張茂營 賈偉強 馬全紅 徐如祥
·專題筆談·
神經(jīng)超興奮性與阿爾茨海默病
張茂營1賈偉強2馬全紅3徐如祥2
阿爾茨海默病(AD)是一種常見的神經(jīng)系統(tǒng)疾病,其病因和發(fā)病機制尚無滿意闡述,治療上也因存在許多瓶頸而無肯定有效的措施。近年來,研究發(fā)現(xiàn)在AD患者及動物模型腦內(nèi)表現(xiàn)出更高的癲癇發(fā)生率或異常的腦電節(jié)律,這種異常神經(jīng)網(wǎng)絡(luò)活動與AD認知損害密切相關(guān)。近些年來研究發(fā)現(xiàn)AD轉(zhuǎn)基因小鼠腦內(nèi)異常神經(jīng)網(wǎng)絡(luò)活動是導(dǎo)致突觸功能受損、認知功能損害以及行為異常的上游機制,抗癲癇藥物(左乙拉西坦)通過調(diào)控鈉離子電壓門控通道能抑制AD轉(zhuǎn)基因模型鼠腦內(nèi)這種異常的神經(jīng)網(wǎng)絡(luò)活動,恢復(fù)異常的突觸功能,改善其認知能力??拱d癇藥對AD治療的有效性引起廣泛關(guān)注。本文就神經(jīng)超興奮性與AD的關(guān)系及其治療進展作一綜述。
阿爾茨海默??;神經(jīng)超興奮性;抗癲癇藥
阿爾茨海默病(Alzheimer's disease,AD)是以β淀粉樣沉淀(β-amyloid,Aβ)和Tau蛋白過磷酸化形成的神經(jīng)纖維纏結(jié)(Neurofibullar tangels,NFTs)為主要病理特征的神經(jīng)退行性疾病。不斷沉積的Aβ和Tau蛋白磷酸化,誘發(fā)腦內(nèi)慢性神經(jīng)炎癥損傷、突觸和神經(jīng)元丟失和進行性的認知障礙和記憶損害[1]。過去認為針對Aβ和Tau蛋白磷酸化的治療是治療AD的主要策略,但是目前仍缺乏有效的特異性治療方法。近年來AD腦內(nèi)異常的神經(jīng)網(wǎng)絡(luò)活動越來越受到關(guān)注。研究人員發(fā)現(xiàn)AD患者患癲癇的風(fēng)險增加5-10倍[2-4],AD模型鼠腦內(nèi)存在大量異常興奮的神經(jīng)網(wǎng)絡(luò)活動中或者癲癇樣改變[5-9]。使用抗癲癇藥物左乙拉西坦能有顯著抑制AD模型鼠腦內(nèi)異常神經(jīng)網(wǎng)絡(luò)活動,恢復(fù)突觸的可塑性,改善認知功能[10-11]。異常神經(jīng)網(wǎng)絡(luò)活動被認為是導(dǎo)致AD病理和認知障礙的一個新的機制[3]。本文就神經(jīng)超興奮與AD的關(guān)系、可能的作用機制及其治療進展作一綜述。
1.Aβ大量沉積導(dǎo)致神經(jīng)超興奮性:目前普遍認同具有神經(jīng)毒性的Aβ在腦實質(zhì)內(nèi)大量沉積是AD主要致病因素[12]。Aβ來源于β淀粉樣前體蛋白(APP)。APP廣泛存在于體內(nèi)各類組織中,特別是在腦組織中。正常生理條件下,大部分APP經(jīng)過α-分泌酶裂解為可溶性的β-APP,再經(jīng)過γ-分泌酶剪切裂解成P3。在AD中,APP在N端位點經(jīng)過β-分泌酶異常剪切產(chǎn)生可溶性的APPS-β和能貫穿膜成分的C末端片段(CTFs),CTFs在γ-分泌酶的裂解下產(chǎn)生大量的Aβ40和Aβ 42,促進Aβ的聚集而致病[13]。文獻報道病理性Aβ參與調(diào)控腦內(nèi)神經(jīng)網(wǎng)絡(luò)活動和突觸傳遞活動[5]。大量的Aβ沉積損害腦內(nèi)興奮性突觸之間的突觸傳遞和損害膽堿能神經(jīng)元的突觸可塑性[14],異常調(diào)控神經(jīng)網(wǎng)絡(luò)水平,誘發(fā)癲癇樣腦電活動和癲癇,直接、間接地重塑海馬神經(jīng)傳遞功能,導(dǎo)致認知功能障礙[5]。
