化范例,王玲燕,趙鑫,李瑩,鄔揚(yáng)炯,高松
1.復(fù)旦大學(xué)附屬金山醫(yī)院血液內(nèi)科,上海 201508;
2.復(fù)旦大學(xué)附屬中山醫(yī)院實(shí)驗(yàn)研究中心,上海 200032
選擇性COX-2抑制劑塞來昔布抑制B細(xì)胞淋巴瘤細(xì)胞株MDR-1及Bcl-2的mRNA表達(dá) 并增強(qiáng)表柔比星的抗腫瘤作用
化范例1,王玲燕2,趙鑫1,李瑩1,鄔揚(yáng)炯1,高松1
1.復(fù)旦大學(xué)附屬金山醫(yī)院血液內(nèi)科,上海 201508;
2.復(fù)旦大學(xué)附屬中山醫(yī)院實(shí)驗(yàn)研究中心,上海 200032
背景與目的:部分非霍奇金淋巴瘤(non-Hodgkin’s lymphoma, NHL)具有高表達(dá)環(huán)氧合酶-2(cyclooxygenase-2,COX-2)的特征,而后者與P-糖蛋白及Bcl-2表達(dá)相關(guān),可能導(dǎo)致NHL對(duì)化療耐藥。本研究旨在探討B(tài)細(xì)胞淋巴瘤細(xì)胞株中COX-2的表達(dá)以及選擇性COX-2抑制劑塞來昔布增強(qiáng)淋巴瘤細(xì)胞對(duì)表柔比星抗腫瘤效應(yīng)的敏感性及其可能機(jī)制。方法:用熒光定量PCR(qRT-PCR)及蛋白[質(zhì)]印跡法(Western blot)分別檢測Raji、Jeko-1和Namalwa等淋巴瘤細(xì)胞株以及正常人外周血B細(xì)胞的COX-2表達(dá);以梯度濃度的塞來昔布作用于淋巴瘤細(xì)胞株,CCK-8方法檢測細(xì)胞增殖的抑制程度,qRT-PCR檢測各細(xì)胞株MDR-1 mRNA及Bcl-2 mRNA表達(dá)的變化;表柔比星單獨(dú)或聯(lián)合不同濃度的塞來昔布處理Raji細(xì)胞株72 h后,CCK-8方法分析塞來昔布對(duì)表柔比星的增敏作用。結(jié)果:各淋巴瘤細(xì)胞株及正常對(duì)照外周血B細(xì)胞均不表達(dá)COX-2。塞來昔布單藥即可對(duì)各淋巴瘤細(xì)胞株產(chǎn)生程度不同的抗增殖效應(yīng);隨著塞來昔布作用濃度的增加,除Jeko-1細(xì)胞不表達(dá)MDR-1外,其余細(xì)胞株MDR-1 mRNA及Bcl-2 mRNA表達(dá)水平逐漸下降;塞來昔布明顯增強(qiáng)表柔比星對(duì)Raji細(xì)胞的抗腫瘤活性,兩者之間具有協(xié)同作用。結(jié)論:選擇性COX-2抑制劑塞來昔布下調(diào)B細(xì)胞淋巴瘤細(xì)胞株的MDR-1 mRNA及Bcl-2 mRNA水平,并且增強(qiáng)表柔比星對(duì)淋巴瘤細(xì)胞的抗腫瘤效應(yīng)。
環(huán)氧合酶-2;塞來昔布;淋巴瘤;MDR-1基因;Bcl-2基因
非霍奇金淋巴瘤(non-Hodgkin’s lymphoma, NHL)是淋巴造血系統(tǒng)常見的惡性腫瘤之一,且近年來在我國的發(fā)病率及死亡率均有逐漸升高的趨勢[1]。雖然新的治療方法如分子靶向治療、造血干細(xì)胞移植等可以改善部分患者的預(yù)后,但化療仍然在臨床治療策略中占據(jù)著無可替代的基石地位。影響化療成敗的重要因素之一是腫瘤細(xì)胞是否出現(xiàn)耐藥,在此過程中,MDR-1基因產(chǎn)物P-糖蛋白(P-glycoprotein,P-gp)因可以將藥物主動(dòng)泵出細(xì)胞外而被廣泛關(guān)注,下調(diào)P-gp的表達(dá)可以有效減少腫瘤細(xì)胞對(duì)化療的耐藥[2-3]。