李耀紅,張海燕
(宿州學(xué)院 智能信息處理實(shí)驗(yàn)室,安徽 宿州234000)
分?jǐn)?shù)階微積分理論廣泛應(yīng)用于自然科學(xué)和工程技術(shù)等領(lǐng)域,目前已成為許多數(shù)學(xué)工作者的研究熱點(diǎn)[1-6].分?jǐn)?shù)階微分方程組邊值問題也受到廣泛關(guān)注[7-12].特別地,文獻(xiàn)[7-8]利用Schauder不動點(diǎn)定理分別研究了分?jǐn)?shù)階方程組兩點(diǎn)和三點(diǎn)邊值問題正解的存在性;文獻(xiàn)[9]利用錐拉伸和壓縮不動點(diǎn)定理研究了混合分?jǐn)?shù)階方程組兩點(diǎn)邊值問題正解的存在性;文獻(xiàn)[10]利用重合度理論研究了振動情形下分?jǐn)?shù)階方程組多點(diǎn)邊值問題的可解性.基于此,本文考慮一類具分?jǐn)?shù)階積分邊值條件且包含Caputo型分?jǐn)?shù)階導(dǎo)數(shù)的分?jǐn)?shù)階微分方程組邊值問題:
其中:CD0+是Caputo分?jǐn)?shù)階導(dǎo)數(shù);1<α,β<2;0<ρ,θ<1;f,g:[0,1]×?×?→?.
與已有結(jié)果不同,本文積分邊值條件依賴Riemann-Liouville分?jǐn)?shù)階積分,包含整數(shù)積分條件和局部多點(diǎn)邊值條件,因此本文研究的邊值問題(1)更具有一般性.具積分邊值條件的常微分邊值問題廣泛應(yīng)用于種群動態(tài)模型、血液流動模型、熱傳導(dǎo)、化學(xué)化工和等離子物理等領(lǐng)域[11-12].本文首先將問題(1)轉(zhuǎn)化為等價的積分方程組,獲得了相應(yīng)的格林函數(shù),然后利用Banach壓縮映射原理,得到了該問題存在唯一解的充分條件,并給出了應(yīng)用實(shí)例.
引理1[1]設(shè)α>0,u(t)∈C(0,1),則齊次分?jǐn)?shù)階微分方程u(t)=0有一般解
其中ci∈?,i=1,2,…,n,n=[α]+1,[α]表示α的整數(shù)部分.
引理2[1]設(shè)p>q>0,f∈L[a,b],則對?t∈[a,b],有
下也是一個Banach空間.顯然,(X×Y,‖·‖X×Y)在范數(shù)‖·‖X×Y=max{‖u‖X,‖v‖Y}下是一個Banach空間.
引理3 設(shè)1<α<2,0<θ<1,u(t)∈C(0,1),則分?jǐn)?shù)階微分方程積分邊值問題:
進(jìn)一步由引理2有
將式(6)代入式(4),有
證畢.
同理,邊值問題CDv(t)=y(tǒng)(t),v(0)=0,v(1)=v(1)也有唯一解
其中K2(t,s)通過將K1(t,s)中α置換為β,θ置換為ρ得到.
定義積分算子T:X×Y→X×Y 如下:T(u,v)(t)=(T1v(t),T2u(t)),其中:
引理4 設(shè)f,g∈C([0,1]×?×?,?),則(u,v)∈X×Y 是分?jǐn)?shù)階微分方程組邊值問題(1)的解當(dāng)且僅當(dāng)T(u,v)(t)=(u,v)(t),?t∈[0,1].
證明:設(shè)(u,v)是邊值問題(1)的解,且令
由式(7)知
由引理2知
易證(m,n)滿足邊值問題(1)的邊值條件,則(m,n)是邊值問題(1)的解,且(m,n)=(u,v).
且
則分?jǐn)?shù)階微分方程組邊值問題(1)在X×Y中存在唯一解,其中:
于是,結(jié)合條件(9)有
因此
于是,利用假設(shè)條件(9)可知
再注意到
將式(14)代入式(13),則有
由范數(shù)的定義,并結(jié)合式(12),(15)知
同理,有
從而由式(16),(17)知
故由式(18)并結(jié)合式(11)可知,算子T是一個壓縮映射,因此算子T在X×Y中有一個唯一不動點(diǎn),即分?jǐn)?shù)階微分方程組邊值問題(1)在X×Y中存在唯一解.
例1 考慮如下分?jǐn)?shù)階微分方程組邊值問題:
于是f(t,x,y)=0.01x+0.012 5y+t2,g(t,x,y)=0.005x+0.01y+sin t,1<α=1.5<2,1<β=1.25<2,0<ρ=0.5<1,0<θ=0.25<1,則易知a=0.01,b=0.012 5,c=0.005,d=0.01,從而通過直接計(jì)算可得:M1=0.280 280,M2=0.354 460,N1=0.104 323,N2=0.135 117,M1+M2<1,N1+N2<1.因此,由定理1可知方程組邊值問題(19)在X×Y中存在唯一解.
[1]Kilbas A A,Srivastava H M,Trujillo J J.Theory and Applications of Fractional Differential Equations[M].Amsterdam:Elsevier,2006.
[2]Lakshmikantham V,Leela S,Devi J V.Theory of Fractional Dynamic Systems[M].New York:Cambridge Scientific Publishers,2009.
[3]ZHANG Shu-qin.Positive Solution for Boundary Value Problem of Nonlinear Frctional Differential Equations[J].Electron J Differ Eq,2006,2006(36):1-12.
[4]WEI Zhong-li,LI Qing-dong,CHE Jun-ling.Initial Value Problems for Fractional Differential Eequations Involving Riemann-Liouville Sequential Fractional Derivative[J].J Math Anal Appl,2010,367(1):260-272.
[5]BAI Zhan-bing.Solvability for a Class of Fractional m-Point Boundary Value Problem at Resonance[J].Comput Math Appl,2011,62(3):1292-1302.
[6]YANG Xiong,WEI Zhong-li,WEI Dong.Existence of Positive Solutions for the Boundary Value Problem of Nonlinear Fractional Differential Equations[J].Commun Nonlinear Sci Numer Simul,2012,17(1):85-92.
[7]SU Xin-wei.Boundary Value Problem for a Coupled System of Nonlinear Fractional Differential Equations[J].Appl Math Lett,2009,22(1):64-69.
[8]Ahmada Bashir,Nieto J J.Existence Results for a Coupled System of Nonlinear Fractional Differential Equations with Three-Point Boundary Conditions[J].Comput Math Appl,2009,58(9):1838-1843.
[9]ZHAO Yi-ge,SUN Shu-rong,HAN Zhen-lai,et al.Positive Solutions for a Coupled System of Nonlinear Differential Equations of Mixed Fractional Orders[J].Advances in Difference Equations,2011,2011(1):64-69.
[10]JIANG Wei-h(huán)ua.Solvability for a Coupled System of Fractional Differential Equations at Resonance[J].Nonlinear Anal,2012,13(5):2285-2292.
[11]YANG Wen-gui.Positive Solutions for a Coupled System of Nonlinear Fractional Differential Equations with Integral Boundary Conditions[J].Comput Math Appl,2012,63(1):288-297.
[12]JIANG Ji-qiang,LIU Li-shan,WU Yong-h(huán)ong.Multiple Positive Solutions of Singular Fractional Differential System Involving Stieltjes Integral Conditions[J].Electron J Qual Theory Differ Eq,2012,2012(43):1-18.