李明星,王 勇,蔣德旗,2,王 艷,喻珊珊
(1.南方醫(yī)科大學珠江醫(yī)院藥劑科,廣東 廣州 510282;2. 玉林師范學院生物制藥教研室, 廣西 玉林 537000)
參與肺動脈平滑肌細胞增殖信號轉(zhuǎn)導機制及信號轉(zhuǎn)導抑制劑的研究進展
李明星1,王 勇1,蔣德旗1,2,王 艷1,喻珊珊1
(1.南方醫(yī)科大學珠江醫(yī)院藥劑科,廣東 廣州 510282;2. 玉林師范學院生物制藥教研室, 廣西 玉林 537000)
肺動脈高壓是一種以肺血管阻力升高為特征,最終導致右心功能嚴重受限、衰竭甚至死亡的慢性進展性疾病。其組織病理學改變主要以肺血管重構(gòu)為特點,而肺動脈平滑肌細胞在外周血管的異常增殖是肺血管重構(gòu)的主要病理基礎(chǔ)。該文主要對參與肺動脈平滑肌細胞增殖信號轉(zhuǎn)導機制及信號轉(zhuǎn)導抑制劑的研究進展作一綜述。
肺動脈高壓;肺動脈平滑肌細胞;增殖;信號轉(zhuǎn)導機制;信號轉(zhuǎn)導抑制劑;進展
肺動脈高壓(pulmonary artery hypertension,PAH)是由多種病因引起的以肺動脈壓力持續(xù)增加和肺血管重構(gòu)為特征的不可逆性疾病[1]。其主要病理機制包括肺動脈血管收縮性增加、肺血管重構(gòu)及微血管損傷[2]。肺血管重構(gòu)是PAH形成的重要標志,其組織病理學主要表現(xiàn)為中膜平滑肌層的過度增生和肥大,中膜的增厚主要由于肺動脈平滑肌細胞(pulmonary artery smooth muscle cells, PASMCs)的聚集所致[3]。目前研究普遍認為,PASMCs的異常增殖在肺血管重構(gòu)中起主導性作用[4]。因此,研究介導PASMCs增殖的各種分子信號轉(zhuǎn)導機制及針對信號轉(zhuǎn)導通路的藥物干預,將成為治療PAH的有效措施之一。
1.1 PI3K-Akt信號通路磷脂酰肌醇3-激酶(PI3K)和蛋白激酶B(PKB或Akt)與細胞的功能活動密切相關(guān),參與細胞生長的各種進程。PI3K被激活后使細胞膜上的 PIP2轉(zhuǎn)化為 PIP3,PIP3能夠激活PDK1和Akt[5]。活化的Akt可激活或抑制下游一系列分子如低氧誘導因子1(hypoxia-inducible factor-1,HIF-1)、caspase-9、NF-κB等,調(diào)控細胞的增殖、黏附、遷移、凋亡等基本生命活動[6]。
研究發(fā)現(xiàn),骨形成蛋白4(bone morphogenetic protein-4,BMP4)能夠誘導Akt的磷酸化,活化PI3K-Akt信號通路,增強p-Smad1/5/8蛋白的表達,下調(diào)caspase-3的表達,抑制PASMCs的凋亡,促進肺動脈高壓大鼠肺血管重構(gòu)[7]。另一研究顯示,在低氧誘導PASMCs中,血小板衍生生長因子(platelet-derived growth factor, PDGF)能夠活化PI3K-Akt信號通路,導致cAMP反應(yīng)元件結(jié)合蛋白減少,使PASMCs由收縮表型向合成表型轉(zhuǎn)變,促進PASMCs的增殖、遷移和再分化,引起肺動脈重塑[8]。由此可知,采取干預措施對PI3K-Akt通路進行調(diào)控,將為治療PAH提供重要的理論依據(jù)。
1.2 RhoA/ROCK信號通路RhoA 是 Rho家族中一員,屬于 Ras單體GTP 酶超家族蛋白。RhoA呈活性型(與GTP 結(jié)合)、失活型(與GDP 結(jié)合)兩種狀態(tài),可被調(diào)節(jié)。ROCK屬于絲氨酸/蘇氨酸蛋白激酶家族成員,是RhoA下游的信號分子,主要有ROCK1和ROCK2兩種亞型。靜息狀態(tài)時,RhoA以RhoA GDP的形式與Rho GDI共存于細胞質(zhì)中,激動劑通過G蛋白偶聯(lián)受體激活Rho GEF,促使失活的RhoA GDP向RhoA GTP轉(zhuǎn)變,Rho GDI解離,而RhoA GTP則轉(zhuǎn)移至細胞膜;當恢復靜息狀態(tài)時,殘留的GDI與RhoA結(jié)合,使RhoA GTP激活下游的靶目標ROCK,ROCK磷酸化肌球蛋白輕鏈(myosin light chain, MLC),調(diào)控細胞的多種生物學活性[9]。
