汪麗菁 呂航 程向東
外源性microRNA跨物種應用研究進展
汪麗菁 呂航 程向東
microRNAs(miRNAs)[1]是在生物體中發(fā)現(xiàn)的一類具有調(diào)控功能的非編碼RNA,其大小長約20~25個核苷酸。成熟的miRNAs是由較長的初級轉(zhuǎn)錄物經(jīng)過一系列核酸酶的剪切加工而產(chǎn)生的,隨后組裝進RNA誘導的沉默復合體,通過堿基互補配對的方式識別目的mRNA,并根據(jù)互補程度的不同指導沉默復合體降解目的mRNA或者阻遏目的mRNA翻譯,進而影響相應蛋白表達,最終實現(xiàn)對生物體生理機能的調(diào)控作用,如已有證據(jù)表明,在多種腫瘤樣本的致瘤部位,某些抑癌基因的miRNA顯著上調(diào),而癌基因的miRNA含量則顯著低于正常[2]。
原先認為,miRNA是內(nèi)源性調(diào)控作用。但是近幾年的研究發(fā)現(xiàn),miRNA的調(diào)控功能,不僅局限于生物體內(nèi),而且在寄生物與宿主之間也廣泛存在[3]。Stern-Ginossar 等[4]發(fā)現(xiàn),人巨細胞病毒編碼的miRNA—hcmv-miR-UL112在病毒感染過程中特異地下調(diào)了主要組織相容性復合物I相關B鏈(MICB)的表達,減少其與NK細胞激活受體(NKG2D)的結(jié)合,并降低NK細胞的殺傷能力,從而導致宿主致病。Weiberg A等[5]發(fā)現(xiàn)灰霉菌能通過分泌小RNA進入植物內(nèi)部,從而抑制植物的免疫功能;大腸桿菌的小RNA-OxyS和DsrA通過調(diào)控che-2和F42G9.6基因表達分別引起線蟲化學感覺行為受損和壽命縮短[6]。人們開始意識到,寄生物能夠通過miRNA影響宿主生命周期,導致宿主致病。同時,宿主也可以通過miRNA反向調(diào)控寄生物的生命周期。人MiR-122通過影響cyclin G1/p53通路對HBV病毒復制起調(diào)控作用[7],但同時miR-122也會與HCV mRNA 5’非編碼區(qū)相互作用引起HCV病毒增殖[8]。感染水皰性口炎病毒(VSV)的小鼠通過表達miR-24和miR-93錨定VSV的L蛋白和P蛋白基因,抑制VSV增殖[9];鐮刀細胞病患者的紅細胞通過表達miR-451和let-7i,靶向作用惡性瘧原蟲的mRNA,抑制其生長[10]。最新的研究表明,外源性miRNA的影響,不僅局限于宿主與寄生物之間,而且可以通過攝入外源性miRNA對機體產(chǎn)生影響。Zhang等[11]于2012年首次報道在人體血液中檢測出大米MiR-168a,并調(diào)控人低密度脂蛋白受體銜接蛋白1基因(LDLRAP1)。Zhou等[12]還發(fā)現(xiàn),穩(wěn)定存在于中藥金銀花湯劑中的金銀花miRNA,可以通過小鼠灌胃方式進入小鼠循環(huán)系統(tǒng),并有效抑制小鼠體內(nèi)的流感病毒A。同時,如其他來源的乳制品中,現(xiàn)也發(fā)現(xiàn)部分miRNA不會因為工業(yè)加工過程而降解,并且依然可以被人體攝入和吸收,最終可在人體血液中被檢測出其存在[13]。以往這些研究發(fā)現(xiàn),不僅打破了外源性miRNA會被機體核酸酶降解而失去調(diào)控能力的結(jié)論,并且給外源性miRNA的應用提供更廣闊的臨床研究價值。尤其是攝入性獲取外源性miRNA的研究驗證,對中國傳統(tǒng)中藥藥理的作用機制研究具有十分深遠的影響,同時為癌癥等多基因疾病的治療,提供了一個新的、具有發(fā)展?jié)摿Φ闹委熓侄魏头椒ā?/p>
