• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      血栓調(diào)節(jié)蛋白與冠心病的研究進(jìn)展

      2015-01-22 05:14:08苑姍姍榮瑗瑗
      關(guān)鍵詞:凝血酶內(nèi)皮細(xì)胞硬化

      苑姍姍,榮瑗瑗

      ? 綜述 ?

      血栓調(diào)節(jié)蛋白與冠心病的研究進(jìn)展

      苑姍姍,榮瑗瑗

      血栓調(diào)節(jié)蛋白(thrombomodulin,TM)是細(xì)胞表面的一種糖蛋白,它與凝血酶結(jié)合形成的復(fù)合物可以活化蛋白C,在機體發(fā)揮抗炎、抗凝、抗纖維裂解等多種作用。近年來,TM與冠心病發(fā)生發(fā)展的關(guān)系一直受到眾多學(xué)者的關(guān)注?,F(xiàn)就TM與冠心病的研究進(jìn)展總結(jié)如下。

      1 TM的結(jié)構(gòu)與主要功能

      1982年Esmon首次從兔的肺內(nèi)皮細(xì)胞中分離出一種可以加速凝血酶活化蛋白C的輔因子,并將其命名為TM[1]。TM蛋白由人類20號染色體短臂上TM基因編碼[2]。成熟TM是一種跨膜糖蛋白,由557個氨基酸(aa)組成,包含5個結(jié)構(gòu)域,從氨基端至羧基端依次命名為D1~D5:D1為凝集素樣結(jié)構(gòu)域(1~154 aa),D2由6個表皮生長因子(EGF)樣結(jié)構(gòu)串聯(lián)而成(223~462 aa),D3為富含絲氨酸和蘇氨酸的結(jié)構(gòu)域(463~497 aa),D4為跨膜段(498~521 aa),D5為胞內(nèi)區(qū)(522~557 aa)[3]。其中TMD2是TM與凝血酶結(jié)合的主要結(jié)構(gòu)域。

      TM在體內(nèi)有兩種存在形式[4]:①細(xì)胞膜蛋白形式:主要分布在血管內(nèi)皮細(xì)胞表面,在中性粒細(xì)胞、單核細(xì)胞、樹突狀細(xì)胞、成骨細(xì)胞等其他細(xì)胞表面也有表達(dá);②血漿形式(souble TM,sTM):也稱可溶性TM,在炎癥過程中,TM胞外段可以被裂解,釋放入血形成血漿TM。因此,sTM常被認(rèn)為是內(nèi)皮細(xì)胞受損的血清學(xué)標(biāo)志物。

      研究發(fā)現(xiàn)TM具有抗凝、抗纖維裂解、抗炎等多種功能。TMD2與凝血酶結(jié)合后,一方面直接減弱凝血酶催化纖維蛋白原生成纖維蛋白的活性,同時也減弱凝血酶活化凝血因子Ⅴ、Ⅷ及血小板的活性;另一方面將凝血酶活化蛋白C的速度提高1000倍以上,活化的蛋白C可以使Ⅴa因子和Ⅷa因子失活,從而抑制凝血反應(yīng);TM-凝血酶復(fù)合物促進(jìn)了凝血酶與凝血酶激活的纖溶抑制物(thrombin activatable fibrinolysis inhibitor,TAFI)的結(jié)合及TAFI的活化,活化的TAFI可抑制纖維蛋白的溶解[5]。TM還具有抗炎作用,可抑制凝血酶的促炎活性,活化的蛋白C具有重要的抗炎活性,另外TMD1還具有不依賴凝血酶和蛋白C的直接抗炎機制[6]。