我們在前期研究中發(fā)現(xiàn),部分NHL病理組織高表達(dá)環(huán)氧合酶-2(cyclooxygenase-2, COX-2)[4],而COX-2的表達(dá)又與P-gp和Bcl-2蛋白的表達(dá)呈現(xiàn)一定的聯(lián)系[5]。那么,選擇性的COX-2抑制劑塞來昔布在抑制COX-2活性的同時(shí),是否能夠下調(diào)P-gp和Bcl-2的表達(dá)并進(jìn)一步影響淋巴瘤細(xì)胞的生物學(xué)特點(diǎn)呢?本研究選取了部分B細(xì)胞來源的淋巴瘤細(xì)胞株,觀察塞來昔布處理后MDR-1及Bcl-2基因表達(dá)的變化及其對(duì)表柔比星抗增殖效應(yīng)的影響,探討塞來昔布應(yīng)用于抗NHL治療的潛在價(jià)值。
1.1 主要試劑及細(xì)胞株
塞來昔布及表柔比星均為美國輝瑞公司產(chǎn)品;RPMI-1640細(xì)胞培養(yǎng)液及新生牛血清購自杭州四季青生物工程材料有限公司;CCK-8試劑盒由無錫碧云天生物技術(shù)有限公司供應(yīng); CD19免疫磁珠為德國美天旎公司產(chǎn)品;兔抗人COX-2單克隆抗體及兔抗人GAPDH單克隆抗體、鼠抗兔IgG二抗均購自美國CST公司;cDNA逆轉(zhuǎn)錄及熒光定量PCR分別采用寶生物工程(大連)有限公司的PrimeScript逆轉(zhuǎn)錄試劑盒和SYBR Premix Ex TaqTMⅡ試劑盒。人Burkitt淋巴瘤Raji、Namalwa細(xì)胞株(均為EBV陽性)及套細(xì)胞淋巴瘤Jeko-1細(xì)胞株(EBV陰性)均購自中國科學(xué)院上海生命科學(xué)研究院生物化學(xué)與細(xì)胞生物學(xué)研究所。
1.2 免疫磁珠分離外周血B細(xì)胞
抽取3名健康志愿者外周EDTA-K2抗凝血20 mL,F(xiàn)icoll密度梯度離心法獲取單形核細(xì)胞約2×107個(gè),加入40 μL CD19免疫磁珠4 ℃溫育15 min,洗滌2次后,過柱分選出CD19+B細(xì)胞。流式細(xì)胞術(shù)驗(yàn)證所得細(xì)胞純度達(dá)99%以上。
1.3 細(xì)胞培養(yǎng)及CCK-8檢測細(xì)胞增殖活力
將各細(xì)胞株置于含10%小牛血清的RPMI-1640完全培養(yǎng)液中,在37 ℃、CO2體積分?jǐn)?shù)為5%的飽和濕度條件下培養(yǎng),取對(duì)數(shù)生長期細(xì)胞進(jìn)行實(shí)驗(yàn)。細(xì)胞密度調(diào)整為5×104個(gè)/mL,接種于96孔細(xì)胞培養(yǎng)板,每孔100 μL。細(xì)胞株均按處理藥物不同分為塞來昔布組(終濃度依次為0、10、20、40、60、80和100 μmol/mL)、表柔比星組(終濃度依次為0.05、0.1、0.25、0.5和1.0 μg/mL)和聯(lián)合藥物組(塞來昔布0~100 μmol/mL和表柔比星0.49 μg/mL),培養(yǎng)72 h后加入10 μL CCK-8試劑,繼續(xù)培養(yǎng)2 h,450 nm處讀取吸光度值(D),按如下公式計(jì)算細(xì)胞活力:細(xì)胞活力(%)=(D實(shí)驗(yàn)組-D空白對(duì)照)/(D對(duì)照組-D空白對(duì)照)×100%。
塞來昔布與表柔比星的協(xié)同作用以金氏公式q=Ea+b/(Ea+Eb-Ea×Eb)進(jìn)行評(píng)價(jià),其中Ea、Eb、Ea+b代表兩藥分別應(yīng)用及聯(lián)用時(shí)的抑制率。q值介于0.85~1.15之間為相加作用,>1.15為兩藥協(xié)同作用,<0.85則為拮抗作用。