AD腦內(nèi)異常的神經(jīng)超興奮性現(xiàn)象產(chǎn)生可能與以下幾種情況有關(guān):(1)海馬代償性生成一系列抑制性中間神經(jīng)元干擾正常的神網(wǎng)絡(luò)活動;(2)異常神經(jīng)超興奮性神經(jīng)活動誘發(fā)的代償性抑制性中間神經(jīng)元在抑制神經(jīng)超興奮性的同時,也嚴重干擾正常的神經(jīng)信息傳遞和突觸功能,導(dǎo)致的認知障礙[15]。(3)電壓門控鈉離子通道耗竭、載脂蛋白E4片段的神經(jīng)毒性以及Enk基因表達水平的升高也與神經(jīng)超興奮性有關(guān)[16-17]。(4)谷氨酸受體(如GLT1)的損害,導(dǎo)致對谷氨酸的清除減少,刺激神經(jīng)傳導(dǎo)通路,引起神經(jīng)超興奮性,加重認知損害[16-17]。(5)一些鈣調(diào)控蛋白(鈣結(jié)合蛋白)[18]和神經(jīng)活動調(diào)控蛋白(Fos、Arc)[19-20]的異常也可能是引起異常神經(jīng)網(wǎng)絡(luò)活動的因素。(6)具有興奮毒性的花生四烯酸、喹啉酸異常生成增多也參與調(diào)節(jié)異常的神經(jīng)網(wǎng)絡(luò)活動[16-17]。(7)此外,異常的神經(jīng)活動也進一步誘發(fā)神經(jīng)毒性Aβ的生成,大量生成的Aβ使神經(jīng)活動進一步異常,如此惡性循環(huán),促進AD病理進行性進展,嚴重損害記憶認知功能[21]。但是Aβ影響腦內(nèi)神經(jīng)網(wǎng)絡(luò)活動的確切機制仍然缺乏有效的認識,并且Aβ引起的異常神經(jīng)網(wǎng)絡(luò)活動與異常的神經(jīng)網(wǎng)絡(luò)活動進一步刺激Aβ的生成二者之間存在的關(guān)系也有待于進一步研究。
2.APP基因,早老素1基因和早老素2基因:淀粉樣前體蛋白(APP)基因位于21號染色體即21q21.1-21.3,是最早被發(fā)現(xiàn)的與AD相關(guān)的突變基因,呈常染色體顯性遺傳,與家族性早發(fā)型AD有密切的關(guān)系。在病理條件下,APP主要經(jīng)β-分泌酶和γ-分泌酶順序剪切,產(chǎn)生大量神經(jīng)毒性的Aβ,導(dǎo)致AD[22]。
早老素1(Presenilins 1,PS-1)基因定位于14號染色體即14q24.3,PS-2基因位于1號染色體上即14q31-32,大部分分布于與腦內(nèi)皮層和海馬,正常生理情況下,對于神經(jīng)元的發(fā)生和存活起重要作用。突變的PS-1和PS-2基因促進神經(jīng)纖維纏結(jié)和Aβ聚集,誘發(fā)氧自由基產(chǎn)生和誘發(fā)細胞凋亡,加重AD的病理。70%~80%的家族性早發(fā)型AD是由PS-1和PS-2基因突變導(dǎo)致的。