      2 TM與冠心病危險因素的關(guān)系

      動脈粥樣硬化是多種危險因素相互作用的結(jié)果,其危險因素包括高血壓、血脂異常、糖尿病、吸煙、肥胖等。研究發(fā)現(xiàn)高血壓患者血漿TM的水平顯著高于無高血壓的對照組[7,8];并且在原發(fā)性高血壓兒童的血漿中TM的水平就顯著增高,提示在高血壓的早期,血漿TM的水平就已經(jīng)發(fā)生改變。目前尚未發(fā)現(xiàn)血漿TM水平與血脂水平有關(guān)[9,10],但應(yīng)用降脂藥物氟伐他汀[11]或普羅布考[12]可降低TM的水平。1型和2糖尿病患者的血漿TM均高于正常人,而且通過有計劃的運動鍛煉,TM可以降到正常水平[13],提示糖尿病患者通過運動鍛煉可改善血管內(nèi)皮功能。吸煙者的血漿TM的水平比不吸煙者高[14],并且TM的水平隨著煙齡[15]或年吸煙量[16]的增加而增加。戒煙6個月以后,血漿TM的水平就開始明顯下降[16]。另外,研究發(fā)現(xiàn)煙草提取物可以顯著降低TM與凝血酶的結(jié)合力[17],這可能是吸煙增加冠心病患病風(fēng)險的機制之一。肥胖兒童的血漿TM水平增高,并且與體質(zhì)指數(shù)呈正相關(guān)[18]。在一組患高脂血癥的老年男性中進(jìn)行的研究發(fā)現(xiàn)接受飲食指導(dǎo)或補充多不飽和脂肪酸的患者血漿TM的水平均明顯低于未干預(yù)的患者,證明TM與飲食習(xí)慣也有關(guān)[19]。子宮及雙側(cè)附件切除手術(shù)導(dǎo)致絕經(jīng)狀態(tài)的女性血漿TM水平較絕經(jīng)前明顯增高,可能是絕經(jīng)后女性冠心病發(fā)病率迅速增加的原因之一,給予激素替代治療6個月后TM水平顯著降低[20]。

      3 TM與冠心病的關(guān)系研究

      血管內(nèi)皮細(xì)胞表面TM受炎癥刺激釋放入血形成sTM,sTM可作為血管內(nèi)皮損傷的一個血清學(xué)指標(biāo)。多項研究證明無論冠心病患者還是外周動脈粥樣硬化疾病患者,sTM的水平均較對照組高[21-23],并且sTM增高的程度與冠心病病情嚴(yán)重程度[24]、冠心病Gensini積分[25]、粥樣硬化病變血管數(shù)[26]呈正相關(guān)。另外,研究發(fā)現(xiàn)心肌梗死患者sTM水平高預(yù)示再發(fā)心梗的風(fēng)險高[27]。以上研究提示sTM水平可以作為評估冠心病的患病風(fēng)險、病變嚴(yán)重程度并預(yù)測病情進(jìn)展的一個血清學(xué)指標(biāo)。目前已有相關(guān)研究將TM納入冠心病風(fēng)險評價體系[27-29]。

      Laszik等[30]將6例因患有嚴(yán)重冠心病及缺血性心肌病(冠脈狹窄50%~90%)而接受心臟移植的患者的冠脈病變部位進(jìn)行免疫組化染色,發(fā)現(xiàn)該組患者血管內(nèi)皮細(xì)胞表面的TM明顯少于無冠心病者或冠脈狹窄<20%的冠心病患者,并推測內(nèi)皮細(xì)胞TM表達(dá)減少的原因可能是局部各種炎癥因子的釋放使被裂解脫離細(xì)胞表面的TM增加,或某些因素導(dǎo)致病變血管內(nèi)皮細(xì)胞TM表達(dá)減少。

      另外,TM在動脈粥樣硬化患者體內(nèi)的分布也有異常。正常情況下,TM主要在內(nèi)皮細(xì)胞表達(dá),而在平滑肌細(xì)胞不表達(dá);但Tohda和Yoshii等[31,32]分別發(fā)現(xiàn)主動脈粥樣硬化患者的病變部位的中膜平滑肌細(xì)胞表面均異常表達(dá)TM。

      TM基因的多態(tài)性與冠心病也有緊密的關(guān)系,并且這種關(guān)系與種族有關(guān)。研究發(fā)現(xiàn)TM基因第1418位核苷酸由胞嘧啶(C)轉(zhuǎn)為胸腺嘧啶(T)后,可以使TM蛋白第455氨基酸由丙氨酸(Ala)變?yōu)槔i氨酸(Val)。分別在瑞典[33]及中國漢族人群[34]中進(jìn)行的研究均發(fā)現(xiàn)冠心病患者TM455Ala基因型頻率高;而在美國進(jìn)行的一項研究[35]發(fā)現(xiàn)冠心病患者TM455Ala基因型頻率低,并且黑色人種攜帶TM455Val基因型的個體患冠心病的風(fēng)險增加6.1倍,而在白色人種中并未發(fā)現(xiàn)這樣的規(guī)律;日本的研究[36]并未發(fā)現(xiàn)冠心病患者TM455Ala或Val基因型頻率發(fā)生變化。另外,研究還報道了TM基因其他位點的多態(tài)性[37-40]。

