b>0)的焦距為4,其短軸兩個(gè)端點(diǎn)與長(zhǎng)軸一個(gè)端點(diǎn)構(gòu)成正三角形.(Ⅰ)求橢圓C的方程.(Ⅱ)設(shè)F為橢圓C的左焦點(diǎn),T為直線x=-3上任一點(diǎn),過(guò)F作TF的垂線交橢圓于P,Q兩點(diǎn).(?。┳C明:OT平分線段PQ(其中O是坐標(biāo)原點(diǎn)).(ⅱ)當(dāng)TFPQ最小時(shí)"/>
王戶世
題目(2014年四川理第20題)橢圓C:x2a2+y2b2=1(a>b>0)的焦距為4,其短軸兩個(gè)端點(diǎn)與長(zhǎng)軸一個(gè)端點(diǎn)構(gòu)成正三角形.
(Ⅰ)求橢圓C的方程.
(Ⅱ)設(shè)F為橢圓C的左焦點(diǎn),T為直線x=-3上任一點(diǎn),過(guò)F作TF的垂線交橢圓于P,Q兩點(diǎn).
(ⅰ)證明:OT平分線段PQ(其中O是坐標(biāo)原點(diǎn)).
(ⅱ)當(dāng)TFPQ最小時(shí),求T點(diǎn)坐標(biāo).
答案如下(過(guò)程略):(Ⅰ)x26+y22=1;(Ⅱ).(?。┞?;(ⅱ)TFPQ取最小值33時(shí),點(diǎn)T(-3,±1).
分析本題第(Ⅱ)問(wèn)是針對(duì)橢圓x26+y22=1,(?。┳C明:OT平分PQ;(ⅱ)當(dāng)TFPQ取最小值33時(shí),求出T(-3,±1),透過(guò)現(xiàn)象看本質(zhì),我們可否把這個(gè)橢圓推廣,使本題的條件僅作為一種特殊情況?一番研究,得到如下收獲:
圖1
定理1橢圓x2a2+y2b2=1(a>b>0)的焦點(diǎn)為F,T為橢圓準(zhǔn)線上任一點(diǎn)(焦點(diǎn)和準(zhǔn)線在y軸同側(cè)),過(guò)F作TF的垂線交橢圓于P,Q兩點(diǎn).
(ⅰ)證明:OT平分線段PQ(其中O是坐標(biāo)原點(diǎn)).
(ⅱ)當(dāng)c2>b2時(shí),TFPQ有最小值ba,這時(shí)
T(a2c,±bcc2-b2).
證明不妨取橢圓右焦點(diǎn)F(c,0)和右準(zhǔn)線x=a2c(左焦點(diǎn)和左準(zhǔn)線時(shí)同理可證明).
(?。┰O(shè)T(a2c,m),則kTF=cmb2,當(dāng)m=0時(shí),T為橢圓右準(zhǔn)線與x軸的交點(diǎn),這時(shí)PQ為橢圓的通徑,OT顯然平分PQ.當(dāng)m≠0時(shí),由條件知kPQ=-b2cm,所以直線PQ方程為:y=-b2cm(x-c),記P(x1,y1),Q(x2,y2),聯(lián)立x2a2+y2b2=1,
y=-b2cm(x-c),
得(c2m2+a2b2)x2-2a2b2cx+c2a2(b2-m2)=0,
因?yàn)棣?4a4b4c2-4a2c2(c2m2+a2b2)(b2-m2)=4a2c2m2(c2m2+b4)>0,
所以x1+x2=2a2b2cc2m2+a2b2,
x1x2=c2a2(b2-m2)c2m2+a2b2.(*)
y1+y2=-b2cm(x1+x2-2c)=2b2c2mc2m2+a2b2,
知PQ中點(diǎn)N(a2b2cc2m2+a2b2,b2c2mc2m2+a2b2),則kON=cma2,又kOT=cma2,知O,T,N三點(diǎn)共線,即OT過(guò)線段PQ的中點(diǎn)N,所以O(shè)T平分PQ.