現(xiàn)已發(fā)現(xiàn)編碼hAPP的基因上的23個突變,PS-1的基因上的174個突變和PS-2的基因上的14個突變都能引起家族性早發(fā)型AD[23]。腦內(nèi)異常神經(jīng)網(wǎng)絡(luò)節(jié)律在家族性早發(fā)型AD發(fā)生率更高,異常神經(jīng)網(wǎng)絡(luò)活動更明顯,發(fā)生強直痙攣性癲癇的可能性更大,更常見。而遲發(fā)型的AD,相比未癡呆的同齡相比,雖然癲癇發(fā)生率明顯升高,但是很少強直痙攣性癲癇,僅僅約有5%~20%的AD患者受此影響[24]。文獻報道出現(xiàn)癲癇癥狀的家族性早發(fā)型AD患者,56%的人有APP基因突變;并且超過30個PS1基因突變與癲癇的發(fā)生相關(guān)[25];小于40歲家族性早發(fā)型AD患者,大約83%人發(fā)生過癲癇[26]。由此可見,癲癇活動在AD患者中發(fā)生率很高,并且攜帶有APP,PS1和PS2等位基因突變的AD患者,特別是家族性早發(fā)型AD患者更容易發(fā)生癲癇,發(fā)生全身痙攣性癲癇的比例更大。其致病的機制很可能是這些基因的突變體通過改變γ-分泌酶活性,改變Aβ42/Aβ40的比例,增加Aβ 42生成和聚集,加重AD的病理。Aβ42的增多,增強谷氨酰氨突觸神經(jīng)元的興奮節(jié)律,造成興奮性突觸傳遞紊亂,引發(fā)癲癇活動[27]。但具體的機制,還有待于進一步研究。
3.載脂蛋白ε4(ApoEε4)基因:載脂蛋白基因是目前已知導(dǎo)致散發(fā)型AD的最重要的危險基因之一,盡管其潛在的機制仍然需要進一步闡明,但是研究顯示,位于19號染色體長臂即19q13.2的載脂蛋白ε4基因,通過參與調(diào)節(jié)Aβ生成途徑或者非Aβ途徑,在AD的病理發(fā)展中發(fā)揮著重要作用[28]。散發(fā)型AD患者在疾病的早期就存在明顯異常的癲癇樣腦電活動,這種異常的腦電活動與載脂蛋白ε4基因有顯著關(guān)聯(lián)[3]。載脂蛋白ε4基因誘發(fā)的異常神經(jīng)超興奮性與Aβ的神經(jīng)毒性、Aβ誘發(fā)的神經(jīng)超興奮性的損害作用一起共同致力于AD的病理進展。載脂蛋白ε4在疾病發(fā)展的任何階段均異常調(diào)控著腦內(nèi)的神經(jīng)網(wǎng)絡(luò)活動。研究發(fā)現(xiàn),相比未攜帶載脂蛋白ε4基因的人,遺傳攜帶載脂蛋白ε4基因的人群,在出現(xiàn)癡呆癥狀之前,通過EEG監(jiān)測,發(fā)現(xiàn)腦內(nèi)存在癲癇樣的腦電活動和異常高尖的腦電波[29];在早發(fā)型AD患者的直系親屬中,在EEG腦電檢測中,同樣發(fā)現(xiàn)了這種現(xiàn)象[30]。這些研究結(jié)果說明:(1)載脂蛋白ε4是導(dǎo)致AD的易感危險基因;(2)在攜帶有載脂蛋白ε4的人群中,在出現(xiàn)癡呆之前,載脂蛋白ε4異常調(diào)控著神經(jīng)網(wǎng)絡(luò)活動,腦內(nèi)存在癲癇樣的腦電活動和異常高尖的腦電波;(3)載脂蛋白ε4誘發(fā)的異常異常神經(jīng)網(wǎng)絡(luò)活動,可能是導(dǎo)致AD病理進行性進展的一個重要危險因素。
AD是多種病因互相影響,互相作用導(dǎo)致的神經(jīng)退行性疾病,除了以上幾種情況,還包括Tau蛋白基因突變、α2巨球蛋白基因突變、炎性反應(yīng)、神經(jīng)元鈣超載、細胞凋亡、谷氨酸興奮性毒性、糖代謝/脂質(zhì)代謝異常、自由基和氧化應(yīng)激損傷等,這些在AD的病理中發(fā)揮著重要的作用,但是他們與AD腦內(nèi)神經(jīng)網(wǎng)絡(luò)異常興奮性的相關(guān)關(guān)系,還不明確,有待于進一步研究與探索。
