摘要:將來源于嗜熱厭氧乙醇菌(Thermoanaerobacter ethanolicus JW200)的雙活性阿拉伯/木糖苷酶(XarB)構(gòu)建到新型熱激質(zhì)粒pHsh上,得到重組質(zhì)粒。將重組質(zhì)粒pHsh-xarB轉(zhuǎn)入大腸桿菌(Escherichia coli JM109)。SDS-PAGE結(jié)果表明,該重組酶的分子量為86 kDa,與理論值相符?;跓峒ぽd體pHsh的重組表達(dá)系統(tǒng)具有誘導(dǎo)表達(dá)簡便、誘導(dǎo)方式廉價(jià)的優(yōu)點(diǎn),且重組酶熱穩(wěn)定性好。
關(guān)鍵詞:阿拉伯/木糖苷酶;pHsh;克?。槐磉_(dá)
中圖分類號:Q814 文獻(xiàn)標(biāo)識碼:A 文章編號:0439-8114(2014)15-3662-03
Cloning and Expression of a Arabinosidase-xylosidase from Thermoanaerobacter ethanolicus JW200 Using pHsh Vector
PENG Jing-jing
(College of Biology and Enology, Taishan University, Taian 271021, Shandong, China)
Abstract: The structure gene from Thermoanaerobacter ethanolicus JW200 encoding XarB gene was amplified and ligated into pHsh vector, resulting in pHsh-xarB. XarB gene was obtained after expressing pHsh-xarB in Escherichia coli JM109. Results of SDS-PAGE showed that the molecular weight of the recombinant XarB expressed was about 86 kDa, the same as the size predicted. The expression vector system of the heat shock plasmid pHsh had high expression level and cheap induction.
Key words: Arabinosidase-xylosidase;pHsh;cloning;expression
收稿日期:2014-03-15
基金項(xiàng)目:泰安市科技發(fā)展計(jì)劃項(xiàng)目(20132094);泰山學(xué)院博士科研啟動(dòng)金項(xiàng)目(Y-01-2013001)
作者介紹:彭靜靜(1983-),女,山東泰安人,講師,博士,主要從事微生物基因工程和代謝工程的研究,(電話)15153887527(電子信箱)
zjingjing1983@163.com。
據(jù)統(tǒng)計(jì),我國每年秸稈產(chǎn)量達(dá)6億t左右,由于目前缺乏合理的應(yīng)用,大部分秸稈用于燃燒或者被廢棄[1]。秸桿中半纖維素的含量占總干重的25%~50%,其化學(xué)結(jié)構(gòu)較纖維素復(fù)雜,是一條以β-1,4-糖苷鍵相聯(lián)的木聚糖主鏈,上面帶有α-1,3-阿拉伯糖或α-1,2-葡萄糖醛酸構(gòu)成的側(cè)枝,被稱為阿拉伯葡萄糖醛酸木聚糖。這種木聚糖徹底降解的產(chǎn)物主要是木糖和少量阿拉伯糖、葡萄糖醛酸,可以用作基本碳源生產(chǎn)各種發(fā)酵產(chǎn)品,包括有機(jī)酸、氨基酸、糖醇、工業(yè)酶類溶劑或燃劑。由于木聚糖結(jié)構(gòu)及降解方式的復(fù)雜性,徹底降解木聚糖需要多種水解酶(主鏈水解酶β-1,4內(nèi)切木聚糖酶、β-木糖苷酶和側(cè)鏈水解酶α-L-阿拉伯呋喃糖苷酶、α-葡萄糖醛酸酶和乙酰木聚糖酯酶等)的協(xié)同作用。