研究發(fā)現(xiàn),RhoA/ROCK信號通路的活化與PASMCs增殖密切相關(guān),RhoA/ROCK信號通路通過增加5-HT的表達和細胞外信號調(diào)節(jié)激酶1/2(extracellular regulated protein kinases,ERK1/2)的磷酸化,同時MLC的磷酸化水平增高,進而促進PASMCs增殖[10]。血清應(yīng)答因子(serum response factor, SRF)和它的輔因子能促使染色體結(jié)構(gòu)維持蛋白(structural maintenance of chromosome proteins, SMC)特異性的表達,如平滑肌細胞α-肌動蛋白(smooth muscle cell α-actin, SMA)、平滑肌22(smooth muscle 22,SM22)蛋白和鈣調(diào)蛋白。RhoA/ROCK信號通路的活化能使這些蛋白轉(zhuǎn)移至細胞核,結(jié)合到CArgA(coding for arginase)基因啟動子區(qū)域,促進平滑肌細胞的增殖[11]。該研究表明,RhoA/ROCK通路在治療PASMCs增殖引起的PAH方面具有重要的研究意義。
1.3 JAK/STAT 信號通路JAK是一類非受體型酪氨酸激酶,它能與膜受體偶聯(lián)起到傳遞信號的作用,其家族成員有JAK1-JAK3及Tyk2。信號轉(zhuǎn)導和轉(zhuǎn)錄激活因子(signal transducers and activators of transcription, STAT)家族目前發(fā)現(xiàn)有7個成員,即STATl-STAT6和STAT5B[12]。JAK/STAT 信號通路由三部分組成,即JAK相關(guān)受體、JAK和STAT,參與細胞的增殖、分化、凋亡等生物學過程[13]。細胞因子或其他胞外刺激因子與相關(guān)跨膜受體結(jié)合后,誘導受體亞基二聚化,使JAK磷酸化并被激活,激活的JAK激酶進一步磷酸化靶蛋白的酪氨酸殘基,與含有SH2結(jié)構(gòu)域的STATs結(jié)合并被磷酸化,磷酸化的STAT轉(zhuǎn)移至細胞核與特定的靶基因DNA序列結(jié)合,調(diào)控下游基因的表達[14]。
研究發(fā)現(xiàn),在PASMC中低氧能夠刺激JAK1、JAK2、JAK3及STAT1、STAT3的磷酸化,促進促紅細胞生成素的表達,進而促進PASMC的增殖[15]。細胞因子(IL-6、TNF、PDGF)和血管緊張素-2能夠活化STAT3,促使其磷酸化,磷酸化的STAT3產(chǎn)生上游信號重新分布到下游,增強細胞的活性并維持細胞的增殖[16]。
1.4 T細胞核因子(nuclear factor of activated T-cells, NFAT) 信號通路NFAT信號通路由Ca2+、鈣調(diào)神經(jīng)磷酸酶(CaN)、NFAT組成,CaN是一種鈣離子依賴性絲氨酸/蘇氨酸去磷酸化酶,能催化多種蛋白質(zhì)去磷酸化,鈣離子激活CaN,CaN可使NFATs去磷酸化并轉(zhuǎn)移至細胞核內(nèi),誘導靶基因的轉(zhuǎn)錄[17]。
研究發(fā)現(xiàn),內(nèi)皮素-1(endothelin-1, ET-1)可通過激活Calcineurin/NFAT信號通路介導ET-1誘發(fā)的磷酸二酯酶5 (phosphodiesterase-5, PDE5)表達,進而降低cGMP含量,引起PASMCs增殖[18]。細胞內(nèi)Ca2+的變化是引發(fā)細胞增殖相關(guān)信號轉(zhuǎn)導活化的始動因素,5-HT通過相應(yīng)受體誘發(fā)細胞內(nèi)鈣離子濃度升高,CaN被激活,最終將Ca2+編碼的信號傳入細胞核,調(diào)節(jié)PASMCs的增殖,引起肺動脈高壓。5-HT還可通過激活CaN/NFAT信號通路上調(diào)Cyclin A的表達,增加周期素依賴性激酶2(cyclin-dependent kinase 2,CDK2)的活性和DNA的合成,引起PASMCs增殖[19]。