AD的致病機制復(fù)雜,目前臨床一線抗AD藥物僅有膽堿酯酶抑制劑和NMDA受體抑制劑兩類,至今只有5個藥物被批準上市。這些藥物都是對癥治療,治療效果不理想,并且長期服用毒副作用大,價格昂貴,停藥后容易復(fù)發(fā),并不能逆轉(zhuǎn)或根治AD,使得AD的治療一直處于停滯不全的地步。雖然目前在臨床試驗中很多用于AD治療的藥物主要目標是減少Aβ的水平,但是這些藥物的長期有效性和安全性仍然沒有得到有效的驗證。
隨著社會老齡化的不斷深入,AD將給人類社會帶來越來越承重的負擔(dān),尋找有效的AD防治手段顯得非常迫切。近些年來,隨著AD腦內(nèi)異常的神經(jīng)網(wǎng)絡(luò)活動不斷地得到認識和研究,有效抑制或者預(yù)防腦內(nèi)異常節(jié)律的神經(jīng)電活動,能有效改善因Aβ導(dǎo)致的認知功能障礙,這種治療策略將為目前束手無策的AD治療提供一種可供選擇的補償性治療方法,給AD患者帶來新的希望。關(guān)鍵的問題是,目前獲得批準能運用于臨床上的這些抗癲癇藥物,是否都能有效阻止或者緩解Aβ誘導(dǎo)的神經(jīng)網(wǎng)絡(luò)異常興奮性,改善AD記憶功能的作用。
1.基礎(chǔ)研究:Sanchez等人[10]發(fā)現(xiàn),新型抗癲癇藥物左乙拉西坦能顯著抑制hAPPJ20轉(zhuǎn)基因小鼠腦內(nèi)神經(jīng)網(wǎng)絡(luò)異常興奮性,改善轉(zhuǎn)基因小鼠的學(xué)習(xí)與記憶。Koh等人[32-33]發(fā)現(xiàn),左乙拉西坦、丙戊酸鈉還可以降低老齡大鼠海馬的神經(jīng)網(wǎng)絡(luò)異常興奮性并改善其認知功能。同樣的,我們的研究團隊發(fā)現(xiàn),老牌抗癲癇藥物拉莫三嗪也顯著減少APP/PS1轉(zhuǎn)基因小鼠腦內(nèi)神經(jīng)網(wǎng)絡(luò)異常興奮性,且還能有效抑制AD相關(guān)病理,恢復(fù)突觸可塑性,改善認知能力。然而,另一些抗癲癇藥物對AD神經(jīng)網(wǎng)絡(luò)興奮性異常和認知功能改善無明顯作用,甚至?xí)又剡@些改變??拱d癇藥物加巴噴丁、乙琥胺及氨己烯酸并不能減少hAPPJ20轉(zhuǎn)基因小鼠腦內(nèi)皮層、海馬的神經(jīng)網(wǎng)絡(luò)異常興奮性,也未能改善學(xué)習(xí)與記憶[10];在APP/PS1轉(zhuǎn)基因模型小鼠中,抗癲癇藥物苯妥英鈉會促進其腦內(nèi)異常的神經(jīng)網(wǎng)絡(luò)活動形成[9];而苯妥英鈉、普瑞巴林卻惡化hAPPJ20轉(zhuǎn)基因小鼠腦內(nèi)神經(jīng)網(wǎng)絡(luò)異常興奮性,加重認知損害[10][16]。
2.臨床研究:Vossel等人[31]回顧性研究左乙拉西坦、拉莫三嗪對AD患者的影響,發(fā)現(xiàn)能有效抑制癲癇樣神經(jīng)網(wǎng)絡(luò)活動,改善認知功能,抑制AD疾病進展,并且患者在合理的治療劑量下顯示了良好的耐受性。Bakker等人[33]對輕度認知障礙的患者研究發(fā)現(xiàn),左乙拉西坦能顯著抑制輕度認知障礙患者海馬的神經(jīng)網(wǎng)絡(luò)興奮性異常,顯著改善患者的認知能力。與此相反的是,另一些抗癲癇藥物如鈉離子通道抑制劑苯妥英鈉、卡馬西平、苯巴比妥以及苯二氮卓類抗癲癇藥物加重AD腦內(nèi)神經(jīng)網(wǎng)絡(luò)異常興奮性并且導(dǎo)致認知功能進行性下降[34-35]。此外,抗癲癇藥物丙戊酸鈉,雖然在轉(zhuǎn)基因動物模型上研究發(fā)現(xiàn)具有良好認知改善作用和有效抑制腦內(nèi)神經(jīng)網(wǎng)絡(luò)異常興奮性的作用[32-33],但是臨床上給以AD患者服用此藥物后,患者腦組織呈現(xiàn)了一個加快的退化萎縮現(xiàn)象。同時對AD患者進行老年簡易智力狀態(tài)檢查時發(fā)現(xiàn),運用丙戊酸鈉治療組的AD患者比安慰劑組AD患者得分反而更低[36-37]。