(ⅱ)因?yàn)門F=a2c-c=b4+m2c2c,PQ=1+k2PQ(x1+x2)2-4x1x2
把kPQ=-b2cm及(*)式代入得:PQ=1+-b2cm22a2b2cc2m2+a2b2c2a2(b2-m2)c2m2+a2b2
=2a(b4+c2m2)c2m2+a2b2,所以TFPQ=c2m2+a2b22acb4+c2m2=
12ac(c2m2+b4)+b4c4c2m2+b4+2b2c2≥ba,即TFPQ≥ba,當(dāng)且僅當(dāng)c2m2+b4=b2c2
m2=b2c2(c2-b2)時(shí)取等號(hào),因?yàn)橐阎獥l件有c2>b2,所以當(dāng)m=±bcc2-b2時(shí),TFPQmin=ba,這時(shí)Ta2c,±bcc2-b2.
反過(guò)來(lái)看四川高考20題第(Ⅱ)問(wèn),相當(dāng)于定理1中a2=6,b2=2,F(xiàn)為左焦點(diǎn),T為左準(zhǔn)線x=-a2c=-3上一點(diǎn),由定理1知(?。㎡T平分PQ.(ⅱ)因?yàn)閏2=4知c2>b2成立,知TFPQ有最小值ba=33,這時(shí)T-a2c,±bcc2-b2,即T(-3,±1).
圖2
推論1橢圓x2a2+y2b2=1(a>b>0)的焦點(diǎn)為F,T為橢圓準(zhǔn)線上任一點(diǎn)(焦點(diǎn)和準(zhǔn)線在y軸同側(cè)),過(guò)F作TF的垂線交橢圓于P,Q兩點(diǎn),P關(guān)于坐標(biāo)原點(diǎn)O的對(duì)稱點(diǎn)為P′,則P′Q∥OT.
證明由定理1知OT平分線段PQ,即OT過(guò)線段PQ的中點(diǎn)N,又O是PP′的中點(diǎn),所以O(shè)N是△PP′Q的中
位線,則P′Q∥ON,即P′Q∥OT.
定理2橢圓x2a2+y2b2=1(a>b>0)的焦點(diǎn)為F,T為橢圓準(zhǔn)線上(但非x軸上)任一點(diǎn)(其中焦點(diǎn),準(zhǔn)線在y軸同側(cè)),過(guò)F作TF的垂線交橢圓于P,Q兩點(diǎn),則kOT·kPQ=-b2a2.
證明不妨取橢圓右焦點(diǎn)F(c,0)和右準(zhǔn)線x=a2c,設(shè)Ta2c,m,因T非x軸上點(diǎn),所以m≠0,則kTF=ma2c-c=cmb2,知kPQ=-b2cm,又kOT=cma2,所以kOT·kPQ=-b2a2.
定理3雙曲線C:x2a2-y2b2=1的焦點(diǎn)為F,T為雙曲線準(zhǔn)線上任一點(diǎn)(焦點(diǎn)和準(zhǔn)線在y軸同側(cè)),且T點(diǎn)的縱坐標(biāo)m≠±abc,過(guò)F作TF的垂線交雙曲線于P,Q兩點(diǎn).
(ⅰ)證明:直線OT平分線段PQ(其中O是坐標(biāo)原點(diǎn)).
(ⅱ)TFPQ=
12ac(c2m2+b4)+b4c4c2m2+b4-2b2c2.
圖3
證明不妨取雙曲線右焦點(diǎn)F(c,0)和右準(zhǔn)線x=a2c(左焦點(diǎn)和左準(zhǔn)線時(shí)同理可證明).
(ⅰ)設(shè)Ta2c,m,則kTF=-cmb2,當(dāng)m=0時(shí),T為雙曲線右準(zhǔn)線x=a2c與x軸的交點(diǎn),這時(shí)PQ為雙曲線的通徑,OT顯然平分PQ.當(dāng)m≠0時(shí),由條件知kPQ=b2cm,所以直線PQ方程為:y=b2cm(x-c),記P(x1,y1),Q(x2,y2),聯(lián)立x2a2-y2b2=1,
y=b2cm(x-c),得
(c2m2-a2b2)x2+2a2b2cx-c2a2(b2+m2)=0,因?yàn)閙≠±abc,知c2m2-a2b2≠0,
又Δ=4a4b4c2+4a2c2(c2m2-a2b2)(b2+m2)=4a2c2m2(c2m2+b4)>0,
所以x1+x2=-2a2b2cc2m2-a2b2,
x1x2=-c2a2(b2+m2)c2m2-a2b2.(*)
y1+y2=b2cm(x1+x2-2c)=-2b2c2mc2m2-a2b2,知PQ中點(diǎn)N-a2b2cc2m2-a2b2,-b2c2mc2m2-a2b2,則kON=cma2,又kOT=cma2,知O,T,N三點(diǎn)共線,即直線OT過(guò)線段PQ的中點(diǎn)N,所以直線OT平分PQ.
