宋彬 吳苾
(四川大學華西醫(yī)院放射科,四川成都610041)
原發(fā)性肝癌90%以上的組織學類型是肝細胞癌(Hepatocellular carcinoma,HCC)。根據美國肝病研究學會、亞太肝臟研究協會、歐洲肝病學會及我國衛(wèi)生部最新指南[1~4],影像學檢查是HCC診斷與監(jiān)測的重要手段。近年來,隨著影像學技術的不斷完善與飛速發(fā)展,特別是在功能與代謝磁共振成像技術方面的深入研究,影像學不僅能夠早期發(fā)現和早期確診HCC,還可以反映HCC的致病機制、組織病理水平的特征改變和細胞水平的基因型異常與影像表現的聯系,并據此判斷HCC的生物學行為和指導治療方案的選擇,而且還能夠早期評判療效和預測預后。本文就常規(guī)影像學檢查應用于HCC診斷的現狀及近年來在功能與代謝磁共振成像技術方面的研究進展和未來的方向作一述評。
超聲檢查為非侵入性檢查,對人體組織無不良影響,可用于HCC的普查和治療后隨訪。超聲造影能實時反映病灶的血供特征,常用于HCC的鑒別診斷。術中超聲可發(fā)現術前CT、超聲檢查皆未發(fā)現的肝內小病灶。超聲檢查的缺點是易受氣體干擾,偽影較多,受超聲醫(yī)師檢查水平影響較大。
現代CT應用非常廣泛,因其圖像清晰而穩(wěn)定,能全面客觀地反映HCC的特性,常用于肝癌常規(guī)診斷和治療后隨訪。CT增強掃描有以下優(yōu)勢:可清楚地顯示肝癌的大小、數目、形態(tài)、部位、邊界、腫瘤血供豐富程度以及與肝內管道的關系;對門靜脈、肝靜脈和下腔靜脈是否有癌栓,肝門和腹腔淋巴結是否有轉移,肝癌是否侵犯鄰近組織器官都有重要的診斷價值;還可通過顯示肝臟的外形、脾臟的大小以及有無腹水來判斷肝硬化的嚴重程度。特別是CT動態(tài)增強掃描可以顯著提高小肝癌的檢出率。
MRI具有很高的組織分辨率和多參數、多方位成像等特點,而且無輻射,對肝內小病灶的檢出、血管的情況以及腫瘤內結構的顯示有獨到之處,因此是HCC最佳檢查方法。MRI在早期診斷小HCC、對HCC與肝臟局灶性增生結節(jié)、肝腺瘤等的鑒別診斷方面,準確度高于CT。對于肝癌患者肝動脈化療栓塞(TACE)療效的跟蹤觀察,MRI較CT有更高的臨床價值。
利用上述常規(guī)超聲、CT、MRI等影像學檢查方法,約75%的HCC可以通過其形態(tài)學特征,特別是典型的血流動力學改變而得到明確診斷;但有約25%的HCC不表現典型的血流動力學改變,并且在硬化肝背景上通過影像學檢查來鑒別不典型增生結節(jié)(dysplastic nodule)與早期小HCC仍具有較大挑戰(zhàn)性。
目前研究發(fā)現,多種與HCC的組織病理、生物學行為相關的MRI征象具有預測HCC預后的價值。
纖維包膜和假包膜:HCC的纖維包膜內層為較致密的纖維組織,呈T1/T2稍低信號;外層為擴張的血竇和新生小膽管,呈T1稍低/T2稍高信號。假包膜由擴張的血竇和瘤周纖維組織組成,T1增強的延遲期表現為環(huán)狀強化[5]。纖維包膜是進展期結節(jié)性HCC的特征,具有完整纖維包膜的HCC病灶治療后的復發(fā)率低于沒有包膜或包膜不完整的病灶,提示纖維包膜可能可以阻止HCC的播散[5]。
HCC內部脂肪成分:T1W同/去相位掃描能夠明確HCC病灶內是否含脂肪成分。脂肪常常出現在1.5~3cm大小的腫瘤灶內,很少出現在較大的腫瘤內。含有脂肪成分的HCC腫瘤生長和進展較緩慢,較少發(fā)生轉移,預后相對較好[6]。
T1高信號結節(jié):由結節(jié)內銅蛋白等順磁性物質、淀粉或糖蛋白堆積、鐵沉著、出血和脂肪沉著等HCC內病理過程所致[7]。T1高信號常見于再生結節(jié)和不典型增生結節(jié),部分高分化HCC也可有類似表現。T1低信號的HCC常常組織學分級較低,而T1高信號的HCC分級較高,提示HCC預后相對較好[7]。