研究發(fā)現(xiàn)來自嗜熱厭氧乙醇菌(Thermoanaerobacter ethanolicus,JW200)的阿拉伯/木糖苷酶,以人工底物測試,其木糖苷酶活性和阿拉伯糖苷酶活性分別為每毫克蛋白質(zhì)180和1 000 U,高于其他木糖苷酶或阿拉伯糖苷酶的活性[2]。嗜熱梭菌產(chǎn)生的半纖維素酶的耐熱性好,但由于嗜熱厭氧乙醇菌是一種嚴(yán)格的厭氧菌,該菌的培養(yǎng)條件苛刻,且菌株產(chǎn)酶量相對較低,不適合工業(yè)大規(guī)模發(fā)酵生產(chǎn)。而采用分子生物學(xué)手段,將嗜熱酶基因?qū)氪竽c桿菌中高效表達(dá),是一種有效的方法[3-5]。本試驗(yàn)克隆了嗜熱厭氧乙醇菌的雙活性阿拉伯/木糖苷酶(XarB)基因,并連接到新型熱激表達(dá)載體pHsh上,得到重組質(zhì)粒pHsh-xarB,并實(shí)現(xiàn)了雙功能半纖維素酶在大腸桿菌(Escherichia coli JM109)中的高效表達(dá),構(gòu)建出高酶活、耐熱和低產(chǎn)酶條件的纖維素酶基因工程菌,為該酶在工業(yè)上的開發(fā)及利用提供參考。
1 材料與方法
1.1 材料
嗜熱厭氧乙醇菌編號ATCC31550,由美國佐治亞大學(xué)微生物系Wiegel教授分離并惠贈(zèng)。采用厭氧培養(yǎng)基培養(yǎng),69 ℃靜置培養(yǎng)8 h[6,7]。E. coli JM109購自Promega公司。采用Luria-Bertani(LB)培養(yǎng)基:胰蛋白胨10 g/L,酵母膏5 g/L,NaCl 10 g/L。固體培養(yǎng)基添加終濃度為2%的瓊脂粉。
1.2 方法
1.2.1 基因組提取 嗜熱厭氧乙醇菌(JW200)基因組的提取與DNA操作采用分子克隆技術(shù)標(biāo)準(zhǔn)方法進(jìn)行。質(zhì)粒轉(zhuǎn)化采用電轉(zhuǎn)化方法進(jìn)行,質(zhì)粒和PCR產(chǎn)物采用Qiagen plasmid kit 和PCR purification kit(Qiagen USA)純化。
1.2.2 XarB基因的克隆 根據(jù)Genebank中嗜熱厭氧乙醇菌(JW200)雙活性阿拉伯/木糖苷酶(XarB) 的基因序列(GenBank 登錄號AF135015)設(shè)計(jì)引物xarB-N(5-GCAAGCCATTATATTTAGATTC-3)和xarB-C(5-CCCCTCGAGCTATTTATTCTCTACCCTTAC-3),下劃線為XhoⅠ酶切位點(diǎn);以提取的嗜熱厭氧乙醇菌(JW200)的基因組為模板,為提高擴(kuò)增片段的保真性,用Pyrobest DNA聚合酶對模板進(jìn)行擴(kuò)增。反應(yīng)體系(50 μL):10×Buffer 5 μL、dNTP(各2.5 mmol/L)4 μL、xarB-N(50 μmol/L)1 μL、xarB-C(50 μmol/L)1 μL、模板(10 μg/mL)1 μL、Probest DNA 聚合酶(1.25 U/μL)1 μL、H2O 37 μL。PCR 擴(kuò)增參數(shù):95 ℃ 變性5 min,加Pyrobest DNA 聚合酶 1 μL;然后94 ℃ 變性30 s,60 ℃退火30 s,72 ℃延伸150 s,30次循環(huán);72 ℃保溫10 min。endprint
PCR產(chǎn)物驗(yàn)證正確后過柱純化,并用XhoⅠ進(jìn)行單酶切,并與XhoⅠ和平端酶StuⅠ雙酶切的質(zhì)粒pHsh 16 ℃下連接6~12 h,將連接液電擊轉(zhuǎn)化至E. coli JM109中,挑取陽性克隆,提取并驗(yàn)證質(zhì)粒,所得質(zhì)粒命名為pHsh-xarB,雙酶切驗(yàn)證正確的質(zhì)粒送上海美吉生物技術(shù)公司測序。
1.2.3 重組蛋白質(zhì)的表達(dá)與純化 重組質(zhì)粒pHsh-xarB電轉(zhuǎn)化到宿主細(xì)胞E. coli JM109中,挑取重組單菌落接種于含100 g/mL氨芐青霉素的LB培養(yǎng)液中,30 ℃振蕩培養(yǎng)至OD600達(dá)到0.6~0.8時(shí)轉(zhuǎn)入 42 ℃水,浴搖床中進(jìn)行熱激表達(dá),繼續(xù)培養(yǎng)8 h后離心收集菌體。用50 mmol/L pH為7.5的Tris-HCl緩沖液洗滌細(xì)胞2次,并用相同緩沖液重懸細(xì)胞,置于冰水浴中用超聲波破碎儀破碎細(xì)胞,細(xì)胞碎片于12 000 r/min離心10 min,去除上清液即為粗酶液。將粗酶液在60 ℃熱處理30 min后,4 ℃ 12 000 r/min離心30 min去除變性蛋白質(zhì)。