miRNA可作用于胞質(zhì)[14],且具有穩(wěn)定性高[15,16]、多靶點等特點,這更易作用于靶基因。且與shRNA和siRNA相比,外源性miRNA是最有可能實現(xiàn)不同物種之間的多基因調(diào)控[17]。但如何將外源miRNA有效轉(zhuǎn)運至靶細胞,通過細胞膜,并釋放作用于靶基因仍然是一個科學難題。由于病毒載體的安全性問題,目前開發(fā)的RNA治療方案多采用siRNA導入細胞胞質(zhì),沉默目的基因。而miRNA因為調(diào)控基因網(wǎng)絡的作用,逐漸成為新的研究熱點?,F(xiàn)已可通過人工合成miRNA的方式干預mRNA的表達[18]。目前開展的以外源miRNA作為治療的技術(shù)基礎,基本與siRNA類似,即通過脂質(zhì)體或大分子載體方式,將miRNA轉(zhuǎn)運至靶細胞胞質(zhì)。但在此基礎上已經(jīng)有了新的技術(shù)進展。
2.1 脂質(zhì)納米轉(zhuǎn)運載體 陽離子脂質(zhì)體作為核酸的載體已經(jīng)在生物學實驗中應用超過20多年。DOTMA是首次用于核酸輸送載體的陽離子脂質(zhì)之一[19]。后來發(fā)展了一類稱為類脂的分子(lipidoids)。因其結(jié)構(gòu)成分類似細胞膜,容易被內(nèi)吞進入細胞,而<100nm的納米脂質(zhì)體不會被肺毛細血管濾過性截留,能順利進入循環(huán)系統(tǒng),到達目的組織細胞[20]。人工合成的MiR-34a[21],即臨床藥物MRX34(臨床I期(NCT01829971)就是通過可電離化的直徑在120nm左右的脂質(zhì)體轉(zhuǎn)運至體內(nèi)[22],用于治療肝癌和肝癌轉(zhuǎn)移。并且采用類似的方法轉(zhuǎn)運miR-34a能提高非小細胞肺癌患者對埃羅替尼的敏感性[23]。由于胞內(nèi)的miRNA通常采取外泌體(exosomes)[24]、脫落囊泡(SVs)[25]等微囊經(jīng)微囊泡(MVs)的主動分泌方式運轉(zhuǎn)miRNA至胞外。并且發(fā)現(xiàn)MVs其表面蛋白分子能夠作為靶細胞膜表面配體而靶向輸送至受體細胞[26]。而且miRNA裝載進入外泌體是一個受RNA誘導的沉默復合物(RISC)的特殊蛋白控制的選擇性過程[27]。并且MVs能夠夠保護miRNA不被RNA酶降解[28]。Alvarez等[29]證實采用內(nèi)源性外泌體作為靶向細胞載體的可能性,并成功治療鼠阿爾茨海默病。Ohno S等[30]研究證實外泌體在體內(nèi)可將抗腫瘤的miRNA轉(zhuǎn)運至乳腺癌細胞,認為采用內(nèi)源性MVs可作為藥物傳送系統(tǒng)的載體。在其他的研究中也發(fā)現(xiàn),通過內(nèi)源性MVs,被FITC標記的外源性MiR-150能夠下調(diào)內(nèi)皮細胞HMEC-1中的Myb基因,促進遷移的發(fā)生[31]。并且當?shù)鞍邹D(zhuǎn)運抑制劑(brefeldin A)抑制血小板微粒釋放后,原本能夠正常轉(zhuǎn)運至內(nèi)皮細胞的熒光標記的miRNA和外源性線蟲miRNA,被完全抑制。表明外源性miRNA是通過微囊運輸?shù)竭_靶細胞并發(fā)生作用的[25]。Zhu等[32]將靶向唾液酸粘附素和CD163受體的miRNA轉(zhuǎn)入外泌體,并作用于豬肺泡巨噬細胞,有效抑制豬感染繁殖與呼吸綜合征病毒(PRRSV)。因此,采用內(nèi)源性囊泡作為載體運輸外源miRNA,能夠更加有效地到達靶細胞,發(fā)揮作用。將會是新的脂質(zhì)體研究方向。
2.2 大分子轉(zhuǎn)運載體 在脂質(zhì)體的結(jié)構(gòu)中,膽固醇的加入促進了核酸進入細胞,并且保護核酸不被核酸酶降解,同時膽固醇還能靶向運輸至腎臟和肝臟[33],使人們認識到這類蛋白作為核酸靶向運輸載體的可能性;另一個發(fā)現(xiàn)能夠穩(wěn)定miRNA結(jié)構(gòu)的蛋白是Ago2,它使miRNA在循環(huán)系統(tǒng)中的存留時間延長,并能夠轉(zhuǎn)運至目的細胞[34,35]。這些非囊泡來源的大分子轉(zhuǎn)運載體,豐富了外源性miRNA的轉(zhuǎn)運方式。