1.4 蛋白[質(zhì)]印跡法(Western blot)檢測
收集對(duì)數(shù)生長期的各細(xì)胞株,分別用含蛋白酶抑制劑的RIPA細(xì)胞裂解液裂解,提取蛋白并定量。取40 μL總蛋白進(jìn)行SDS-PAGE凝膠電泳,轉(zhuǎn)膜后以4% BSA封閉2 h,在1∶1 000濃度的兔抗人COX-2單克隆抗體及兔抗人GAPDH單克隆抗體中溫育16 h,TBST洗滌6次以后,1∶3 000濃度的鼠抗兔IgG1二抗溫育2 h,顯色。以目的條帶與內(nèi)參條帶灰度值的比值計(jì)算目的蛋白的相對(duì)表達(dá)量。
1.5 實(shí)時(shí)熒光定量PCR檢測
以TRIzol-氯仿-異丙醇法提取經(jīng)過0、10、20、40、60、80和100 μmol/mL等不同濃度塞來昔布處理后的各細(xì)胞株的總RNA,檢測其含量及D260/D280比值。按照產(chǎn)品操作說明,以20 μL體系逆轉(zhuǎn)錄為cDNA。實(shí)時(shí)熒光定量PCR的反應(yīng)條件為95 ℃,30 s 預(yù)變性,95 ℃5 s,60 ℃ 30 s共40個(gè)循環(huán)。COX-2基因上游引物序列為:5’-TGCATTCTTTGCCCAGCACT -3’,下游:5’-AAAGGCGCAGTTTAC GCTGT-3’,產(chǎn)物長度146 bp;MDR-1上游:5’-GCTCGTGCCCTTGTTAGAC-3’,下游:5’-C A G G G C T T C T T G G A C A ACC-3’,產(chǎn)物長度96 bp;Bcl-2上游:5’-ATCGCCCTGTGGATGACTGAG-3’,下游:5’-CAGCCAGGAGAAATCAAACAGA GG-3’,產(chǎn)物長度129 bp;GAPDH上游:5’-GGTGGTCTCCTCTGACTTCAACA-3’,下 游 : 5’-G T T G C T G T A G C C A A ATTCGTTGT-3’,產(chǎn)物長度127 bp。以GAPDH的Ct值作為參照,以2-ΔΔCt計(jì)算mRNA倍數(shù)變化。
1.6 統(tǒng)計(jì)學(xué)處理
采用SPSS l6.0軟件進(jìn)行統(tǒng)計(jì)學(xué)分析。不同細(xì)胞株對(duì)各濃度塞來昔布增殖抑制的反應(yīng)采用雙向方差分析,塞來昔布處理后MDR-1和Bcl-2 mRNA表達(dá)變化以ΔΔCt作為統(tǒng)計(jì)量進(jìn)行單因素方差分析。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1 Raji、Namalwa及Jeko-1細(xì)胞株均不表達(dá)COX-2
無論是EBV陽性的Raji、Namalwa細(xì)胞株,還是EBV陰性的Jeko-1細(xì)胞株,也無論是在蛋白水平還是mRNA水平,均未見COX-2表達(dá)。多次改變實(shí)驗(yàn)條件(Western blot檢測增加總蛋白量至80 μL及提高抗體工作濃度,實(shí)時(shí)熒光定量PCR實(shí)驗(yàn)更換引物及改變擴(kuò)增條件等)并未能改變陰性結(jié)果。同樣,來源于正常對(duì)照外周血的B細(xì)胞也不表達(dá)COX-2(圖1)。
圖1 Western blot未檢測到Raji、Namalwa及Jeko-1細(xì)胞株和正常對(duì)照外周血B細(xì)胞COX-2的表達(dá)Fig. 1 COX-2 was not detectable both in normal B cells (control) and in B-cell-originated lymphoma cell lines by Western blot