      4 TM延緩冠心病發(fā)生發(fā)展的可能機制

      冠心病的發(fā)病機制涉及內(nèi)皮細(xì)胞的損傷、脂質(zhì)的沉積、單核細(xì)胞粘附浸潤、平滑肌細(xì)胞及成纖維細(xì)胞的遷移及增殖、血小板聚集、血栓形成等重要過程。TM是體內(nèi)重要的抗凝、抗纖維裂解、抗炎分子,與冠心病的發(fā)生發(fā)展有密切的關(guān)系。TM-凝血酶復(fù)合物不僅減弱凝血酶的促凝活性,而且使蛋白C活化發(fā)揮抗凝作用,因而TM可以抑制血栓形成從而延緩動脈粥樣硬化的進(jìn)展。

      凝血酶具有促炎活性,能夠損傷血管內(nèi)皮細(xì)胞,促使單核細(xì)胞釋放腫瘤壞死因子α(tumor necrosis factor,TNFα),通過增加血管內(nèi)皮細(xì)胞單核細(xì)胞趨化蛋白1(monocyte chemoattractant protein-1,MCP-1)、細(xì)胞間粘附分子1(intercellular adhesion molecule-1,ICAM-1)及血管細(xì)胞粘附分子(vascular cell adhesion molecule,VCAM)的表達(dá)從而促進(jìn)單核細(xì)胞在血管局部的募集[41-43]。TM與凝血酶結(jié)合后阻斷凝血酶與蛋白酶激活受體1相互作用,抑制凝血酶發(fā)揮促炎活性;且活化的蛋白C有降低血管通透性、抑制炎癥因子釋放、抑制白細(xì)胞趨化粘附等抗炎作用[44-46]。因此,TM可能通過發(fā)揮抗炎作用抑制冠心病的發(fā)生發(fā)展。一項動物實驗[47]發(fā)現(xiàn)野生型重組血栓調(diào)節(jié)蛋白結(jié)構(gòu)域23(rTMD23)可以有效地與凝血酶結(jié)合,活化蛋白C,進(jìn)而抑制粘附分子及MCP-1的分泌,抑制C57BL/6小鼠因血管結(jié)扎導(dǎo)致的內(nèi)膜增生及載脂蛋白 E基因(apolipoprotein,aopE)敲除小鼠粥樣硬化病變的形成;而通過寡核苷酸突變使rTMD23失去與凝血酶結(jié)合的能力后,突變型rTMD23也同時失去了這種保護(hù)作用,證實rTMD23通過與凝血酶結(jié)合發(fā)揮延緩動脈粥樣硬化進(jìn)展的作用。此外,Lin等[48]發(fā)現(xiàn)TMD1也具有抑制血管炎癥的作用。rTMD1與內(nèi)皮細(xì)胞表面粘附分子的糖鏈Le(y)結(jié)合,抑制白細(xì)胞在損傷內(nèi)皮的粘附及浸潤;rTMD1治療后可以有效的抑制apoE敲除小鼠動脈粥樣斑塊的形成及巨噬細(xì)胞的浸潤。

      具有6個EFG樣結(jié)構(gòu)的TMD2或TMD23被證實可以促進(jìn)血管平滑肌細(xì)胞的增殖[31]及血管內(nèi)皮細(xì)胞的增殖及遷移[49],但是Grinnell[50]通過向凝血酶受體陽性、TM陰性的兔內(nèi)膜平滑肌細(xì)胞轉(zhuǎn)染含TM全長cDNA的載體,使平滑肌細(xì)胞過表達(dá)TM,發(fā)現(xiàn)完整TM可以抑制由凝血酶介導(dǎo)的平滑肌細(xì)胞的增殖。Li等[51]發(fā)現(xiàn)包含所有胞外段的rTM(TMD123)也能夠抑制凝血酶的促平滑肌細(xì)胞增殖的作用。這些研究說明TM具有拮抗凝血酶促平滑肌細(xì)胞增殖的作用,進(jìn)而抑制動脈粥樣硬化的發(fā)展。