一些諸如適配子(Aptamer)和細胞穿透肽(CPPs)形式的轉(zhuǎn)運載體被應用到小RNA轉(zhuǎn)運技術(shù)上。(1)適配子:得益于近年來,配體指數(shù)富集系統(tǒng)進化技術(shù)(SELEX)的發(fā)展,適配子(Aptamer)能被廣泛用于生物體內(nèi)靶向特定細胞的特異性寡核苷酸轉(zhuǎn)運載體[36]。具有高親和力、特異性強結(jié)合寡核苷酸的Aptamer雖需經(jīng)過多輪SELEX技術(shù)篩選,但其易合成修飾,低免疫原性和穩(wěn)定性的“化學抗體”特點,使其能被應用于疾病的治療和診斷[37]。目前已經(jīng)篩選出許多小干擾RNA(siRNA)-aptamer能夠進入靶定細胞,沉默目的基因,并且在體內(nèi)和體外實驗中已經(jīng)獲得證實[38~42]。miRNA-aptamer的研究[43]相對于siRNA-aptamer起步較晚,目前研究較多的有特異性結(jié)合與受體酪氨酸激酶致癌基因-Axl的GL21.T適配子,它能特異性結(jié)合合成的let-7g miRNA序列,抑制腫瘤[44]。(2)細胞穿透肽:人們自從20 世紀末發(fā)現(xiàn)具有自發(fā)跨膜轉(zhuǎn)運進入細胞的某些蛋白質(zhì)后,開始對此類蛋白質(zhì)進行功能性研究。并通過對HIV-1病毒的Tat 蛋白以及果蠅的觸角足同源異型結(jié)構(gòu)域蛋白的片段研究,發(fā)現(xiàn)氨基酸殘基數(shù)為10~16的多肽片段具有上述跨膜功能,并將這類肽稱之為細胞穿透肽(CPPs)或蛋白質(zhì)轉(zhuǎn)導結(jié)構(gòu)域(PTDs)。Bolhassani[45]在其綜述中給出了已發(fā)現(xiàn)的主要CPPs的序列,雖然目前發(fā)現(xiàn)的CPPs數(shù)目不斷增長,但對其細胞穿透功能研究仍主要集中在Tat肽以及觸角足肽(penetratin)上。利用CPPs傳遞小RNA 的研究進展也多局限于Tat肽、MPG肽和多聚精氨酸肽。Zhang Y等[46]采用精氨酸多肽(R8)特異性結(jié)合反義MiR-21形成復合物,轉(zhuǎn)運至膠質(zhì)母細胞瘤細胞,使細胞遷移率下降25%。Cheng CJ等[47]采用pH誘導的跨膜多肽(pHIP)成功轉(zhuǎn)運反義miR-155治療彌漫性大B細胞淋巴瘤(DLBCL)。進一步證實了miR-155/DLBCL小鼠模型中采用這個治療方法比當前臨床采用的方法毒性更小。
內(nèi)源性miRNA由于其穩(wěn)定性和特異性,已經(jīng)越來越成為疾病診斷和預測的重要生物標志物,而外源性miRNA由于其能夠跨物種的作用形式,也越來越被人們所重視。并且由于miRNA低毒高效、多靶點的作用特點,一方面可用于多基因病(如癌癥等)的治療,不僅可以聯(lián)合化療藥物,提高化療藥物敏感性,而且可能成為新的臨床用藥;另一方面由于新近發(fā)現(xiàn)植物miRNA能夠通過胃腸道進入機體循環(huán)系統(tǒng),不僅可以作為完善長期食用藥食植物對機體免疫平衡調(diào)節(jié)的作用依據(jù),也必將成為中藥活性成分的新開發(fā)方向。然而,雖然外源性miRNA具有能夠跨物種作用于機體的優(yōu)勢,但仍面臨著諸多難題。雖然miRNA相對于siRNA作用更加長效,但如何保證所需外源性miRNA攝入后不被機體核酸酶降解,并有效轉(zhuǎn)運到靶細胞,以及還未有長期使用的毒性學實驗驗證,都制約了外源性miRNA的開發(fā)。但可以預見,隨著新的低毒性載體的研制,miRNA仍將成為核酸生物醫(yī)學的新治療手段。
1 Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nature reviews Genetics, 2007, 8(2):93~103.