(ⅱ)因?yàn)門F=a2c-c2+m2=b4+m2c2c,PQ=1+k2PQ(x1+x2)2-4x1x2,
把kPQ=b2cm及(*)式代入得:PQ=1+b2cm2-2a2b2cc2m2-a2b22+4c2a2(b2+m2)c2m2-a2b2
=
2a(b4+c2m2)c2m2-a2b2,所以TFPQ=c2m2-a2b22acb4+c2m2=
12ac(c2m2+b4)+b4c4c2m2+b4-2b2c2.
注:因?yàn)閙≠±abc,基本不等式(c2m2+b4)+b4c4c2m2+b4≥2b2c2中等號(hào)不成立.
即TFPQ=
12ac(c2m2+b4)+b4c4c2m2+b4-2b2c2.
圖4
推論2雙曲線x2a2-y2b2=1的焦點(diǎn)為F,T為雙曲線準(zhǔn)線上任一點(diǎn)(焦點(diǎn)和準(zhǔn)線在y軸同側(cè)),且T點(diǎn)的縱坐標(biāo)m≠±abc,過(guò)F作TF的垂線交雙曲線于P,Q兩點(diǎn),P關(guān)于坐標(biāo)原點(diǎn)O的對(duì)稱點(diǎn)為P′,則P′Q∥OT.
證明由定理3知直線OT平分線段PQ,即直線OT過(guò)線段PQ的中點(diǎn)N,又O是PP′的中點(diǎn),所以O(shè)N是
△PP′Q的中位線,則P′Q∥ON,即P′Q∥OT.
注:結(jié)合定理3的證明知:m≠±abc,是為了保證“過(guò)F作TF的垂線能夠交雙曲線于P,Q兩點(diǎn)”,否則直線PQ與一條漸近線平行,過(guò)F作TF的垂線與雙曲線只有一個(gè)交點(diǎn).
定理4雙曲線x2a2-y2b2=1的焦點(diǎn)為F,T為雙曲線準(zhǔn)線上(但非x軸上)任一點(diǎn)(其中焦點(diǎn)和準(zhǔn)線在y軸同側(cè)),過(guò)F作TF的垂線交雙曲線于P,Q兩點(diǎn),
則kOT·kPQ=b2a2.
證明不妨取雙曲線右焦點(diǎn)F(c,0)和右準(zhǔn)線x=a2c,設(shè)T(a2c,m),因T非x軸上點(diǎn),所以m≠0,則kTF=ma2c-c=-cmb2,知kPQ=b2cm,又kOT=cma2,所以kOT·kPQ=b2a2.
定理5拋物線y2=2px的焦點(diǎn)為F,T為拋物線準(zhǔn)線上任一點(diǎn),過(guò)F作TF的垂線交拋物線于P,Q兩點(diǎn),弦PQ中點(diǎn)為N,則NT平行于x軸.
圖5
證明因Fp2,0,設(shè)T-p2,m,則kTF=-mp,當(dāng)m=0時(shí),T為拋物線準(zhǔn)線與x軸的交點(diǎn),這時(shí)PQ為拋物線的通徑,點(diǎn)N與焦點(diǎn)F重合,顯然NT平行于x軸.當(dāng)m≠0時(shí),由條件知kPQ=pm,所以直線PQ方程為:y=pm(x-p2),聯(lián)立y2=2px
y=pm(x-p2),得4p2x2-4p(p2+2m2)x+p4=0,又
Δ=16p2(p2+2m2)2-16p6=64p2m2(p2+m2)>0,記P(x1,y1)、Q(x2,y2),由根與系數(shù)關(guān)系知x1+x2=p2+2m2p,y1+y2=pm(x1+x2-p)=2m,所以弦PQ中點(diǎn)N(p2+2m22p,m),又T(-p2,m),知kNT=0,則NT平行于x軸.