2 結(jié)果與分析
2.1 嗜熱厭氧乙醇菌(JW200)基因組的提取
按照厭氧培養(yǎng)基配方接種嗜熱厭氧乙醇菌(JW200)于厭氧管中,69 ℃靜置培養(yǎng)8 h后提取其DNA,經(jīng)過瓊脂糖電泳驗(yàn)證,結(jié)果如圖1所示。由圖1可知,試驗(yàn)得到的電泳條帶清晰,表明提取的嗜熱厭氧乙醇菌(JW200)基因組可以用于后續(xù)試驗(yàn)。
2.2 XarB基因的克隆
根據(jù)Genebank中嗜熱厭氧乙醇菌(JW200)雙活性阿拉伯/木糖苷酶(XarB)的基因序列(GenBank登錄號AF135015)為2 300 bp,利用Pyrobest DNA聚合酶擴(kuò)增得到的DNA片段經(jīng)過瓊脂糖電泳驗(yàn)證,結(jié)果如圖2所示,PCR擴(kuò)增出來的DNA片段與實(shí)際大?。? 300 bp)相符。
2.3 重組質(zhì)粒pHsh-xarB的構(gòu)建
擴(kuò)增得到的DNA片段經(jīng)Xho I單酶切后純化,與載體pHsh分別經(jīng)過Stu I和Xho I雙酶切和連接,得到重組質(zhì)粒pHsh-xarB。陽性轉(zhuǎn)化子抽提取質(zhì)粒,采用Xho I單酶切表達(dá)質(zhì)粒pHsh-xarB后釋放出4 700 bp左右的條帶,正好是載體pHsh(2 400 bp)與XarB基因(2 300 bp)之和,酶切結(jié)果見圖3。測序結(jié)果顯示,該基因已插入到載體的正確位置。
2.4 重組雙活性阿拉伯/木糖苷酶的表達(dá)及檢測
將重組質(zhì)粒pHsh-xarB電轉(zhuǎn)化到宿主細(xì)胞E. coli JM109中,挑取重組單菌落接種于含100 g/mL 氨芐青霉素的LB培養(yǎng)液中培養(yǎng),最終收集菌體,以pHsh轉(zhuǎn)化產(chǎn)物為對照,SDS-PAGE分析結(jié)果(圖4)表明,重組菌均能產(chǎn)生約86 kDa的特異條帶,與預(yù)期的蛋白質(zhì)相對分子量大小一致。
3 討論
由于木聚糖是高度分支的多糖,其主鏈和側(cè)鏈含有不同的側(cè)枝,主要有乙酰基、阿拉伯糖基和葡萄糖醛酸基等;當(dāng)內(nèi)切木聚糖酶隨機(jī)作用木聚糖時(shí),會(huì)受到這些基團(tuán)的空間阻礙,而不能到達(dá)所作用的木糖苷鍵,所形成的產(chǎn)物只能是帶側(cè)枝的低聚糖。因此,木聚糖的完全降解需要多種水解酶的協(xié)同作用。同時(shí),使用多種自然克隆到的特異水解某一多糖結(jié)構(gòu)的水解酶來降解木聚糖,雖然清潔高效,但工序復(fù)雜,成本高。在不改變酶自身優(yōu)良性質(zhì)的條件下,如果將有關(guān)的水解酶融合串聯(lián)成一個(gè)具有多種水解酶活性的多功能酶,或通過融合標(biāo)簽回收重復(fù)利用酶,來達(dá)到提高融合酶綜合效率的目的[8-10],這將大大簡化工序和降低成本。因此,下一步的研究將降解木聚糖需要的多種水解酶進(jìn)行基因融合,力求使用基因工程和蛋白質(zhì)工程的手段得到多功能、高效率、耐高溫、降解木聚糖的融合酶。
構(gòu)建合適的嗜熱菌外源基因表達(dá)系統(tǒng),高效率地表達(dá)一些耐熱酶一直是人們研究地?zé)狳c(diǎn)。pHsh作為一種新型表達(dá)載體,通過熱激就可以高效表達(dá)外源基因,相比較傳統(tǒng)的化學(xué)誘導(dǎo)劑如IPTG價(jià)格昂貴,而熱激誘導(dǎo)能有效減少基因誘導(dǎo)表達(dá)時(shí)的成本,在工業(yè)化應(yīng)用中具有巨大的優(yōu)越性和現(xiàn)實(shí)意義[11,12]。本研究采用pHsh系統(tǒng)成功表達(dá)了來源于嗜熱厭氧乙醇菌JW200的雙活性阿拉伯/木糖苷酶(XarB),由于該酶的編碼基因含有較多的稀有密碼子,因此,作者計(jì)劃將其基因的稀有密碼子進(jìn)行定點(diǎn)突變成大腸桿菌的優(yōu)勢密碼子,通過對表達(dá)質(zhì)粒的TIR區(qū)域進(jìn)行mRNA二級結(jié)構(gòu)分析后,優(yōu)化mRNA二級結(jié)構(gòu),以進(jìn)一步提高其表達(dá)水平。