      體外實驗[52,53]發(fā)現(xiàn)TM具有類似細(xì)胞間粘附分子的作用。轉(zhuǎn)染綠色熒光蛋白-TM的A2058黑素瘤細(xì)胞之間連接緊密而呈現(xiàn)上皮樣的細(xì)胞形態(tài),而僅表達(dá)綠色熒光蛋白或表達(dá)缺失凝集素樣結(jié)構(gòu)域TM的A2058細(xì)胞則單個細(xì)胞分散存在而呈現(xiàn)成纖維細(xì)胞樣的細(xì)胞形態(tài);抗凝集素樣結(jié)構(gòu)域抗體可以阻斷TM的粘附分子作用,說明TMD1是TM發(fā)揮粘附分子作用的重要部位[53]。由此可以推測TMD1在參與動脈粥樣硬化過程中的單核細(xì)胞、巨噬細(xì)胞及平滑肌細(xì)胞等細(xì)胞表面可能起到粘附分子作用,抑制細(xì)胞的遷移,從而延緩病變的進(jìn)展。

      5 TM在冠心病治療中的前景

      Waugh等[54]向球囊損傷后的兔股動脈中轉(zhuǎn)染含人TM cDNA 的腺病毒載體,4周后發(fā)現(xiàn)TM基因過表達(dá)可以明顯抑制球囊損傷造成的內(nèi)膜增生,并且抑制動脈內(nèi)血栓形成、減少炎癥細(xì)胞的浸潤,從而證明使體內(nèi)TM基因過表達(dá)是一種可行的抗動脈粥樣硬化的途徑。另外一項研究[55]采用給球囊損傷致動脈粥樣硬化的兔模型靜脈注射重組人TMD123(rTMD123)的方法,證明靜脈應(yīng)用TM也可以有效地發(fā)揮抗動脈粥樣硬化的作用。近期,一項臨床一期研究[56]發(fā)現(xiàn)無論靜脈注射還是皮下注射,志愿者都可以很好的耐受rTMD123,并且皮下注射rTMD123的半衰期可達(dá)2~3 d,如果在臨床應(yīng)用,可以避免頻繁的注射,患者的依從性會很好。這些研究為TM用于動脈粥樣硬化的治療提供了證據(jù)和支持。

      近年來,大量的研究探討了TM抗動脈粥樣硬化的分子生物學(xué)機制。但是目前人們對于TM的認(rèn)識仍然有限,其延緩冠心病發(fā)生發(fā)展的機制仍然需要大量的研究和探索。TM為動脈粥樣硬化性疾病,包括冠心病的治療提供了新的視角和干預(yù)靶點。

      [1] Esmon NL,Owen WG,Esmon CT. Isolation of a membranebound cofactor for thrombin-catalyzed activation of protein C[J]. J Biol Chem,1982,257(2):859-64.

      [2] Wen DZ,Dittman WA,Ye RD,et al. Human thrombomodulin: complete cDNA sequence and chromosome localization of the gene[J]. Biochemistry,1987,26(14):4350-7.

      [3] Suzuki K,Kusumoto H,Deyashiki Y,et al. Structure and expression of human thrombomodulin, a thrombin receptor on endothelium acting as a cofactor for protein C activation[J]. EMBO J,1987,6(7):1891-7.

      [4] Califano F,Giovanniello T,Pantone P,et al. Clinical importance of thrombomodulin serum levels[J]. Eur Rev Med Pharmacol Sci,2000,4(3):59-66.

      [5] Conway EM. Thrombomodulin and its role in inflammation[J]. Semin Immunopathol,2012, 34(1):107-25.

      [6] Li YH,Kuo CH,Shi GY,et al. The role of thrombomodulin lectin-like domain in inflammation[J]. J Biomed Sci,2012,19(1):34.

      [7] Hjerkinn EM,Seljeflot I,Sandvik L,et al. Markers of endothelial cell activation in elderly men at high risk for coronary heart disease[J]. Scand J Clin Lab Invest,2005,65(3):201-9.

      [8] Dohi Y,Ohashi M,Sugiyama M,et al. Circulating thrombomodulin levels are related to latent progression of atherosclerosis in hypertensive patients[J]. Hypertens Res,2003,26(6):479-83.

      [9] John S,Drobnik W,Lackner K,et al. Soluble thrombomodulin and endothelial dysfunction in early atherosclerosis[J]. Lancet, 1999,354(9190):1647.