又Δ=4a4b4c2+4a2c2(c2m2-a2b2)(b2+m2)=4a2c2m2(c2m2+b4)>0,
所以x1+x2=-2a2b2cc2m2-a2b2,
x1x2=-c2a2(b2+m2)c2m2-a2b2.(*)
y1+y2=b2cm(x1+x2-2c)=-2b2c2mc2m2-a2b2,知PQ中點(diǎn)N-a2b2cc2m2-a2b2,-b2c2mc2m2-a2b2,則kON=cma2,又kOT=cma2,知O,T,N三點(diǎn)共線,即直線OT過(guò)線段PQ的中點(diǎn)N,所以直線OT平分PQ.
(ⅱ)因?yàn)門F=a2c-c2+m2=b4+m2c2c,PQ=1+k2PQ(x1+x2)2-4x1x2,
把kPQ=b2cm及(*)式代入得:PQ=1+b2cm2-2a2b2cc2m2-a2b22+4c2a2(b2+m2)c2m2-a2b2
=
2a(b4+c2m2)c2m2-a2b2,所以TFPQ=c2m2-a2b22acb4+c2m2=
12ac(c2m2+b4)+b4c4c2m2+b4-2b2c2.
注:因?yàn)閙≠±abc,基本不等式(c2m2+b4)+b4c4c2m2+b4≥2b2c2中等號(hào)不成立.
即TFPQ=
12ac(c2m2+b4)+b4c4c2m2+b4-2b2c2.
圖4
推論2雙曲線x2a2-y2b2=1的焦點(diǎn)為F,T為雙曲線準(zhǔn)線上任一點(diǎn)(焦點(diǎn)和準(zhǔn)線在y軸同側(cè)),且T點(diǎn)的縱坐標(biāo)m≠±abc,過(guò)F作TF的垂線交雙曲線于P,Q兩點(diǎn),P關(guān)于坐標(biāo)原點(diǎn)O的對(duì)稱點(diǎn)為P′,則P′Q∥OT.
證明由定理3知直線OT平分線段PQ,即直線OT過(guò)線段PQ的中點(diǎn)N,又O是PP′的中點(diǎn),所以O(shè)N是
△PP′Q的中位線,則P′Q∥ON,即P′Q∥OT.
注:結(jié)合定理3的證明知:m≠±abc,是為了保證“過(guò)F作TF的垂線能夠交雙曲線于P,Q兩點(diǎn)”,否則直線PQ與一條漸近線平行,過(guò)F作TF的垂線與雙曲線只有一個(gè)交點(diǎn).
定理4雙曲線x2a2-y2b2=1的焦點(diǎn)為F,T為雙曲線準(zhǔn)線上(但非x軸上)任一點(diǎn)(其中焦點(diǎn)和準(zhǔn)線在y軸同側(cè)),過(guò)F作TF的垂線交雙曲線于P,Q兩點(diǎn),
則kOT·kPQ=b2a2.
證明不妨取雙曲線右焦點(diǎn)F(c,0)和右準(zhǔn)線x=a2c,設(shè)T(a2c,m),因T非x軸上點(diǎn),所以m≠0,則kTF=ma2c-c=-cmb2,知kPQ=b2cm,又kOT=cma2,所以kOT·kPQ=b2a2.
定理5拋物線y2=2px的焦點(diǎn)為F,T為拋物線準(zhǔn)線上任一點(diǎn),過(guò)F作TF的垂線交拋物線于P,Q兩點(diǎn),弦PQ中點(diǎn)為N,則NT平行于x軸.
圖5
證明因Fp2,0,設(shè)T-p2,m,則kTF=-mp,當(dāng)m=0時(shí),T為拋物線準(zhǔn)線與x軸的交點(diǎn),這時(shí)PQ為拋物線的通徑,點(diǎn)N與焦點(diǎn)F重合,顯然NT平行于x軸.當(dāng)m≠0時(shí),由條件知kPQ=pm,所以直線PQ方程為:y=pm(x-p2),聯(lián)立y2=2px
y=pm(x-p2),得4p2x2-4p(p2+2m2)x+p4=0,又
Δ=16p2(p2+2m2)2-16p6=64p2m2(p2+m2)>0,記P(x1,y1)、Q(x2,y2),由根與系數(shù)關(guān)系知x1+x2=p2+2m2p,y1+y2=pm(x1+x2-p)=2m,所以弦PQ中點(diǎn)N(p2+2m22p,m),又T(-p2,m),知kNT=0,則NT平行于x軸.