1.5 MAPK 信號通路絲裂原活化的蛋白激酶 (mitogen-activated protein kinase,MAPK) 是絲氨酸/蘇氨酸激酶高度相關(guān)的蛋白激酶超家族,包括ERK 1/2、p38 絲裂原活化蛋白激酶(p38 mitogen activated protein kinase, p38 MAPK)和JNK,其中ERK1/2是一類絲/蘇氨酸蛋白激酶,能傳遞絲裂原信號的轉(zhuǎn)導蛋白。MAPK信號通路以三級級聯(lián)方式被激活,即上游激活蛋白→MAPK激酶的激酶(MAPKKK)→MAPK激酶(MAPKK)→MAPK,磷酸化的MAPK是其活化形式,作為各條信號通路的匯聚點,控制著細胞的增殖[20]。
研究發(fā)現(xiàn),胰島素樣生長因子-1(insulin-like growth factor 1,IGF-1)能夠磷酸化p38 MAPK,上調(diào)iNOS的表達,通過活化p38 MAPK-iNOS轉(zhuǎn)導通路,阻礙PASMCs的凋亡[21]。 在低氧處理PASMCs研究中,ET-1能誘導ERK1/2的磷酸化,活化MAPK通路,增加c-fos和c-jun表達,同時誘導 c-fos和c-jun磷酸化,促進PASMCs增殖[22]。
1.6 BMP/TGF-β-Smad 信號通路BMP是轉(zhuǎn)化生長因子-β(transforming growth factor β,TGF-β)超家族的一員,TGF-β超家族信號轉(zhuǎn)導通路由配體、受體及Smads蛋白等組成,其中配體包括BMPs、TGF-β1、TGF-β2、生長分化因子(growth and differentiation factors, GDFs),受體主要分為I型及Ⅱ型受體,參與肺動脈高壓疾病中肺血管的重構(gòu)[23]。BMP與Ⅱ型受體(BMPRⅡ)結(jié)合后,磷酸化BMPRⅠ, BMPRⅠ磷酸化下游的 Smad1/5/8,磷酸化Smads與共用型Smad-4結(jié)合轉(zhuǎn)移至細胞核,直接調(diào)控靶基因的轉(zhuǎn)錄[24]。
有研究表明,在小鼠PASMCs中,BMP信號通路上的BMPRⅡ發(fā)生突變,不能與受體結(jié)合形成異二聚體,使Smad活性降低,通過TGF-β相關(guān)激酶(TAK1)活化Smad-MAPK通路,導致PASMCs異常增殖和抗凋亡反應(yīng)[25]。在野百合堿誘導的PAH大鼠肺組織中,BMPR2的表達明顯降低,伴隨著Smad1磷酸化以及轉(zhuǎn)錄BMP/Smad1信號的DNA分化抑制因子1/3(inhibitor of DNA differentiation, ID1/3)的減少,抑制PASMCs的凋亡[26]。
1.7 Notch信號通路Notch信號通路由配體、Notch受體和調(diào)節(jié)分子、細胞內(nèi)效應(yīng)分子(CBFl/suppressor of hairless/Lag 1,CSL)等組成。Notch受體與配體結(jié)合后,Notch受體胞內(nèi)部分黏連在細胞膜上,經(jīng)γ-促分泌酶酶切后釋放出可溶性的Notch胞內(nèi)片段(notch intracellular domain, NICD)。NICD與細胞核內(nèi)的轉(zhuǎn)錄抑制因子CSL結(jié)合成轉(zhuǎn)錄活化因子,激活并促進下游靶基因的表達,最終調(diào)控細胞的增殖、分化和凋亡[27]。
研究顯示,Notch系統(tǒng)是一條高度保守的信號通路,在細胞的增殖、分化、凋亡過程中具有重要作用。在肺動脈小平滑肌細胞中Notch3過度表達,促進PASMC異常增殖,導致PAH,其疾病的嚴重程度與肺內(nèi)Notch3蛋白的數(shù)量密切相關(guān)[28]。另一研究發(fā)現(xiàn),Notch3受體通過激活下游的發(fā)狀分裂相關(guān)增強子5(hairy and enhancer of split 5, HES5),調(diào)控PASMC增殖,并使其處于未分化狀態(tài),導致PAH形成[29]。