結節(jié)中結節(jié)(nodule in nodule):在大結節(jié)中(常常是DN,特別是高度DN,少數是早期HCC)出現進展期HCC小結節(jié)灶,反映了HCC的生長方式。小結節(jié)通常呈現典型進展期HCC信號特點、強化方式;而大結節(jié)的MR信號常常表現為分化較好組織的特點[7,8]。結節(jié)中結節(jié)是影像監(jiān)測、隨訪肝硬化相關結節(jié)演變過程中發(fā)現早期小HCC的關鍵階段。
HCC的微血管侵犯(micro vascular invasion,MVI):在單結節(jié)型、單結節(jié)伴結節(jié)外生長型、多結節(jié)融合型HCC中,MVI的發(fā)生率依次增高。直徑大于4cm的HCC,MVI發(fā)生率3倍于直徑小于4cm的HCC。低分化/未分化的HCC,MVI發(fā)生率是高分化HCC的6倍。影像學檢查目前還不能直接顯示MVI,但一些影像學的表現可以間接提示MVI的存在,如MVI的發(fā)生與HCC的多灶性[9]、MR肝膽期HCC病灶周圍低信號環(huán)、18F-FDG-PET的攝取程度相關[10],這是目前HCC研究的熱點。
3.1 DCE-MRI(Dynamic contrast-enhanced MR imaging,動態(tài)增強磁共振成像) DCE-MRI通過靜脈團注順磁性對比劑后,動態(tài)采集動脈期、門靜脈期、平衡期,觀察對比劑的分布變化及測量容積轉運參數(Volume transfer coefficient,Ktrans)、血管外細胞外容積分數(Ve)、速率常數(Kep),可定量反映不同掃描時間正常肝臟組織及病灶區(qū)域的血流動力學變化。該技術能夠幫助鑒別肝臟結節(jié)良惡性,還能描繪出惡性病灶周圍微血管的浸潤情況,也可用于HCC患者的預后分析以及評估局部化療、TACE及抗血管生成藥物的療效[11~21]。DCE-MRI能顯示HCC的“光環(huán)帶”強化表現(Corona enhancement),為HCC結節(jié)周圍肝實質組織的靜脈引流現象,反映了HCC的生長方式,HCC結節(jié)靜脈引流的演變特點是HCC極易侵犯門靜脈的病理解剖基礎,早期富血供小肝癌常常出現這類強化特點[22]。
3.2 DWI(Diffusion-weighted Imaging,彌散加權成像) DWI是基于組織細胞間水分子布朗運動的磁共振成像技術,通過測量表觀彌散系數(Apparent diffusion coefficient,ADC)定量地反映組織水分子的活動能力[23]。通常情況下,HCC細胞密度較周圍正常組織高,水分的自由彌散受到限制,導致其在DWI圖像上表現為高信號,且ADC值低于周圍正常組織。DWI應用于HCC中,能夠顯著提高微小HCC的檢出率[24~26],可幫助鑒別肝臟良性及惡性結節(jié),可用于預測HCC的病理分級[27~29],并用于HCC定量評價HCC患者接受TACE等局部消融治療及系統(tǒng)性治療后腫瘤細胞壞死情況[30~32]。DWI和ADC值反映HCC病灶結構異常,包括細胞數目、細胞密度、細胞排列、纖維增生等,因此與HCC的組織分化程度密切相關。DWI信號高、低ADC值提示HCC組織分化程度差;DWI顯著高信號、ADC值低,與HCC病灶周圍MVI和腫瘤侵襲性相關[33]。因此DWI和ADC值可以評價HCC的生物學行為。
3.3 肝臟特異性MRI對比劑 近年來,新型肝臟特異性MRI對比劑的應用明顯提高了MRI對早期HCC的診斷能力。這些肝臟特異性對比劑包括網狀內皮系統(tǒng)(Reticuloendothelial system,RES)特異性的超順磁性氧化鐵(Superparamagnetic iron oxid,SPIO)顆粒及肝細胞特異性對比劑。SPIO是肝臟RES內Kupffer細胞特異性對比劑,靜脈注射后可被Kupffer細胞攝取并顯著縮短T2弛豫時間,從而明顯減低組織T2WI信號強度。HCC內一般沒有或僅有少量Kupffer細胞[35],故其組織信號強度明顯高于周圍正常肝臟組織。由于SPIO-MRI中組織的強化程度與Kupffer細胞的數量密切相關,SPIO-MRI可以有效鑒別早期HCC與其他良性肝臟結節(jié)并且預測HCC的分化程度[34~38]。