2.2 塞來昔布對(duì)實(shí)驗(yàn)淋巴瘤細(xì)胞株增殖的抑制作用
雖然實(shí)驗(yàn)所使用的3種細(xì)胞株均不表達(dá)COX-2,但COX-2的選擇性抑制劑塞來昔布卻對(duì)3種細(xì)胞株的增殖均有抑制作用(F=34.60,P<0.001)。3種細(xì)胞株對(duì)塞來昔布的反應(yīng)不盡相同(F=58.14,P<0.001)。由圖2可見,Raji細(xì)胞株在接受較低濃度塞來昔布(10 μmol/L)處理時(shí)即出現(xiàn)增殖抑制效應(yīng),并且隨著濃度增加而逐漸顯著;而Namalwa和Jeko-1細(xì)胞株對(duì)塞來昔布的反應(yīng)弱于Raji細(xì)胞株,直至濃度達(dá)60 μmol/L,甚至更高時(shí),才能觀察到塞來昔布對(duì)其增殖的抑制作用。
2.3 塞來昔布下調(diào)各淋巴瘤細(xì)胞株MDR-1 mRNA和Bcl-2 mRNA表達(dá)
實(shí)時(shí)熒光定量PCR結(jié)果顯示,雖然強(qiáng)弱程度有差異,但3種細(xì)胞株均表達(dá)Bcl-2,塞來昔布明顯影響B(tài)cl-2的表達(dá)(Raji、Jeko-1和Namalwa細(xì)胞株實(shí)驗(yàn)中F值分別為58.37、42.62和50.83,P值均<0.001),且呈現(xiàn)出濃度梯度效應(yīng)。與Bcl-2表達(dá)不同,Jeko-1細(xì)胞株并不表達(dá)MDR-1,而Raji細(xì)胞株中MDR-1的表達(dá)又強(qiáng)于Namalwa細(xì)胞株。塞來昔布同樣影響Raji和Namalwa細(xì)胞株的MDR-1表達(dá)(前者F=45.99,P<0.001;后者F=18.05,P<0.001),并且亦呈濃度依賴性。圖3顯示各細(xì)胞株分別接受20、40和80 μmol/L塞來昔布處理后MDR-1 mRNA和Bcl-2 mRNA表達(dá)相對(duì)于處理前的倍數(shù)變化。
圖2 塞來昔布抑制淋巴瘤細(xì)胞株增殖Fig. 2 Celecoxib inhibited the proliferation of B-cell-originated lymphoma cell lines
2.4 塞來昔布增加Raji細(xì)胞株對(duì)表柔比星的敏感性
由于M D R-1和B c l-2基因產(chǎn)物均與腫瘤對(duì)化療藥物的耐藥相關(guān),我們選擇了M D R-1和B c l-2基因表達(dá)均較強(qiáng)的R a j i細(xì)胞株進(jìn)行了塞來昔布對(duì)表柔比星的增敏實(shí)驗(yàn)。不同濃度(0.01~2 μmol/L)的表柔比星單獨(dú)作用于對(duì)數(shù)生長期的Raji細(xì)胞株72 h,計(jì)算其IC50為0.49 μmol/L,作為實(shí)驗(yàn)濃度。分別將終濃度為0、10、20、40、60、80和100 μmol/L的塞來昔布與終濃度0.49 μmol/L 的表柔比星共同作用于Raji細(xì)胞。結(jié)果顯示,塞來昔布在10、20、40和60 μmol/L時(shí)與表柔比星對(duì)Raji細(xì)胞株增殖的抑制呈現(xiàn)協(xié)同作用,金氏公式計(jì)算q值分別為1.28、1.19、1.18和1.23,而當(dāng)塞來昔布濃度進(jìn)一步增加時(shí),q有所減小,但仍介于1.1~1.15之間。