      [10] Conri C,Seigneur M,Constans J,et al. Evidence of elevated soluble plasma thrombomodulin in atherosclerosis[J]. J MalVasc,1993,18(2):112-8.

      [11] Constans J,Blann AD,Renard M,et al. Soluble thrombomodulin in hypercholesterolaemic patients[J]. Lancet, 2000,355(9198):145.

      [12] Hong SC,Zhao SP,Liu Q,et al. Effect of the anti-oxidant probucol on soluble thrombomodulin (sTM) in hypercholesterolemic rabbits[J]. Int J Cardiol,2008,123(2):180-2.

      [13] Rigla M,Fontcuberta J,Mateo J,et al. Physical training decreases plasma thrombomodulin in type I and type II diabetic patients[J]. Diabetologia,2001,44(6):693-9.

      [14] Szpak D,Grochowalski A,Chrzaszcz R,et al. Tobacco smoke exposure and endothelial dysfunction in patients with advanced coronary artery disease[J]. Pol Arch Med Wewn,2013, 123(9):474-81.

      [15] Markuljak I,Ivankova J,Kubisz P. Thrombomodulin and von Willebrand factor in smokers and during smoking[J]. Nouv Rev Fr Hematol,1995,37(2):137-9.

      [16] Caponnetto P,Russo C,Di Maria A,et al. Circulating endothelial-coagulative activation markers after smoking cessation: a 12-month observational study[J]. Eur J Clin Invest,2011,41(6): 616-26.

      [17] Wei Y,Zhang X,Xu L,et al. The effect of cigarette smoke extract on thrombomodulin- thrombin binding: an atomic force microscopy study[J]. Sci China Life Sci,2012,55(10):891-7.

      [18] Urban M,Wojtkielewicz K,Glowinska B,et al. Soluble thrombomodulin--a molecular marker of endothelial cell injury in children and adolescents with obesity[J]. Endokrynol Diabetol Chor Przemiany Materii Wieku Rozw,2005,11(2):73-7.

      [19] Hjerkinn EM,Seljeflot I,Ellingsen I,et al. Influence of long-term intervention with dietary counseling, longchain n-3 fatty acid supplements, or both on circulating markers of endothelial activation in men with long-standing hyperlipidemia[J]. Am J Clin Nutr,2005,81(3):583-9.

      [20] Lip GY,Blann AD,Jones AF,et al. Effects of hormonereplacement therapy on hemostatic factors, lipid factors, and endothelial function in women undergoing surgical menopause: implications for prevention of atherosclerosis[J]. Am Heart J,1997,134(4):764-71.

      [21] Blann AD,Seigneur M,Steiner M,et al. Circulating endothelial cell markers in peripheral vascular disease: relationship to the location and extent of atherosclerotic disease[J]. Eur J Clin Invest,1997,27(11):916-21.

      [22] Blann AD,Amiral J,McCollum CN. Circulating endothelial cell/leucocyte adhesion molecules in ischaemic heart disease[J]. Br J Haematol,1996,95(2):263-5.

      [23] Seigneur M,Dufourcq P,Conri C,et al. Levels of plasma thrombomodulin are increased in atheromatous arterial disease[J]. Thromb Res,1993,71(6):423-31.

      [24] 章宏祥,段寶祥,毛建華,等. 血漿血栓調(diào)節(jié)蛋白水平與冠心病關(guān)系的研究[J]. 心血管康復(fù)醫(yī)學(xué)雜志,2004,13(5):432-4.

      [25] Mezaki T,Matsubara T,Hori T,et al. Plasma levels of soluble thrombomodulin, C-reactive protein, and serum amyloid A protein in the atherosclerotic coronary circulation[J]. Jpn Heart J, 2003,44(5):601-12.

      [26] Nakagawa I,Matsubara T,Hori T,et al. Significance of soluble thrombomodulin in the coronary circulation of patients with coronary artery disease[J]. J Cardiol,2001,38(3):145-52.

      [27] Blann AD,Amiral J,McCollum CN. Prognostic value of increased soluble thrombomodulin and increased soluble E-selectin in ischaemic heart disease[J]. Eur J Haematol,199 7,59(2):115-20.