參考文獻(xiàn):
[1] BASTAWDE K B. Xylan structure, microbial xylanase, and their mode of action[J]. World J microbiol Biotechnol,1992,8:353-368.
[2] YIN E K, LE Y L, PEI J J, et al. High-level expression of the xylanase from Thermomyces lanuginosus in Escherichia coli [J]. World J Microbiol Biotechnol, 2008,24(2):275-280.
[3] XUE YM, LU C, MAO Z G, et al. Cloning and expression of arabinofuranosi-dase/xylosidase gene of Thermoanaerobacter ethanolicus in Escherichia coli and stability of expression products[J]. J China Agri Univ, 2003,8(5):9-13.
[4] LI W, ZHANG W W, YANG M M, et al. Cloning of the thermostable cellulase gene from newly isolated Bacillus subtilis and its expression in Escherichia coli[J]. Molecular Biotechnology, 2008, 40(2):195-201.endprint
[5] BANEYX F. Recombinant protein expression in Escherichia coli[J]. Curr Opin Biotechnol, 1999, 10(5): 411-421.
[6] JIANG Y, ZHOU Q, WU K, et al. A highly efficient method for liquid and solid cultivation of the anaerobic hyperthermophilic eubacterium Thermotoga maritima[J]. FEMS Microbiol Lett, 2006, 259(2): 254-259.
[7] MACY J M, SNELLEN J E, HUNGATE R E. Use of syringe methods for anaerobiosis[J]. J Clin Nutr,1972,25:1318-1323.
[8] LEVASSEUR A, NAVARRO D, PUNT P J, et al. Construction of engineered bifunctional enzymes and their overproduction in Aspergillus niger for improved enzymatic tools to degrade agricultural by-products[J]. Appl Environ Microbiol,2005, 71: 8132-8140.
[9] JIN M A, YOUNG K K,WOO J L, et al. Evaluation of a novel bifunctional xylanase-cellulose constructed by gene fusion[J]. Enzyme Microb Technol, 2005, 36(7):989-995.
[10] LU P, FENG M G, LI W F, et al. Construction and characterization of a bifunctional fusion enzyme of Bacillus-sourced β-glucanase and xylanase expressed in Escherichia coli[J]. FEMS Microbiol Lett, 2006, 261(2): 224-230.