圖3 MDR-1和Bcl-2 mRNA表達(dá)隨塞來昔布濃度增加而下降Fig. 3 The expression MDR-1 and Bcl-2 mRNA was decreased in B-cell-originated lymphoma cell lines by celecoxib in a concentration-dependent manner
COX-2是前列腺素合成過程中的限速酶,正常生理狀態(tài)下通常難以檢測,但在炎性條件下可由IL-1β、IL-6、TNFα等細(xì)胞因子誘導(dǎo)表達(dá),其催化產(chǎn)物前列腺素E2在抑制細(xì)胞凋亡、增加血管生成、促使前致癌物質(zhì)向致癌物質(zhì)轉(zhuǎn)化等過程中起到重要作用。由于多種惡性腫瘤具有高表達(dá)COX-2的特征,COX-2也被認(rèn)為在慢性炎癥與腫瘤形成之間起著重要的橋梁作用[6]。本研究之前也在NHL中發(fā)現(xiàn)高表達(dá)COX-2的病理亞型通常與病原體感染密切相關(guān)[4],例如MALT淋巴瘤和鼻型結(jié)外NK/T細(xì)胞淋巴瘤分別與幽門螺桿菌和EB病毒感染有關(guān)。本研究選取了EBV陽性的Raji、Namalwa細(xì)胞株及EBV陰性的Jeko-1細(xì)胞株,以期進(jìn)一步證實(shí)病原感染對(duì)COX-2表達(dá)的影響,但結(jié)果顯示,與正常B細(xì)胞無差異,無論是mRNA水平還是蛋白水平,上述細(xì)胞株中均未能檢測出COX-2表達(dá),提示至少在淋巴瘤中,單獨(dú)EBV感染因素并不能決定COX-2的表達(dá)。
塞來昔布是選擇性COX-2抑制劑,臨床上常用來作為解熱鎮(zhèn)痛藥物。由于COX-2與惡性腫瘤的聯(lián)系密切,塞來昔布也被推測可以預(yù)防或者延緩腫瘤發(fā)生,控制腫瘤的生長和轉(zhuǎn)移、浸潤等。雖然有研究證實(shí),塞來昔布對(duì)多種惡性腫瘤的負(fù)向調(diào)控作用[7-10],但同時(shí)發(fā)現(xiàn),這種作用并不一定依賴于COX-2活性的抑制。正如本研究結(jié)果顯示,雖然Raji、Namalwa和Jeko-1細(xì)胞株中均不表達(dá)COX-2,但經(jīng)過塞來昔布處理后,各細(xì)胞株的生長仍然受到了不同程度的抑制。有學(xué)者證實(shí),在淋巴瘤Raji細(xì)胞株中,塞來昔布可以通過內(nèi)質(zhì)網(wǎng)應(yīng)激途徑發(fā)揮抗增殖效應(yīng)[11],而在同樣不表達(dá)COX-2的多種Burkitt淋巴瘤細(xì)胞株和濾泡細(xì)胞淋巴瘤細(xì)胞株中,塞來昔布則可以通過促進(jìn)TRAIL介導(dǎo)的細(xì)胞凋亡而發(fā)揮抗腫瘤效應(yīng)[12]。這些結(jié)果一方面說明塞來昔布對(duì)腫瘤細(xì)胞作用的復(fù)雜性,另一方面亦提示不能僅根據(jù)腫瘤是否表達(dá)COX-2判斷塞來昔布的適用性。
本研究結(jié)果提示,塞來昔布在單獨(dú)應(yīng)用尤其是低劑量時(shí)對(duì)淋巴瘤的抑制作用有限,反而下調(diào)MDR-1和Bcl-2基因表達(dá)的作用十分顯著,在其他類型的腫瘤細(xì)胞中亦有類似發(fā)現(xiàn)[8,13-14]。MDR-1和Bcl-2基因分別編碼P-gp和Bcl-2蛋白,其中Bcl-2是調(diào)控細(xì)胞凋亡的關(guān)鍵蛋白之一,其高表達(dá)已被證實(shí)與淋巴瘤細(xì)胞對(duì)化療和放療敏感性降低有關(guān)[15]。P-gp則是公認(rèn)的導(dǎo)致耐藥的重要因素[2],其可依賴ATP將藥物泵出細(xì)胞外,通過降低細(xì)胞內(nèi)的藥物濃度而導(dǎo)致腫瘤細(xì)胞耐藥。本研究中,塞來昔布下調(diào)實(shí)驗(yàn)NHL細(xì)胞MDR-1和Bcl-2基因表達(dá),可使腫瘤細(xì)胞對(duì)化療藥物的抵抗減弱,凋亡增加,從而協(xié)同放大表柔比星的抗腫瘤效應(yīng)。