1.8 Wnt/β-catenin信號通路Wnt是一種糖蛋白,分為Wnt 1和Wnt 5a兩類,其蛋白受體分為三類:卷曲蛋白(frizzled, Frz)、低密度脂蛋白相關(guān)受體蛋白(low-density lipoprotein receptor-related protein5/6,LRP5/6)、Ror和Ryk家族[30]。β-連環(huán)蛋白(β-catenin)屬于細胞骨架蛋白家族,含有3個功能區(qū):C端結(jié)構(gòu)域、N端結(jié)構(gòu)域和中間連接臂重復區(qū)。Wnt/β-catenin通路中β-catenin能在胞質(zhì)中穩(wěn)定性調(diào)節(jié),參與調(diào)控細胞的命運、生存及增殖等過程[31]。
在沒有Wnt信號刺激時,胞質(zhì)中的β-catenin會與腺瘤息肉型膠原(adenomatous polyposis coli ,APC)、抑制蛋白(axin)、糖原合成激酶(glycogen synthase kinase 3,GSK3)結(jié)合成復合物,形成磷酸化的β- catenin,導致β-catenin蛋白酶體降解[32]。當有Wnt信號刺激時,Wnt蛋白與Frz、LRP5/6受體結(jié)合引起LRP5/6磷酸化,通過與axin、銜接蛋白(Dvl)形成復合體抑制GSK3的活性,引起β-catenin去磷酸化,使β-catenin堆積,并移至細胞核,與T細胞因子(TCF) /淋巴增強因子(LEF)家族的轉(zhuǎn)錄因子相互作用,激活Wnt靶基因的轉(zhuǎn)錄,調(diào)控細胞的生存、增殖和分化[33]。
研究發(fā)現(xiàn),Wnt 5a下調(diào)β-catenin和靶基因Cyclin D1的表達,抑制低氧誘導的PASMCs的增殖[34]。BMP-2通過磷酸化Akt,使GSK3β失活,引起β-catenin活化并產(chǎn)生纖連蛋白(fibronectin, FN),F(xiàn)N與α4-整合素作用,活化整合素連接酶-1,產(chǎn)生Wnt/BC信號,調(diào)控PASMCs的增殖[35]。
1.9 ROS信號活性氧簇(reactive oxygen species, ROS)是指具有氧化還原潛能的氧衍生物,包括NO、H2O2、單線態(tài)氧(O2)、羥自由基(HO)等,ROS信號主要通過激活下游與細胞增殖和分化相關(guān)的酶,調(diào)控細胞的增殖。研究表明,ROS能改變基因表達、修飾蛋白磷酸化,引起級聯(lián)反應(yīng),使AngⅡ?qū)Ρ砥どL因子受體(epidermal growth factor receptor, EGFR) 的磷酸化增強,激活ERK1/2,誘導產(chǎn)生血小板源性生長因子,促進PASMCs的增殖[36]。另一研究發(fā)現(xiàn),NADPH氧化酶(Nox)是ROS產(chǎn)生的主要來源,ET-1能夠活化Nox,促進ROS的產(chǎn)生,刺激PASMCs的增殖[37]。
近年來,隨著對PAH病理生理和分子機制研究的深入,使藥物治療有了很大的發(fā)展,除了前列環(huán)素(PGI2)及其類似物、內(nèi)皮素受體阻斷劑和PDE-5抑制劑外,一些新型的信號轉(zhuǎn)導抑制劑也已進入臨床研究,將成為治療PAH的新方向。
2.1 PI3K-Akt信號通路抑制劑LY294002是PI3K-Akt通路特異性抑制劑,能抑制PDGF誘導的PASMCs的增殖,并能下調(diào)低氧條件下PASMC中細胞增殖核抗原(proliferation cell nuclear antigen, PCNA)的表達[38],但由于LY294002具有較差溶解性,且易發(fā)生毒副反應(yīng),目前還未應(yīng)用于臨床[39]。新型的PI3K抑制劑SF1126能夠抑制PI3K亞基P110a的活化,最終抑制細胞增殖誘導的血管重塑[40]。ZSTK474能夠阻止PI3K亞基的活性,抑制Akt的磷酸化,同時抑制HIF-1和VEGF的分泌,抑制細胞的生長和增殖[41]。目前,PI3K-Akt信號通路抑制劑對治療PASMCs增殖引起的PAH還處于細胞水平,其臨床療效還需進一步研究。