      [28] Aleksic N,Wang YW,Ahn C,et al. Assessment of coronary heart disease risk by combined analysis of coagulation factors[J]. Atherosclerosis,2008,198(2):294-300.

      [29] Wu KK,Aleksic N,Ballantyne CM,et al. Interaction between soluble thrombomodulin and intercellular adhesion molecule-1 in predicting risk of coronary heart disease[J]. Circulation,2003, 107(13):1729-32.

      [30] Laszik ZG,Zhou XJ,Ferrell GL,et al. Down-regulation of endothelial expression of endothelial cell protein C receptor and thrombomodulin in coronary atherosclerosis[J]. Am J Pathol,2001,159(3):797-802.

      [31] Tohda G,Oida K,Okada Y,et al. Expression of thrombomodulin in atherosclerotic lesions and mitogenic activity of recombinant thrombomodulin in vascular smooth muscle cells[J]. Arterioscler Thromb Vasc Biol,1998,18(12):1861-9.

      [32] Yoshii Y,Okada Y,Sasaki S,et al. Expression of thrombomodulin in human aortic smooth muscle cells with special reference to atherosclerotic lesion types and age differences[J]. Med Electron Microsc,2003,36(3):165-72.

      [33] Norlund L,Holm J,Zoller B,et al. A common thrombomodulin amino acid dimorphism is associated with myocardial infarction[J]. Thromb Haemost,1997,77(2):248-51.

      [34] Qian G,Ding Z,Zhang B,et al. Association of thrombomodulin Ala455Val dimorphism and inflammatory cytokines with carotid atherosclerosis in the Chinese Han population[J]. J Inflamm Res,2012,2012(5):117-23.

      [35] Wu KK,Aleksic N,Ahn C,et al. Thrombomodulin Ala455Val polymorphism and risk of coronary heart disease[J]. Circulati on,2001,103(10):1386-9.

      [36] Yamada Y,Izawa H,Ichihara S,et al. Prediction of the risk of myocardial infarction from polymorphisms in candidate genes[J]. N Engl J Med,2002,347(24):1916-23.

      [37] Park HY,Nabika T,Jang Y,et al. Association of G-33A polymorphism in the thrombomodulin gene with myocardial infarction in Koreans[J]. Hypertens Res,2002,25(3):389-94.

      [38] Le Flem L,Picard V,Emmerich J,et al. Mutations in promoter region of thrombomodulin and venous thromboembolic disease[J]. Arterioscler Thromb Vasc Biol,1999,19(4):1098-104.

      [39] Doggen CJ,Kunz G,Rosendaal FR,et al. A mutation in the thrombomodulin gene, 127G to A coding for Ala25Thr, and the risk of myocardial infarction in men[J]. Thromb Haemost,1998, 80(5):743-8.

      [40] Ireland H,Kunz G,Kyriakoulis K,et al. Thrombomodulin gene mutations associated with myocardial infarction[J]. Circulation, 1997,96(1):15-8.

      [41] Kaplanski G,Marin V,Fabrigoule M,et al. Thrombin-activated human endothelial cells support monocyte adhesion in vitro following expression of intercellular adhesion molecule-1 (ICAM-1; CD54) and vascular cell adhesion molecule-1 (VCAM-1; CD106)[J]. Blood,1998,92(4):1259-67.

      [42] Rabiet MJ,Plantier JL,Rival Y,et al. Thrombin-induced increase in endothelial permeability is associated with changes in cell-to-cell junction organization[J]. Arterioscler Thromb Vasc Biol, 1996,16(3):488-96.

      [43] Colotta F,Sciacca FL,Sironi M,et al. Expression of monocyte chemotactic protein-1 by monocytes and endothelial cells exposed to thrombin[J]. Am J Pathol,1994,144(5):975-85.

      [44] Feistritzer C,Riewald M. Endothelial barrier protection by activated protein C through PAR1-dependent sphingosine 1-phosphate receptor-1 crossactivation[J]. Blood,2005,105(8): 3178-84.

      [45] Hirose K,Okajima K,Taoka Y,et al. Activated protein C reduces the ischemia/reperfusion -induced spinal cord injury in rats by inhibiting neutrophil activation[J]. Ann Surg,2000,232(2): 272-80.

      [46] Murakami K,Okajima K,Uchiba M,et al. Activated protein C prevents LPS-induced pulmonary vascular injury by inhibiting cytokine production[J]. Am J Physiol,1997,272(2 Pt 1): L197-202.