[11] WU H W, PEI J J, JIANG Y, et al. pHsh vectors, a novel expression system of Escherichia coli for the large-scale production of recombinant enzymes[J]. Biotechnology Letters,2010, 32(6): 795-801.
[12] WU H W, PEI J J, WU G G, et al. Overexpression of GH10 endoxylanase XynB from T. maritima in E. coli by a novel vector with potential for industrial application[J]. Enzyme Microb Technol, 2008, 42(3): 230-234.endprint
[5] BANEYX F. Recombinant protein expression in Escherichia coli[J]. Curr Opin Biotechnol, 1999, 10(5): 411-421.
[6] JIANG Y, ZHOU Q, WU K, et al. A highly efficient method for liquid and solid cultivation of the anaerobic hyperthermophilic eubacterium Thermotoga maritima[J]. FEMS Microbiol Lett, 2006, 259(2): 254-259.
[7] MACY J M, SNELLEN J E, HUNGATE R E. Use of syringe methods for anaerobiosis[J]. J Clin Nutr,1972,25:1318-1323.
[8] LEVASSEUR A, NAVARRO D, PUNT P J, et al. Construction of engineered bifunctional enzymes and their overproduction in Aspergillus niger for improved enzymatic tools to degrade agricultural by-products[J]. Appl Environ Microbiol,2005, 71: 8132-8140.
[9] JIN M A, YOUNG K K,WOO J L, et al. Evaluation of a novel bifunctional xylanase-cellulose constructed by gene fusion[J]. Enzyme Microb Technol, 2005, 36(7):989-995.
[10] LU P, FENG M G, LI W F, et al. Construction and characterization of a bifunctional fusion enzyme of Bacillus-sourced β-glucanase and xylanase expressed in Escherichia coli[J]. FEMS Microbiol Lett, 2006, 261(2): 224-230.
[11] WU H W, PEI J J, JIANG Y, et al. pHsh vectors, a novel expression system of Escherichia coli for the large-scale production of recombinant enzymes[J]. Biotechnology Letters,2010, 32(6): 795-801.
[12] WU H W, PEI J J, WU G G, et al. Overexpression of GH10 endoxylanase XynB from T. maritima in E. coli by a novel vector with potential for industrial application[J]. Enzyme Microb Technol, 2008, 42(3): 230-234.endprint
[5] BANEYX F. Recombinant protein expression in Escherichia coli[J]. Curr Opin Biotechnol, 1999, 10(5): 411-421.
[6] JIANG Y, ZHOU Q, WU K, et al. A highly efficient method for liquid and solid cultivation of the anaerobic hyperthermophilic eubacterium Thermotoga maritima[J]. FEMS Microbiol Lett, 2006, 259(2): 254-259.
[7] MACY J M, SNELLEN J E, HUNGATE R E. Use of syringe methods for anaerobiosis[J]. J Clin Nutr,1972,25:1318-1323.
[8] LEVASSEUR A, NAVARRO D, PUNT P J, et al. Construction of engineered bifunctional enzymes and their overproduction in Aspergillus niger for improved enzymatic tools to degrade agricultural by-products[J]. Appl Environ Microbiol,2005, 71: 8132-8140.
[9] JIN M A, YOUNG K K,WOO J L, et al. Evaluation of a novel bifunctional xylanase-cellulose constructed by gene fusion[J]. Enzyme Microb Technol, 2005, 36(7):989-995.
[10] LU P, FENG M G, LI W F, et al. Construction and characterization of a bifunctional fusion enzyme of Bacillus-sourced β-glucanase and xylanase expressed in Escherichia coli[J]. FEMS Microbiol Lett, 2006, 261(2): 224-230.
[11] WU H W, PEI J J, JIANG Y, et al. pHsh vectors, a novel expression system of Escherichia coli for the large-scale production of recombinant enzymes[J]. Biotechnology Letters,2010, 32(6): 795-801.
[12] WU H W, PEI J J, WU G G, et al. Overexpression of GH10 endoxylanase XynB from T. maritima in E. coli by a novel vector with potential for industrial application[J]. Enzyme Microb Technol, 2008, 42(3): 230-234.endprint