2.2 RhoA激酶抑制劑Rho激酶抑制劑能增加iNOS,改善內(nèi)皮依賴性的血管舒張,抑制肺動脈平滑肌細胞增殖。其代表藥物法舒地爾能夠抑制RhoA激酶活性,抑制PASMC增殖,減輕肺血管重塑[42],對治療PAH取得了良好的效果。他汀類藥物能夠抑制RhoA/ROCK通路和降低基質(zhì)金屬蛋白酶-9(MMP-9)mRMA的水平,抑制PAH病人肺血管重構(gòu)[43]。
2.3 JAK / STAT 信號通路抑制劑AG490是JAK2酪氨酸磷酸化抑制劑,能夠抑制STAT3蛋白的表達,阻斷JAK2-STAT3信號通路,抑制PASMC的增殖[44]。伊馬替尼是JAK抑制劑,能阻斷PDGF信號,抑制平滑肌細胞增殖,逆轉(zhuǎn)野百合堿誘導的小鼠肺動脈重塑[45]。
2.4 MAPK 信號通路抑制劑西地那非和他達拉非是選擇性5-型磷酸二酯酶抑制劑(PDE5),能夠上調(diào)絲裂原活化蛋白激酶磷酸酶-1(mitogen-activated protein kinase phosphatase-1,MKP-1)的表達,使ERK1/2去磷酸化,抑制 ERK1/2-MAPK信號通路介導的 PASMCs 增殖[46]。
2.5 NFAT 信號通路抑制劑環(huán)孢菌素A可通過抑制NFAT信號通路,下調(diào)低氧條件PASMCs中α-肌動蛋白的表達,抑制PASMCs由收縮型向合成型轉(zhuǎn)變,收縮型 PASMCs無增殖或增殖能力很弱,抑制 PASMCs 增殖[47]。
2.6 ROS信號抑制劑MnⅢ[四(4-苯甲酸)卟啉]配合物(Mn-TBAP)是一種ROS 清除劑,能夠降低細胞內(nèi)ROS水平,下調(diào)HIF-1α的表達,抑制低氧條件下PASMCs的增殖,起到較好的治療PAH的作用[48]。黃素酶抑制劑二亞苯基碘能降低ROS的產(chǎn)生,抑制NOX4基因的表達,抑制低氧條件下PASMCs的增殖[49]。
綜上所述,細胞內(nèi)信號轉(zhuǎn)導通路通過級聯(lián)反應(yīng),調(diào)控上游或下游靶基因的表達,參與PASMCs增殖過程。目前,各條信號轉(zhuǎn)導通路對PASMCs增殖的調(diào)控機制仍不十分清楚,采用信號通路抑制劑進行干預,能夠有效逆轉(zhuǎn)PASMCs增殖引起的肺血管重構(gòu),達到治療PAH的作用。因此,深入研究這些信號轉(zhuǎn)導通路在PAH中的作用,有助于從分子水平探討PAH的發(fā)病機制和新型治療藥物的開發(fā)。但由于細胞內(nèi)信號通路是一個復雜的調(diào)節(jié)網(wǎng)絡(luò),各條通路間相互連接、協(xié)同、制約,使在PAH治療過程中難于對其進行調(diào)控。未來的研究應(yīng)著力于多種信號通路間的相互作用,尋找調(diào)控這些信號通路關(guān)鍵的靶基因,為篩選合適的PAH治療藥物提供重要的實驗基礎(chǔ)。
[1] 劉曉艷, 孟劉坤, 李 君,等. 分泌型簇蛋白在肺動脈高壓大鼠中的表達變化[J]. 中國藥理學通報, 2014,30(6): 764-8.
[1] Liu X Y, Meng L K, Li J, et al. Expression pattern of secretory clusterin in pulmonary arterial hypertension rats[J].ChinPharmacolBull, 2014, 30(6): 764-8.
[2] Tuder R M, Archer S L, Dorfmüller P, et al. Relevant issues in the pathology and pathobiology of pulmonary hypertension[J].JAmCollCardiol, 2013, 62(25): D4-12.
[3] Pabani S, Mousa S A.Current and future treatment of pulmonary hypertension[J].DrugsToday(Barc), 2012, 48(2): 133-47.
[4] Archer S, Ryan J, Kim G, et al. Epigenetic mechanisms of pulmonary hypertension[J].PulmCirc, 2011, 1(3): 347-56.