這些研究說明AD腦內(nèi)存在神經(jīng)網(wǎng)絡(luò)異常興奮性,部分抗癲癇藥物能減少腦內(nèi)神經(jīng)網(wǎng)絡(luò)異常興奮性,改善認知功能,但并不是所有抗癲癇藥物均能抑制神經(jīng)網(wǎng)絡(luò)異常興奮性,部分甚至還能加重神經(jīng)網(wǎng)絡(luò)異常興奮性,使認知功能惡化??拱d癇藥物能否有效抑制AD腦內(nèi)異常的神經(jīng)超興奮性現(xiàn)象,能否對AD患者認知有改善作用,取決于Aβ誘發(fā)產(chǎn)生異常神經(jīng)電活動的確切機制,而目前這種確切機制仍然還不明確,對于抗癲癇藥物在AD患者的臨床運用,還有很長的路去探索。
目前有很多證據(jù)表明AD腦內(nèi)相關(guān)的異常癲癇樣腦電活動在出現(xiàn)認知障礙之前已經(jīng)存在[27]。而部分腦內(nèi)存在神經(jīng)超興奮性的AD患者,并不會出現(xiàn)明顯的癲癇樣癥狀,這些AD患者腦內(nèi)異常的神經(jīng)網(wǎng)絡(luò)活動,往往會被忽略掉,這種毫無征兆的異常神經(jīng)網(wǎng)絡(luò)活動,促進Aβ的沉積;Aβ沉積進一步抑制神經(jīng)突觸興奮性傳遞以及突觸的可塑性,加劇異常的神經(jīng)網(wǎng)絡(luò)興奮性。異常神經(jīng)網(wǎng)絡(luò)活動與Aβ之間的互相影響,互相促進,惡性循環(huán),導(dǎo)致Aβ聚集增多,誘導(dǎo)神經(jīng)炎癥、氧化應(yīng)激損傷、細胞凋亡、加劇神經(jīng)元的死亡,導(dǎo)致進行性的認知功能障礙[3][21]。腦內(nèi)這種異常的神經(jīng)網(wǎng)絡(luò)活動是可以得到有效控制的[10][27][38-40]。因此,如果能做到早期發(fā)現(xiàn),早期診斷,就能更好地合理使用一些有效的抗癲癇藥物合理地抑制腦內(nèi)異常的神經(jīng)電活動,有效地控制AD的進行性進展。
迄今為止,左乙拉西坦、拉莫三嗪兩種抗癲癇藥物,不論在動物模型上(拉莫三嗪的實驗結(jié)果正在投稿中)以及臨床試驗上,都驗證了能有效抑制腦內(nèi)異常的神經(jīng)超興奮性,改善認知功能,有效延緩AD病理進程。并且,這些抗癲癇藥物除了抑制異常的神經(jīng)網(wǎng)絡(luò)興奮性外,可能還涉及其他重要的分子機制,包括抑制HDAC[41]、炎性反應(yīng)[42-45]、神經(jīng)元鈣超載[46-48]、細胞凋亡[49]以及谷氨酸興奮性毒性[10][31][44]等神經(jīng)保護作用。也就是說,抗癲癇藥物在AD的治療中極有可能是一種多靶向、多靶點治療的藥物。對于有攜帶有異常神經(jīng)網(wǎng)絡(luò)活動易感基因的患者,可以適當使用左乙拉西坦、拉莫三嗪等有效的抗癲癇藥物預(yù)防,減緩AD疾病進展。深入探索抗癲癇藥物對AD的療效及其機制,有助于開發(fā)AD藥物的新靶點,為AD患者帶來福音。
[1]Selkoe DJ.Alzheimer's disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein[J].Journal ofAlzheimer's disease,2001,3(1)∶75-80.