2 Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO molecular medicine,2012, 4(3):143~159.
3 Aliyari R, Ding SW. RNA-based viral immunity initiated by the Dicer family of host immune receptors. Immunological reviews, 2009, 227(1):176~188.
4 Stern-Ginossar N, Elefant N, Zimmermann A, et al. Host immune system gene targeting by a viral miRNA. Science, 2007, 317(5836):376~381.
5 Weiberg A, Wang M, Lin FM, et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science, 2013, 342(6154):118~123.
6 Liu H, Wang X, Wang HD, et al. Escherichia coli noncoding RNAs can affect gene expression and physiology of Caenorhabditis elegans. Nature communications, 2012, 3:1073.
7 Wang S, Qiu L, Yan X, et al. Loss of microRNA 122 expression in patients with hepatitis B enhances hepatitis B virus replication through cyclin G(1)-modulated P53 activity. Hepatology, 2012, 55(3):730~741.
8 Jopling CL, Yi M, Lancaster AM, et al. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science, 2005, 309(5740):1577~1581.
9 Otsuka M, Jing Q, Georgel P, et al. Hypersusceptibility to vesicular stomatitis virus infection in Dicer1-deficient mice is due to impaired miR24 and miR93 expression. Immunity, 2007, 27(1):123~134.
10 LaMonte G, Philip N, Reardon J, et al.Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance. Cell host & microbe, 2012, 12(2):187~199.
11 Zhang L, Hou D, Chen X, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell research, 2012, 22(1):107~126.
12 Zhou Z, Li X, Liu J, et al.Honeysuckle-encoded atypicalmicroRNA2911 directly targets influenza A viruses. Cell research, 2015, 25(1):39~49.
13 Izumi H, Kosaka N, Shimizu T, et al.Bovine milk contains microRNA and messenger RNA that are stable under degradative conditions. Journal of dairy science, 2012, 95(9):4831~4841.
14 Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA-mediated gene silencing. Cell, 2008, 132(1):9~14.
15 Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell research, 2008, 18(10):997~1006.
16 Ge Q, Zhou Y, Lu J, et al. miRNA in plasma exosome is stable under different storage conditions. Molecules, 2014, 19(2):1568~1575.
17 Alvarez JP, Pekker I, Goldshmidt A, et al.Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. The Plant cell, 2006, 18(5):1134~1151.
18 Zeng Y, Wagner EJ, Cullen BR. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Molecular cell, 2002, 9(6):1327~1333.
19 Pack DW, Hoffman AS, Pun S, et al.Design and development of polymers for gene delivery. Nature reviews Drug discovery, 2005, 4(7):581~593.
20 Yin H, Kanasty RL, Eltoukhy AA, et al. Non-viral vectors for genebased therapy. Nature reviews Genetics, 2014, 15(8):541~555.
21 He L, He X, Lim LP, et al.A microRNA component of the p53 tumour suppressor network. Nature, 2007, 447(7148):1130~1134.
22 Bader AG. miR-34 - a microRNA replacement therapy is headed to the clinic. Frontiers in genetics, 2012, 3:120.
23 Zhao J, Kelnar K, Bader AG. In-depth analysis shows synergy between erlotinib and miR-34a. PloS one, 2014, 9(2):e89105.
24 Zampetaki A, Willeit P, Drozdov I, et al.Profiling of circulating microRNAs: from single biomarkers to re-wired networks. Cardiovascular research, 2012, 93(4):555~562.
25 Gidlof O, van der Brug M, Ohman J, et al. Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression. Blood, 2013, 121(19):3908~3917, S3901~3926.