[5] Karar J, Maity A.PI3K/AKT/mTOR pathway in angiogenesis[J].FrontMolNeurosci, 2011, 4:51-8.
[6] Kiss T, Kovacs K, Komocsi A, et al. Novel mechanisms of sildenafil in pulmonary hypertension involving cytokines/chemokines, MAP kinases and Akt[J].PLoSOne, 2014, 9(8): e104890.
[7] Wu J, Yu Z, Su D.BMP4 protects rat pulmonary arterial smooth muscle cells from apoptosis by PI3K/AKT/Smad1/5/8 signaling[J].IntJMolSci, 2014, 15(8): 13738-54.
[8] Garat C V, Crossno J T, Sullivan T M, et al. Inhibition of phosphatidylinositol 3-kinase/Akt signaling attenuates hypoxia-induced pulmonary artery remodeling and suppresses CREB depletion in arterial smooth muscle cells[J].JCardiovascPharm, 2013, 62(6): 539-48.
[9] Yu L, Quinn D A, Garg H G, et al. Heparin inhibits pulmonary artery smooth muscle cell proliferation through guanine nucleotide exchange factor-H1/RhoA/Rho kinase/p27[J].AmJRespCellMol, 2011, 44(4): 524-30.
[10] Chung H, Dai Z, Wu B, et al. KMUP-1 inhibits pulmonary artery proliferation by targeting serotonin receptors/transporter and NO synthase, inactivating RhoA and suppressing AKT/ERK phosphorylation[J].VascPharmacol, 2010, 53(5-6): 239-49.
[11] Connolly M J, Aaronson P I. Key role of the RhoA/Rho kinase system in pulmonary hypertension[J].PulmPharmacolTher, 2011, 24(1): 1-14.
[12] Aittomaki S, Pesu M.Therapeutic targeting of the JAK/STAT pathway[J].BasicClinPharmacolToxicol, 2014, 114(1): 18-23.
[13] Li Y.Role of the JAK/STAT signaling pathway in the pathogenesis of acute myocardial infarction in rats and its effect on NF-κB expression[J].MolMedRep, 2013,7:93-8.
[14] Coskun M, Salem M, Pedersen J, et al. Involvement of JAK/STAT signaling in the pathogenesis of inflammatory bowel disease[J].PharmacolRes, 2013, 76: 1-8.
[15] Wang G, Qian G, Zhou D, et al. JAK-STAT signaling pathway in pulmonary arterial smooth muscle cells is activated by hypoxia[J].CellBiolInt, 2005, 29(7): 598-603.
[16] Bonnet S, Neyron A, Paulin R, et al. Signal transduction in the development of pulmonary arterial hypertension[J].PulmCirc, 2013, 3(2): 278-93.
[17] Kuhr F K, Smith K A, Song M Y, et al. New mechanisms of pulmonary arterial hypertension: role of Ca2+signaling [J].AmJPhysiolHeartCircPhysiol, 2012, 302(8): H1546-62.
[18] 盧家美, 王小闖, 謝新明, 等. Calcineurin/NFAT信號通路上調(diào)5型磷酸二酯酶的表達及介導內(nèi)皮素-1誘導的肺動脈平滑肌細胞增殖[J]. 南方醫(yī)科大學學報, 2013, 33(1): 26-9.
[18] Lu J M, Wang X C, Xie X M, et al. Calcineurin/NFAT signaling pathway mediates endothelin-1-induced pulmonary artery smooth muscle cell proliferation by regulating phosphodiesterase-5[J].JSouthMedUniv, 2013, 33(1): 26-9.
[19] Li M, Liu Y, Sun X, et al. Sildenafil inhibits calcineurin/NFATc2-mediated cyclin A expression in pulmonary artery smooth muscle cells[J].LifeSci, 2011, 89(17-18): 644-9.
[20] 吳媛媛, 王貴佐, 李滿祥. 肺動脈平滑肌細胞增殖的分子信號機制研究進展[J]. 南方醫(yī)科大學學報, 2013, 33(12): 1852-5.
[20] Wu Y Y, Wang G Z, Li M X. Progress in research of molecular mechanisms of pulmonary arterial smooth muscle cell proliferation[J].JSouthMedUniv, 2013, 33(12): 1852-5.
