure and phylogenetic relationships[J]. J Biotechnol. 2002, 95 (2): 109-131.
[5] BANEYX F. Recombinant protein expression in Escherichia coli[J]. Curr Opin Biotechnol, 1999, 10(5): 411-421.
[6] 蔣鈺瑤,何嘉榮,王未未,等.新型大腸桿菌高效表達(dá)載體pHsh的構(gòu)建與應(yīng)用[J].微生物學(xué)通報,2012,39(3):394-400.
[7] WU H W, PEI J J, WU G G, et al. Overexpression of GH10 endoxylanase XynB from T. maritima in E. coli by a novel vector with potential for industrial application[J]. Enzyme Microb Technology, 2008, 42(3): 230-234.
[8] SHAO W L, WU H W, PEI J J. Novel expression vector system regulated by sigma32 and methods for using it to produce recombinant protein[P]. US patent:US 2007/0254335A1.2007-11-07.
[9] WU H W, PEI J J, JIANG Y, et al. pHsh vectors, a novel expression system of Escherichia coli for the large-scale production of recombinant enzymes[J]. Biotechnology Letters,2010,42(3):795-801.
[10] JIN M A, YOUNG K K,WOO J L, et al. Evaluation of a novel bifunctional xylanase–cellulose constructed by gene fusion[J]. Enzyme Microb Technol, 2005, 36(7):989-995.
[11] LU P, FENG M G, LI W F, et al. Construction and characterization of a bifunctional fusion enzyme of Bacillus-sourced β-glucanase and xylanase expressed in Escherichia coli[J]. FEMS Microbiol Lett, 2006, 261(2): 224-230.endprint
參考文獻(xiàn):
[1] BASTAWDE K B. Xylan structure, microbial xylanase, and their mode of action [J]. World J Microbiol Biotechnol,1992, 8:353-368.
[2] YIN E K., LE Y L, PEI J J, et al. High-level expression of the xylanase from Thermomyces lanuginosus in Escherichia coli [J]. World J Microbiol Biotechnol, 2008, 24 (2): 275-280.
[3] MAKRIDES S C. Strategies for achieving high-level expressionof genes in Escherichia coli [J]. Microbiol Rev, 1996, 60 (3): 512-538.
[4] SPAG A, WOUTERS J, LAMBERT C, et al. The endoxylanases from family 11: Computer analysis of protein sequences reveals important structure and phylogenetic relationships[J]. J Biotechnol. 2002, 95 (2): 109-131.
[5] BANEYX F. Recombinant protein expression in Escherichia coli[J]. Curr Opin Biotechnol, 1999, 10(5): 411-421.
[6] 蔣鈺瑤,何嘉榮,王未未,等.新型大腸桿菌高效表達(dá)載體pHsh的構(gòu)建與應(yīng)用[J].微生物學(xué)通報,2012,39(3):394-400.
[7] WU H W, PEI J J, WU G G, et al. Overexpression of GH10 endoxylanase XynB from T. maritima in E. coli by a novel vector with potential for industrial application[J]. Enzyme Microb Technology, 2008, 42(3): 230-234.
[8] SHAO W L, WU H W, PEI J J. Novel expression vector system regulated by sigma32 and methods for using it to produce recombinant protein[P]. US patent:US 2007/0254335A1.2007-11-07.
[9] WU H W, PEI J J, JIANG Y, et al. pHsh vectors, a novel expression system of Escherichia coli for the large-scale production of recombinant enzymes[J]. Biotechnology Letters,2010,42(3):795-801.
[10] JIN M A, YOUNG K K,WOO J L, et al. Evaluation of a novel bifunctional xylanase–cellulose constructed by gene fusion[J]. Enzyme Microb Technol, 2005, 36(7):989-995.
[11] LU P, FENG M G, LI W F, et al. Construction and characterization of a bifunctional fusion enzyme of Bacillus-sourced β-glucanase and xylanase expressed in Escherichia coli[J]. FEMS Microbiol Lett, 2006, 261(2): 224-230.endprint