      [47] Wei HJ,Li YH,Shi GY,et al. Thrombomodulin domains attenuate atherosclerosis by inhibiting thrombininduced endothelial cell activation[J]. Cardiovasc Res,2011,92(2):317-27.

      [48] Lin WL,Chang CF,Shi CS,et al. Recombinant lectin-like domain of thrombomodulin suppresses vascular inflammation by reducing leukocyte recruitment via interacting with Lewis Y on endothelial cells[J]. Arterioscler Thromb Vasc Biol,2013 ,33(10):2366-73.

      [49] Shi CS,Shi GY,Chang YS,et al. Evidence of human thrombomodulin domain as a novel angiogenic factor[J]. Circu lation,2005,111(13):1627-36.

      [50] Grinnell BW,Berg DT. Surface thrombomodulin modulates thrombin receptor responses on vascular smooth muscle cells[J]. Am J Physiol,1996,270(2 Pt2):H603-9.

      [51] Li J,Garnette CS,Cahn M,et al. Recombinant thrombomodulin inhibits arterial smooth muscle cell proliferation induced by thrombin[J]. J Vasc Surg,2000,32(4):804-13.

      [52] Iino S,Abeyama K,Kawahara K,et al. The antimetastatic role of thrombomodulin expression in islet cell-derived tumors and its diagnostic value[J]. Clin Cancer Res,2004,10(18Pt1): 6179-88.

      [53] Huang HC,Shi GY,Jiang SJ,et al. Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain[J]. J Biol Chem,2003,278(47):46750-9.

      [54] Waugh JM,Li-Hawkins J,Yuksel E,et al. Thrombomodulin overexpression to limit neointima formation[J]. Circulation,20 00,102(3):332-7.

      [55] Li JM,Singh MJ,Itani M,et al. Recombinant human thrombomodulin inhibits arterial neointimal hyperplasia after balloon injury[J]. J Vasc Surg,2004,39(5):1074-83.

      [56] Moll S,Lindley C,Pescatore S,et al. Phase I study of a novel recombinant human soluble thrombomodulin, ART-123[J]. J Thromb Haemost,2004,2(10):1745-51.

      R541.4

      A

      1674-4055(2015)04-0568-04

      2015-02-13)

      (責(zé)任編輯:姚雪莉)

      國家自然科學(xué)基金資助項目(81300695);青島市醫(yī)療衛(wèi)生優(yōu)秀人才培養(yǎng)項目資助

      266000 青島,青島市市立醫(yī)院老年內(nèi)科

      榮瑗瑗,E-mail:rongyy2013@163.com

      10.3969/j.1674-4055.2015.04.49

      猜你喜歡
      凝血酶內(nèi)皮細(xì)胞硬化
      山東:2025年底硬化路鋪到每個自然村
      超聲引導(dǎo)下壓迫聯(lián)合瘤腔注射凝血酶治療醫(yī)源性假性動脈瘤的臨床觀察
      淺議角膜內(nèi)皮細(xì)胞檢查
      Apelin-13在冠狀動脈粥樣硬化病變臨床診斷中的應(yīng)用價值
      磁珠固定化凝血酶的制備及其在槐米中活性化合物篩選中的應(yīng)用
      磨削硬化殘余應(yīng)力分析與預(yù)測
      雌激素治療保護(hù)去卵巢對血管內(nèi)皮細(xì)胞損傷的初步機制
      額顳葉癡呆伴肌萎縮側(cè)索硬化1例
      細(xì)胞微泡miRNA對內(nèi)皮細(xì)胞的調(diào)控
      痰瘀與血管內(nèi)皮細(xì)胞的關(guān)系研究
      竹北市| 扶绥县| 安溪县| 阿图什市| 浙江省| 高台县| 博白县| 北票市| 丰原市| 和龙市| 富阳市| 永福县| 武强县| 九台市| 通榆县| 武清区| 淮安市| 宜州市| 大同市| 博兴县| 镇巴县| 河西区| 女性| 内丘县| 裕民县| 达州市| 洛隆县| 哈密市| 赫章县| 华池县| 龙陵县| 绿春县| 华宁县| 灌阳县| 镇安县| 夹江县| 阿瓦提县| 公安县| 平泉县| 清远市| 泾阳县|