目前在世界范圍內(nèi)多項(xiàng)塞來昔布應(yīng)用于腫瘤輔助治療的臨床試驗(yàn)已經(jīng)開展,但初步結(jié)論并不一致:雖然在乳腺癌[16]、復(fù)發(fā)性卵巢癌[17]等惡性疾病中塞來昔布顯示出令人鼓舞的臨床療效,但被寄予厚望的STAMPEDE研究否認(rèn)了塞來昔布對(duì)激素敏感型前列腺癌的治療作用[18]。亦有學(xué)者樂觀估計(jì)塞來昔布等COX-2抑制劑在淋巴瘤治療中的應(yīng)用前景[19],并且塞來昔布的確在部分難治/復(fù)發(fā)性淋巴瘤患者以及MALT淋巴瘤動(dòng)物模型中顯示出一定的抗腫瘤作用[20-21],但是否所有的NHL病理亞型均適用COX-2抑制劑,是否存在某種可以預(yù)測COX-2抑制劑的生物標(biāo)志,雖然本研究尚不能給出答案,但這些問題無疑值得深入研究。
應(yīng)當(dāng)注意的是,在上述臨床試驗(yàn)中,塞來昔布均為連續(xù)給藥,造成部分患者難以耐受,例如在DoCaCel研究中[22],雖然塞來昔布帶來的益處已經(jīng)初步顯現(xiàn),但實(shí)驗(yàn)組患者平均應(yīng)用僅8.5個(gè)月,以致無進(jìn)展生存期及總生存率差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。本研究結(jié)果顯示,塞來昔布單獨(dú)應(yīng)用并不能顯著抑制淋巴瘤細(xì)胞增殖,而明顯下調(diào)MDR-1和Bcl-2基因的表達(dá),與化療藥物表現(xiàn)出協(xié)同抗腫瘤效應(yīng)。由此設(shè)想,在化療的同時(shí)給予塞來昔布,而在化療間歇期則停用,一方面可以保持塞來昔布對(duì)化療的增敏作用,提高療效,另一方面也可以避免長時(shí)間連續(xù)應(yīng)用塞來昔布所帶來的不良反應(yīng),提高患者對(duì)治療的耐受性。但是該設(shè)想僅由淋巴瘤細(xì)胞系的體外實(shí)驗(yàn)結(jié)果推斷,是否可行還需要?jiǎng)游矬w內(nèi)實(shí)驗(yàn)、臨床實(shí)踐等進(jìn)一步驗(yàn)證。
[1] 陳萬青, 張思維, 曾紅梅, 等. 中國2010年惡性腫瘤發(fā)病與死亡[J]. 中國腫瘤, 2014, 23(1): 1-10.
[2] SANEJA A, KHARE V, ALAM N, et al. Advances in P-glycoprotein-based approaches for delivering anticancer drugs: pharmacokinetic perspective and clinical relevance[J]. Expert Opin Drug Deliv, 2014, 11(1): 121-138.
[3] DARBY R A, CALLAGHAN R, MCMAHON R M. P-glycoprotein inhibition: the past, the present and the future[J]. Curr Drug Metab, 2011, 12(8): 722-731.