[21] Jin C, Guo J, Qiu X, et al. IGF-1 induces iNOS expression via the p38 MAPK signal pathway in the anti-apoptotic process in pulmonary artery smooth muscle cells during PAH[J].JReceptSignalTransductRes, 2014, 34(4): 325-31.
[22] Biasin V, Chwalek K, Wilhelm J, et al. Endothelin-1 driven proliferation of pulmonary arterial smooth muscle cells is c-fos dependent[J].IntJBiochemCellBiol, 2014, 54: 137-48.
[23] Upton P D, Morrell N W.The transforming growth factor-beta-bone morphogenetic protein type signalling pathway in pulmonary vascular homeostasis and disease[J].ExpPhysiol, 2013, 98(8): 1262-6.
[24] Ma L, Chung W K.The genetic basis of pulmonary arterial hypertension[J].HumGenet, 2014, 133(5): 471-9.
[25] Nasim M T, Ogo T, Chowdhury H M, et al. BMPR-Ⅱ deficiency elicits pro-proliferative and anti-apoptotic responses through the activation of TGFβ-TAK1-MAPK pathways in PAH[J].HumMolGenet, 2012, 21(11): 2548-58.
[26] Eickelberg O, Morty R E.Transforming growth factor beta/bone morphogenic protein signaling in pulmonary arterial hypertension: remodeling revisited[J].TrendsCardiovascMed, 2007, 17(8): 263-9.
[27] Yamamoto S, Schulze K L, Bellen H J. Introduction to Notch signaling[M]// Bellen H J, Yamamoto S.NotchSignaling:MethodsandProtocols. Houston: Humana press, 2014:325.
[28] Qiao L, Xie L, Shi K, et al. Notch signaling change in pulmonary vascular remodeling in rats with pulmonary hypertension and its implication for therapeutic intervention[J].PLoSOne, 2012, 7(12): e51514.
[29] Li X, Zhang X, Leathers R, et al. Notch3 signaling promotes the development of pulmonary arterial hypertension[J].NatMed, 2009, 15(11): 1289-97.
[30] Kikuchi A, Yamamoto H, Kishida S.Multiplicity of the interactions of Wnt proteins and their receptors[J].CellSignal, 2007, 19(4): 659-71.
[31] Dejana E.The role of Wnt signaling in physiological and pathological angiogenesis[J].CircRes, 2010, 107(8): 943-52.
[32] Gough NR.Focus issue: Wnt and β-catenin signaling in development and disease[J].SciSignal, 2012, 5(206): eg2.
[33] de Jesus Perez V, Yuan K, Alastalo T, et al. Targeting the Wnt signaling pathways in pulmonary arterial hypertension[J].DrugDiscovToday, 2014, 19(8): 1270-6.
[34] Yu X M, Wang L, Li J F, et al.Wnt5a inhibits hypoxia-induced pulmonary arterial smooth muscle cell proliferation by downregulation of beta-catenin[J].AmJPhysiolLungCellMolPhysiol, 2013, 304(2): L103-11.
[35] de Jesus Perez V A,Ali Z,Alastalo T P,et al.BMP promotes motility and represses growth of smooth muscle cells by activation of tandem Wnt pathways[J].JCellBiol,2011,192(1): 171-88.
[36] Sugiyama S.Hypochlorous acid, a macrophage product, induces endothelial apoptosis and tissue factor expression: involvement of myeloperoxidase-mediated oxidant in plaque erosion and thrombogenesis[J].Arterioscler,Thromb,VascBiol, 2004, 24(7): 1309-14.
[37] Tabima D M, Frizzell S, Gladwin M T.Reactive oxygen and nitrogen species in pulmonary hypertension[J].FreeRadicalBioMed, 2012, 52(9): 1970-86.
[38] Li G, Xing W, Bai S, et al. The calcium-sensing receptor mediates hypoxia-induced proliferation of rat pulmonary artery smooth muscle cells through MEK1/ERK1,2 and PI3K pathways[J].BasicClinPharmacolToxicol, 2011, 108(3): 185-93.
[39] Porta C, Paglino C, Mosca A.Targeting PI3K/Akt/mTOR signaling in cancer[J].FrontOncol, 2014, 4:64-74.
[40] Graupera M, Guillermet-Guibert J, Foukas L C, et al. Angiogenesis selectively requires the p110α isoform of PI3K to control endothelial cell migration[J].Nature, 2008, 453(7195): 662-6.