26 Ahmed KA, Xiang J. Mechanisms of cellular communication through intercellular protein transfer. Journal of cellular and molecular medicine, 2011, 15(7):1458~1473.
27 Gibbings DJ, Ciaudo C, Erhardt M, et al. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nature cell biology, 2009, 11(9):1143~1149.
28 Skog J, Wurdinger T, van Rijn S, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature cell biology, 2008, 10(12):1470~1476.
29 Alvarez-Erviti L, Seow Y, Yin H, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature biotechnology, 2011, 29(4):341~345.
30 Ohno S, Takanashi M, Sudo K, et al.Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Molecular therapy : the journal of the American Society of Gene Therapy, 2013, 21(1):185~191.
31 Zhang Y, Liu D, Chen X, et al.Secreted monocytic miR-150 enhances targeted endothelial cell migration. Molecular cell, 2010, 39(1):133~144.
32 Zhu L, Song H, Zhang X, et al.Inhibition of porcine reproductive and respiratory syndrome virus infection by recombinant adenovirus- and/ or exosome-delivered the artificial microRNAs targeting sialoadhesin and CD163 receptors. Virology journal, 2014, 11(1):225.
33 Liu Y, Liggitt D, Zhong W, et al. Cationic liposome-mediated intravenous gene delivery. The Journal of biological chemistry, 1995, 270(42):24864~24870.
34 Guduric-Fuchs J, O'Connor A, Camp B, et al.Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC genomics, 2012, 13:357.
35 Xu J, Chen Q, Zen K, et al. Synaptosomes secrete and uptake functionally active microRNAs via exocytosis and endocytosis pathways. Journal of neurochemistry, 2013, 124(1):15~25.
36 Thiel KW, Giangrande PH. Intracellular delivery of RNA-based therapeutics using aptamers. Therapeutic delivery, 2010, 1(6):849-861. 37 Zhou J, Rossi JJ. Bivalent aptamers deliver the punch. Chemistry & biology, 2008, 15(7):644~645.
38 McNamara JO, 2nd, Andrechek ER, Wang Y, et al.Cell typespecific delivery of siRNAs with aptamer-siRNA chimeras. Nature biotechnology, 2006, 24(8):1005~1015.
39 Dassie JP, Liu XY, Thomas GS, et al. Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nature biotechnology, 2009, 27(9):839~849.
40 Thiel KW, Hernandez LI, Dassie JP, et al. Delivery of chemo-sensitizing siRNAs to HER2+-breast cancer cells using RNA aptamers. Nucleic acids research, 2012, 40(13):6319~6337.
41 Zhou J, Neff CP, Swiderski P, et al. Functional in vivo delivery of multiplexed anti-HIV-1 siRNAs via a chemically synthesized aptamer with a sticky bridge. Molecular therapy : the journal of the American Society of Gene Therapy, 2013, 21(1):192~200.
42 Herrmann A, Priceman SJ, Kujawski M, et al.CTLA4 aptamer delivers STAT3 siRNA to tumor-associated and malignant T cells. The Journal of clinical investigation, 2014, 124(7):2977~2987.
43 Esposito CL, Cerchia L, Catuogno S, et al.Multifunctional aptamermiRNA conjugates for targeted cancer therapy. Molecular therapy: the journal of the American Society of Gene Therapy, 2014, 22(6):1151~1163.
44 Boyerinas B, Park SM, Hau A, et al. The role of let-7 in cell differentiation and cancer. Endocrine-related cancer, 2010, 17(1): F19~36.
45 Bolhassani A. Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer. Biochimica et biophysica acta, 2011, 1816(2):232~246.
46 Zhang Y, Kollmer M, Buhrman JS, et al. Arginine-rich, cell penetrating peptide-anti-microRNA complexes decrease glioblastoma migration potential. Peptides, 2014, 58:83~90.
47 Cheng CJ, Bahal R, Babar IA, et al. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature, 2014, doi: 10.1038/nature13905. Epub ahead of print.
浙江省醫(yī)藥衛(wèi)生科技計劃課題(2010KYA042)
310022 浙江省腫瘤醫(yī)院超聲科(汪麗菁)
31006 浙江省中醫(yī)藥大學附屬第一醫(yī)院(呂航 程向東)
*通訊作者