[4] 化范例, 劉惠萍, 劉澤兵, 等. 環(huán)氧合酶-2在不同病理類型非霍奇金淋巴瘤組織中的表達(dá)及其臨床意義[J]. 臨床血液學(xué)雜志, 2011, 24(5): 286-289.
[5] 化范例, 高松, 鄔揚(yáng)炯, 等. 環(huán)氧合酶-2影響彌漫大B細(xì)胞淋巴瘤患者預(yù)后相關(guān)因素初探[J].復(fù)旦學(xué)報(bào)(醫(yī)學(xué)版), 2012, 39(3): 243-246.
[6] HARRIS R E. Cycloozygenase-2 (COX-2) and inflammogenesis of cancer[J]. Subcell Biochem, 2007, 42(1): 93-126.
[7] NINOMIYA I, NAGAI N, OYAMA K, et al. Antitumor and anti-metastatic effects of cyclooxygenase-2 inhibition bycelecoxib on human colorectal carcinoma xenografts in nude mouse rectum[J]. Oncol Rep, 2012, 28(3): 777-784.
[8] YAN Y X, LI W Z, HUANG Y Q, et al. The COX-2 inhibitor Celecoxib enhances the sensitivity of KB/VCR oral cancer cell lines to Vincristine by down-regulating P-glycoprotein expression and function[J]. Prostaglandins Other Lipid Mediat, 2012, 97(1-2): 29-35.
[9] 郭華, 曹維克, 劉定勝, 等. 塞來昔布聯(lián)合干擾素α對(duì)K562/ A02細(xì)胞增殖的影響及其機(jī)制 [J].中華血液學(xué)雜志, 2011, 32(6): 408-409.
[10] BOCCA C, BOZZO F, BASSIGNANA A, et al. Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance [J]. Nature, 2015, 517(7533): 209-213.
[11] CHEN S T, THOMAS S, GAFFNEY K J, et al. Cytotoxic effects of celecoxib on Raji lymphoma cells correlate with aggravated endoplasmic reticulum stress but not with inhibition of cyclooxygenase-2[J]. Leuk Res. 2010, 34(2): 250-253.
[12] GALLOUET A S, TRAVERT M, BRESSON-BEPOLDIN L, et al. COX-2-independent effects of celecoxib sensitize lymphoma B cells to TRAIL-mediated apoptosis[J]. Clin Cancer Res, 2014, 20(10): 2663-2673.
[13] 陳琛, 許文林, 秦茹娟, 等. 塞來昔布逆轉(zhuǎn)MCF-7/Adr細(xì)胞多藥耐藥及其機(jī)制探討[J]. 實(shí)用腫瘤雜志, 2009, 24(3): 237-242.
[14] LIU D B, LONG G X, MEI Q,et al. Anticancer effects of celecoxib through inhibition of STAT3 phosphorylation and AKT phosphorylation in nasopharyngeal carcinoma cell lines[J]. Pharmazie, 2014, 69(5): 358-361.
[15] NG S Y, DAVIDS M S. Selective Bcl-2 inhibition to treat chronic lymphocytic leukemia and non-Hodgkin lymphoma[J]. Clin Adv Hematol Oncol, 2014, 12(4): 224-229.
[16] LUSTBERG M B, POVOSKI S P, ZHAO W, et al. Phase Ⅱtrial of neoadjuvant exemestane in combination with celecoxib in postmenopausal women who have breast cancer[J]. Clin Breast Cancer, 2011, 11(4): 221-227.
[17] LEGGE F, PAGLIA A, D’ASTA M, et al. Phase Ⅱ study of the combination carboplatin plus celecoxib in heavily pretreated recurrent ovarian cancer patients[J]. BMC Cancer, 2011, 11: 214.
[18] JAMES N D, SYDES M R, MASON M D, et al. Celecoxib plus hormone therapy versus hormone therapy alone for hormonesensitive prostate cancer: first results from the STAMPEDE multiarm, multistage, randomised controlled trial[J]. Lancet Oncol, 2012, 13(5): 549-558.
[19] BERNARD M P, BANCOS S, SIME P J, et al. Targeting cyclooxygenase-2 in hematological malignancies: rationale and promise[J]. Curr Pharm Des, 2008, 14: 2051-2060.