又Δ=4a4b4c2+4a2c2(c2m2-a2b2)(b2+m2)=4a2c2m2(c2m2+b4)>0,
所以x1+x2=-2a2b2cc2m2-a2b2,
x1x2=-c2a2(b2+m2)c2m2-a2b2.(*)
y1+y2=b2cm(x1+x2-2c)=-2b2c2mc2m2-a2b2,知PQ中點(diǎn)N-a2b2cc2m2-a2b2,-b2c2mc2m2-a2b2,則kON=cma2,又kOT=cma2,知O,T,N三點(diǎn)共線,即直線OT過(guò)線段PQ的中點(diǎn)N,所以直線OT平分PQ.
(ⅱ)因?yàn)門F=a2c-c2+m2=b4+m2c2c,PQ=1+k2PQ(x1+x2)2-4x1x2,
把kPQ=b2cm及(*)式代入得:PQ=1+b2cm2-2a2b2cc2m2-a2b22+4c2a2(b2+m2)c2m2-a2b2
=
2a(b4+c2m2)c2m2-a2b2,所以TFPQ=c2m2-a2b22acb4+c2m2=
12ac(c2m2+b4)+b4c4c2m2+b4-2b2c2.
注:因?yàn)閙≠±abc,基本不等式(c2m2+b4)+b4c4c2m2+b4≥2b2c2中等號(hào)不成立.
即TFPQ=
12ac(c2m2+b4)+b4c4c2m2+b4-2b2c2.
圖4
推論2雙曲線x2a2-y2b2=1的焦點(diǎn)為F,T為雙曲線準(zhǔn)線上任一點(diǎn)(焦點(diǎn)和準(zhǔn)線在y軸同側(cè)),且T點(diǎn)的縱坐標(biāo)m≠±abc,過(guò)F作TF的垂線交雙曲線于P,Q兩點(diǎn),P關(guān)于坐標(biāo)原點(diǎn)O的對(duì)稱點(diǎn)為P′,則P′Q∥OT.
證明由定理3知直線OT平分線段PQ,即直線OT過(guò)線段PQ的中點(diǎn)N,又O是PP′的中點(diǎn),所以O(shè)N是
△PP′Q的中位線,則P′Q∥ON,即P′Q∥OT.
注:結(jié)合定理3的證明知:m≠±abc,是為了保證“過(guò)F作TF的垂線能夠交雙曲線于P,Q兩點(diǎn)”,否則直線PQ與一條漸近線平行,過(guò)F作TF的垂線與雙曲線只有一個(gè)交點(diǎn).
定理4雙曲線x2a2-y2b2=1的焦點(diǎn)為F,T為雙曲線準(zhǔn)線上(但非x軸上)任一點(diǎn)(其中焦點(diǎn)和準(zhǔn)線在y軸同側(cè)),過(guò)F作TF的垂線交雙曲線于P,Q兩點(diǎn),
則kOT·kPQ=b2a2.
證明不妨取雙曲線右焦點(diǎn)F(c,0)和右準(zhǔn)線x=a2c,設(shè)T(a2c,m),因T非x軸上點(diǎn),所以m≠0,則kTF=ma2c-c=-cmb2,知kPQ=b2cm,又kOT=cma2,所以kOT·kPQ=b2a2.
定理5拋物線y2=2px的焦點(diǎn)為F,T為拋物線準(zhǔn)線上任一點(diǎn),過(guò)F作TF的垂線交拋物線于P,Q兩點(diǎn),弦PQ中點(diǎn)為N,則NT平行于x軸.
圖5
證明因Fp2,0,設(shè)T-p2,m,則kTF=-mp,當(dāng)m=0時(shí),T為拋物線準(zhǔn)線與x軸的交點(diǎn),這時(shí)PQ為拋物線的通徑,點(diǎn)N與焦點(diǎn)F重合,顯然NT平行于x軸.當(dāng)m≠0時(shí),由條件知kPQ=pm,所以直線PQ方程為:y=pm(x-p2),聯(lián)立y2=2px
y=pm(x-p2),得4p2x2-4p(p2+2m2)x+p4=0,又
Δ=16p2(p2+2m2)2-16p6=64p2m2(p2+m2)>0,記P(x1,y1)、Q(x2,y2),由根與系數(shù)關(guān)系知x1+x2=p2+2m2p,y1+y2=pm(x1+x2-p)=2m,所以弦PQ中點(diǎn)N(p2+2m22p,m),又T(-p2,m),知kNT=0,則NT平行于x軸.