[2]Amatniek JC,Hauser WA,DelCastillo-Castaneda C,et al. Incidence and predictors of seizures in patients with Alzheimer's disease[J].Epilepsia,2006,47(5)∶867-872.
[3]Palop JJ,Mucke L.Epilepsy and cognitive impairments in Alzheimer disease[J].Archives of neurology.2009,66(4)∶435-440.
[4]Harris JA,Devidze N,Verret L,et al.Transsynaptic progression of amyloid-beta-induced neuronal dysfunction within the entorhinal-hippocampal network[J].Neuron,2010,68(3)∶428-441.
[5]Minkeviciene R,Rheims S,Dobszay MB,et al.Amyloid beta-induced neuronal hyperexcitability triggers progressive epilepsy[J].The Journal of Neuroscience,2009,29(11)∶3453-3462.
[6]Roberson ED,Halabisky B,Yoo JW,et al.Amyloid-beta/Fyninduced synaptic,network,and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer's disease [J].The Journal of Neuroscience,2011,31(2)∶700-711.
[7]Palop JJ,Chin J,Roberson ED,et al.Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer's disease [J].Neuron,2007,55(5)∶697-711.
[8]Vogt DL,Thomas D,Galvan V,et al.Abnormal neuronal networks and seizure susceptibility in mice overexpressing the APP intracellular domain[J].Neurobiology of aging,2011,32 (9)∶1725-1729.
[9]Ziyatdinova S,Gurevicius K,Kutchiashvili N,et al. Spontaneous epileptiform discharges in a mouse model of Alzheimer's disease are suppressed by antiepileptic drugs that block sodium channels[J].Epilepsy research,2011,94(1-2)∶75-85.
[10]Sanchez PE,Zhu L,Verret L,et al.Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model[J].Proc NatlAcad Sci USA,2012,109(42)∶2895-2903.
[11]Cumbo E,Ligori LD.Levetiracetam,lamotrigine,and phenobarbital in patients withepileptic seizures and Alzheimer’s disease[J].Epilepsy Behav,2010,17(4)∶461-466.
[12]Huang Y,Mucke L.Alzheimer mechaisms and therapeutic strategies[J].Cell,2012,148(6)∶1204-1222.
[13]Cai H,Wang D,McCarthy H,et al.BACE1 is the major beta-secretase for generation of Abeta peptides by neurons[J]. Nat Neurosci,2001,4(3)∶233-234.
[14]Hsieh H,Boehm J,Sato C,et al.AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss[J]. Neuron,2006,52(5)∶831-843.
[15]Palop J.J,Chin J,Mucke L.A network dysfunction perspective on neurodegenerative diseases[J].Nature,2006,443(7113)∶768-773.
[16]Verret L,Mann EO,Hang GB,et al.Inhibitory interneuron de ficit links altered networkactivity and cognitive dysfunction in Alzheimer model[J].Cell,2012,149(3)∶708-721.
[17]Meilandt WJ,Yu GQ,Chin J,et al.Enkephalin elevations contribute to neuronal and behavioral impairments in a transgenic mouse model of Alzheimer’s disease[J].J.Neurosci,28(19)∶5007-5017.
[18]Palop JJ,Jones B,Kekonius L,et al.Neuronal depletion of calcium-dependent proteins in the dentate gyrus is tightly linked to Alzheimer's disease-related cognitive deficits[J].Proc NatlAcad Sci U S A,2003,100(16)∶9572-9577.
[19]Palop JJ,Chin J,Bien Ly N,et al.Vulnerability of dentate granule cells to disruption of Arc expressionin human amyloid precursor protein transgenic mice[J].J Neurosci,2005,25(42)∶9686-9693.
[20]Chin J,Palop JJ,Puoliv?li J,et al.Fyn kinase induces synaptic and cognitive impairments in a transgenic mouse model of Alzheimer's disease[J].J Neurosci,2005,25(42)∶9694-9703.
[21]Bero AW,Yan P,Roh JH,et al.Neuronal activity regulates the regional vulnerability to amyloid deposition[J].Nat Neurosci, 2011,14(6)∶750-756.
[22]Hong Qing,Guiqiong He,PhilipT.T.Ly,et al.Valproic acid inhibits Aβ production,neuritic plaque formation,and behavioral deifcits in Alzheimer’s disease mouse models[J].J.Exp. Med,2008,205(12)∶2781-2789.