[41] Kong D, Okamura M, Yoshimi H, et al. Antiangiogenic effect of ZSTK474, a novel phosphatidylinositol 3-kinase inhibitor[J].EurJCancer, 2009, 45(5): 857-65.
[42] Mouchaers K T, Schalij I, de Boer M A, et al. Fasudil reduces monocrotaline-induced pulmonary arterial hypertension: comparison with bosentan and sildenafil[J].EurRespirJ, 2010, 36(4): 800-7.
[43] Lepore J J, Dec G W, Zapol W M, et al. Combined administration of intravenous dipyridamole and inhaled nitric oxide to assess reversibility of pulmonary arterial hypertension in potential cardiac transplant recipients[J].JHeartLungTransplant, 2005, 24(11): 1950-6.
[44] Liu T, Li Y, Lin K, et al. Regulation of S100A4 expression via the JAK2-STAT3 pathway in rhomboid-phenotype pulmonary arterial smooth muscle cells exposure to hypoxia[J].IntJBiochemCellBiol, 2012, 44(8): 1337-45.
[45] Schermuly R T.Reversal of experimental pulmonary hypertension by PDGF inhibition[J].JClinInvest, 2005, 115(10): 2811-21.
[46] Li B, Yang L, Shen J, et al. The antiproliferative effect of sildenafil on pulmonary artery smooth muscle cells is mediated via upregulation of mitogen-activated protein kinase phosphatase-1 and degradation of extracellular signal-regulated kinase 1/2 phosphorylation[J].AnesthAnalg, 2007, 105(4): 1034-41.
[47] de Frutos S, Spangler R, Alo D, et al. NFATc3 mediates chronic hypoxia-induced pulmonary arterial remodeling with alpha-actin up-regulation[J].JBiolChem, 2007, 282(20): 15081-9.
[48] 趙建平, 周志剛, 胡紅玲, 等. 低氧條件下大鼠肺動脈平滑肌細胞中活性氧與低氧誘導因子-1 和細胞增殖的關(guān)系[J]. 生理學報, 2007, 59(3):319-24.
[48] Zhao J P, Zhou Z G, Hu H L, et al. The relationships among reactive oxygen species, hypoxia-inducible factor 1alpha and cell proliferation in rat pulmonary arterial smooth muscle cells under hypoxia[J].ActaPhysiolSin, 2007, 59(3): 319-24.
[49] Ismail S, Sturrock A, Wu P, et al. NOX4 mediates hypoxia-induced proliferation of human pulmonary artery smooth muscle cells: the role of autocrine production of transforming growth factor-beta1 and insulin-like growth factor binding protein-3[J].AmJPhysiolLungCellMolPhysiol, 2009, 296(3): L489-99.
Advances in research on signal transduction mechanisms and their inhibitors for the proliferation of pulmonary artery smooth muscle cells
LI Ming-xing1, WANG Yong1, JIANG De-qi1,2, WANG Yan1, YU Shan-shan1
(1.DeptofPharmacy,ZhujiangHospital,SouthernMedicalUniversity,Guangzhou510282,China;2.DeptofBiopharmaceutics,YulinNormalUniversity,YulinGuangxi537000,China)
Pulmonary artery hypertension (PAH) is a chronic progressive disease characterized by a persistent elevation of pulmonary vascular pressure, and the disease would limit the right ventricular function severely, fail the organ and even lead to death in the end. The histopathological change of PAH is featured by the restructuring of pulmonary vessels, and the abnormal reproduction of pulmonary artery smooth muscle cells (PASMCs) in peripheral vessels is the major pathological basis of pulmonary vascular restructuring. This paper mainly reviews the research advances on signal transduction mechanisms and their inhibitors in promoting the proliferation of pulmonary artery smooth muscle cells.
pulmonary artery hypertension; PASMCs; proliferation; signal transduction mechanisms; signal transduction inhibitors; progress
時間:2015-4-15 15:44 網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/34.1086.R.20150415.1545.001.html
2014-12-27,
2015-01-27
國家自然科學基金資助項目(No 81200043);廣東省自然科學基金資助項目(No S2013040014251)
李明星(1989-),男,碩士生,研究方向:心血管藥理學,E-mail:lmx201401@126.com; 喻珊珊(1984-),女,博士,副教授,研究方向:心血管藥理學、臨床藥學,通訊作者,E-mail:hygeia1019@163.com
10.3969/j.issn.1001-1978.2015.05.004
A
1001-1978(2015)05-0605-06
R-05;R322.121;R322.74;R329.24;R544.022