[20] EL BARY N A, HASHEM T, METWALLY H, et al. A phaseⅡ study of high-dose celecoxib and metronomic ‘lowdose’ cyclophosphamide and methotrexate in patients with relapsed and refractory lymphoma[J]. Hematol Oncol Stem Cell Ther, 2010, 3(1): 13-18.
[21] NAKAMURA M, TAKAHASHI T, MATSUI H, et al. New pharmaceutical treatment of gastric MALT lymphoma: antiangiogenesis treatment using VEGF receptor antibodies and celecoxib[J]. Curr Pharm Des, 2014, 20(7): 1097-1103.
[22] REYNERS A K, DE MUNCK L, ERDKAMP F L, et al. A randomized phase Ⅱ study investigating the addition of the specific COX-2 inhibitor celecoxib to docetaxel plus carboplatin as first-line chemotherapy for stage ⅠCto Ⅳepithelial ovarian cancer, fallopian tube or primary peritoneal carcinomas: the DoCaCel study[J]. Ann Oncol, 2012, 23(11): 2896-2902.
Selective cyclooxygenase-2 inhibitor celecoxib could sensitize B-cell-originated lymphoma cell lines to epirubicin via down-regulation of MDR-1 mRNA and Bcl-2 mRNA expression
HUA Fanli1, WANG Lingyan2, ZHAO Xin1, LI Ying1, WU Yangjiong1, GAO Song1 (1. Department of Hematology, Jinshan Hospital, Fudan University, Shanghai 201508, China; 2. Biomedical Research Centre, Zhongshan Hospital, Fudan University, Shanghai 200032, China)
GAO Song E-mail: jsyyxyk2014@163.com
Background and purpose:It has been demonstrated that cyclooxygenase-2 (COX-2) is overexpressed in some subtypes of non-Hodgkin’s lymphoma (NHL), and COX-2 correlates with the expression of P-glycoprotein and Bcl-2, which may contribute to chemotherapy-resistance in NHL. The purpose of this study was to investigate the expression of COX-2 in B-cell lymphoma cell lines and the potential mechanisms of celecoxib, a selective COX-2 inhibitor, to sensitize lymphoma cell lines to epirubicin.Methods:Quantitative fluorescent realtime poly-chain-reaction (qRT-PCR) and Western blot were employed to determine the expression of COX-2 in Raji, Jeko-1 and Namalwa cell lines, as well as in peripheral blood B cells from normal controls. Cell lines were treated with celecoxib at gradient concentrations, followed by the detection of cell viabilities by cell counting kit-8 (CCK-8). Meanwhile, the changes in expression of MDR-1 mRNA and Bcl-2 mRNA before and after celecoxib treatment were determined by qRT-PCR. Raji cells were treated with epirubicin alone or in combination with gradient concentrations of celecoxib for 72 h, then CCK-8 was used to analyze whether celecoxib sensitize Raji cells to epirubicin.Results:Neither lymphoma cell lines nor normal B cells expressed detectable COX-2 in this study. Celecoxib inhibited the proliferation of the 3 lymphoma cell lines, and the mRNA expressions of MDR-1 and Bcl-2 were decreased by celecoxib in a concentration-dependent manner, except for that MDR-1 was undetectable in Jeko-1 cells. In addition, celecoxib sensitized Raji cells to epirubicin, indicating a synergistic anti-tumor effect between the two agents.Conclusion:Selective COX-2 inhibitor celecoxib down-regulates the expressions of MDR-1 mRNA and Bcl-2 mRNA in B-cell-originated lymphoma cell lines, and sensitizes Raji cells to epirubicin.
Cyclooxygenase-2; Celecoxib; Lymphoma; MDR-1 gene; Bcl-2 gene
10.3969/j.issn.1007-3969.2015.06.005
R733.4
A
:1007-3639(2015)06-0433-06
2014-12-05
2015-04-27)
上海市自然科學(xué)基金(13ZR1405700)。
高松 E-mail:jsyyxyk2014@163.com