[23]The Alzheimer disease and frontotemporal dementia mutation database.Flanders Interuniversity Institute for Biotechnology Department of Molecular Genetics Web site;2008.
[24]Amatniek JC,Hauser WA,Delcastillo-Castaneda C,et al. Incidence and predictors of seizures in patients with Alzheimer’s disease[J].Epilepsia,2006,47(5)∶867-872.
[25]Larner AJ,Doran M.Clinical phenotypic heterogeneity of Alzheimer's disease associated with mutations of the presenilin-1 gene[J].J Neurol,2006,253(2)∶139-158.
[26]Snider BJ,Norton J,Coats MA,et al.Novel presenilin 1 mutation(S170F)causing Alzheimer disease with Lewy bodies in the third decade of life[J].Arch Neurol,2005,62(12)∶1821-1830.
[27]Palop JJ,Mucke L.Amyloid-β Induced Neuronal Dysfunction in Alzheimer’s Disease∶From Synapses toward Neural Networks[J].Nat Neurosci,2010,13(7)∶812-818.
[28]Mahley RW,Weisgraber KH,Huang Y.Apolipoprotein E4∶a causative factor and therapeutic target in neuropathology, including Alzheimer's disease[J].Proc Natl Acad Sci U S A, 2006,103(15)∶5644-5651.
[29]Ponomareva NV,Korovaitseva GI,Rogaev EI.EEG alterations in non-demented individuals related to apolipoprotein E genotype and to risk of Alzheimer disease[J].Neurobiol Aging, 2008,29(6)∶819-827.
[30]Ponomareva NV,Selesneva ND,Jarikov GA.EEG alterations in subjects at high familial risk for Alzheimer's disease. Neuropsychobiology,2003,48(3)∶152-159.
[31]Vossel KA,Beagle AJ,Rabinovici GD,et al.Seizures and Epileptiform Activity in the Early Stages of Alzheimer Disease [J].JAMANeurol,2013,70(9)∶1158-1566.
[32]Koh MT,Haberman RP,Foti S,et al.Treatment strategies targeting excess hippocampal activity benefit aged rats with cognitive impairment[J].Neuropsychopharmacology,2010,35(4)∶1016-1025.
[33]Bakker A,Krauss GL,Albert MS,et al.Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment[J].Neuron,2012,74(3)∶467-474.
[34]Cumbo E,Ligori LD.Levetiracetam,lamotrigine,and phenobarbital in patients withepileptic seizures and Alzheimer’s disease[J].Epilepsy Behav,2010,17(4)∶461-466.
[35]Mendez M,Lim G.Seizures in elderly patients with dementia∶epidemiology and management[J].Drugs Aging,2003,20(11)∶791-803.
[36]Fleisher AS,Truran D,Mai JT,et al.Alzheimer’s Disease Cooperative Study.Chronic divalproex sodium use and brain atrophy in Alzheimer disease[J].Neurology,2011,77(13)∶1263-1271.
[37]Tariot PN,Schneider LS,Cummings J,et al.Alzheimer’s Disease Cooperative Study Group.Chronic divalproex sodium to attenuate agitation and clinical progression of Alzheimer disease[J].Arch Gen Psychiatry,2011,68(8)∶853-861.
[38]Irizarry MC,Jin S,He F,et al.Incidence of new-onset seizures in mild to moderate Alzheimer disease[J].Arch Neurol,2012, 69(3)∶368-372.
[39]Bakker A,Krauss GL,Albert MS,et al.Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment[J].Neuron,2012,74(3)∶467-474.
[40]Meehan AL,Yang X,McAdams BD,et al.A new mechanism for antiepileptic drug action∶vesicular entry may mediate the effects of levetiracetam[J].J Neurophysiol,2011,106(3)∶1227-1239.
[41]Shi JQ,Wang BR,Tian YY,et al.Antiepileptics topiramate and levetiracetam alleviate behavioral deficits and reduce neuropathology in APPswe/PS1dE9 transgenic mice[J].CNS Neurosci Ther,2013,19(11)∶871-881.
[42]Cardinale JP,Sriramula S,Pariaut R,et al.HDAC inhibition attenuates inflammatory,hypertrophic,and hypertensive responses in spontaneously hypertensive rats[J].Hypertension, 2010,56(3)∶437-444.
[43]Kochanek AR,Fukudome EY,Li Y,et al.Histone deacetylase inhibitor treatment attenuates MAP kinase pathway activation and pulmonary inflammation following hemorrhagic shock in a rodent model[J].J Surg Res 2011,176(1)∶185-194.
[44]Kim HJ,Rowe M,Ren M,et al.Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke∶Multiple mechanisms of action[J].J Pharmacol Exp Ther,2007,321(3)∶892-901.
[45]Suh HS,Choi S,Khattar P,et al.Histone deacetylase inhibitors suppress the expression of inflammatory and innate immune response genes in human microglia and astrocytes[J].J Neuroimmune Pharmacol,2010,5(4)∶521-532.
[46]Mark RJ,Ashford JW,Goodman Y,et al.Anticonvulsants attenuate amyloid beta-peptide neurotoxicity,Ca2+deregulation,and cytoskeletalpathology[J].Neurobiol Aging,1995,16 (2)∶187-198.
[47]Angehagen M,Margineanu DG,Ben-Menachem E,et al. Levetiracetam reduces caffeine-induced Ca2+transients and epileptiform potentials in hippocampal neurons[J].Neuroreport,2003,14(3)∶471-475.
[48]Pisani A,Bonsi P,Martella G,et al.Intracellular calcium increase in epileptiform activity∶Modulation by levetiracetam and lamotrigine[J].Epilepsia,2004,45(7)∶719-728.
[49]Chen PS,Wang CC,Bortner CD,et al.Valproic acid and other histone deacetylase inhibitors induce microglial apoptosis and attenuate lipopolysaccharide induced dopaminergic neurotoxicity[J].Neuroscience,2007,149(1)∶203-212.
Neural network hyperactivity in Alzheimer’s disease
Zhang Maoying1,Jia Weiqiang2,Ma Quanhong3,Xu Ruxian g2.
1Department of Neurosurgery,T he First A ffiliated Hospital of Jinan University, Guangzhou 510630,China;2Affiliated Bayi Brain Hospital,T he Military General Hospital of Beijing PLA,Beijing 100700,Ch ina;3Institute o f Neuroscience,S ooch ow University,Suzh ou 215021,China Corresponding author,Xu Ruxiang.zjxuruxiang@163.com
Alzheimer’s Disease(AD)is a common neurological disease,whose specific pathogenesis is still unclear.There are still no effective treatments to prevent,halt,or reverse Alzheimer’s disease.AD patients have an increase dincidence of epileptic seizures.Hyperexcitability has also been observed in various AD transgenic mice.Such aberrant network activity is closely related to cognitive deficits and the pathogenesis of AD.Recent studies suggest that the aberrant network activity is upstream and contributes causally to synaptic,cognitive,and behavioral dysfunctions in AD transgenic mice.Blocking the network hyperactivity with LEV,an antiepileptic drugs(AEDs),which inhibits voltage-dependent sodium channels,reversed synaptic dysfunction and cognitive deficits in hAPP mice.These studies have been paid great attention,especially the potential application of AEDs, in AD therapy.This Review highlights the relationship between the aberrant network activity and AD in AD research,and raises major unresolved issues,especially the potential application of AEDs,in AD therapy.
Alzheimer disease;Network hyperactivity;Anticonvulsants
2015-04-08)
(本文編輯:楊藝)
DOI∶10.3877/cma.j.issn.2095-9141.2015.04.010
國家自然基金項目(81500915,BWS11J002);廣東省自然科學(xué)基金-博士啟動項目(408203555024);暨南大學(xué)科研培育與創(chuàng)新基金研究項目(21615336)
510630廣州,暨南大學(xué)附屬第一醫(yī)院神經(jīng)外科1;100700北京,北京軍區(qū)總醫(yī)院神經(jīng)外科研究2;215021蘇州,蘇州大學(xué)神經(jīng)科學(xué)研究所3
徐如祥,Email∶xuruxiangbrain@163.com
張茂營,賈偉強,馬全紅,等.神經(jīng)超興奮性與阿爾茨海默病[J/CD].中華神經(jīng)創(chuàng)傷外科電子雜志,2015,1(4)∶232-236.