肝細胞特異性對比劑經靜脈團注后可被正常肝細胞特異性攝取再經膽管排泄,從而能夠顯示組織微循環(huán)情況及肝細胞功能。目前常用的肝細胞特異性對比劑包括Gd-EOB-DTPA及Gd-BOPTA。大部分HCC在肝細胞特異期表現為低信號,可用于與一些肝膽期表現為高信號的肝臟結節(jié)鑒別[38~42]。OATP-8的表達是決定HCC病灶肝膽期強化程度的主要因素,其表達受相關基因的調控。肝膽期高信號的HCC病灶,攝入的HSCA存在于細胞質內、膽小管內或層狀假腺體內(與MRP2通道蛋白的表達狀態(tài)有關)。肝膽期HCC的強化方式與其組織分化程度、腫瘤侵襲性和預后密切相關,肝膽期高信號的HCC病灶,其分化程度好、腫瘤侵襲性低、術后復發(fā)率低[43~46]。
3.4 BOLD(blood-oxygen-level dependent,血氧水平依賴成像) BOLD是一種新興的磁共振成像技術,它能夠通過測定自旋-自旋弛豫時間(Spin-spin relaxation time,T2*)、表觀自旋-自旋弛豫率(Apparent spin-spin relaxation ratio,R2*)等與組織血紅蛋白含氧量密切相關的指標,定量反映組織的氧代謝情況,目前已經運用于中樞神經系統(tǒng)、腎臟、肝臟等領域。動物實驗表明[47~49],正常肝組織在氧氣的刺激下R2*明顯增強,而纖維化的肝組織R2*無明顯變化,后者的ΔR2*明顯小于前者,表明ΔR2*可以作為反映肝臟血流動力學及纖維化程度的良好指標。BOLD具有無創(chuàng)、可重復性強且無需注入對比劑等優(yōu)點,在肝臟良、惡性病灶的診斷與評估中擁有廣闊的應用前景。
3.5 ASL(arterial spin labeling,動脈自旋質子標記)
ASL利用磁性標記的動脈血作為內源性標記物定量反映組織灌注情況,具有無創(chuàng)、可重復使用且無需注射對比劑等優(yōu)點,目前已經廣泛應用于評估腦、肺、腎、心臟等器官的血流灌注情況。近年來的研究發(fā)現,ASL可以很好地顯示腸系膜上靜脈及肝內門靜脈的結構及灌注情況[50,51]。目前雖尚無ASL在HCC中的相關研究,但ASL可以在不使用對比劑的情況下無創(chuàng)地反映出組織的灌注情況,因此在HCC的診斷與監(jiān)測中具有廣闊的應用前景。
3.6 SWI(susceptibility-weighted imaging,磁敏感成像) SWI是一種以T2*加權梯度回波序列作為序列基礎,根據不同組織間的磁敏感性差異提供對比增強機制的新技術[1]。核磁共振磁敏感成像對組織中血液或鐵的存在非常敏感。SWI可以反映HCC的組織病理特點,評估HCC假包膜、腫瘤內部微出血、HCC鑲嵌征等微觀征象。
3.7 MRS(MR spectroscopy,MR波譜成像) MRS是可以無創(chuàng)性評估器官組織生化代謝的唯一手段。目前,MRS在肝臟中的研究主要集中在彌漫性肝臟疾?。ㄈ绺闻K脂肪化程度的定量評估)及局灶性肝臟疾病。MRS在診斷肝臟惡性腫瘤中的敏感性與特異性均較低[52,53],在HCC的診斷及監(jiān)測中的應用仍處于探索階段,其診斷價值的提高很大程度上依賴于設備與儀器的改進及呼吸運動偽影干擾的減小。但MRS可以無創(chuàng)地反映出HCC及周圍肝組織的代謝及生化情況,因此在HCC的診斷與監(jiān)測中的應用價值及前景不可忽視。
綜上所述,未來的影像醫(yī)學將越來越多的反映HCC的發(fā)病機理、基因水平的改變和分子通道等微觀信息,影像醫(yī)學將在HCC的早期篩查和定性診斷、生物學行為與預后評估、治療方案決策、治療監(jiān)控與早期療效評價等諸多方面發(fā)揮巨大作用。
[1]Bruix J,Sherman M.Management of hepatocellular carcinoma:an update[J].Hepatology,2011,53:1020-1022.
[2]Omata M,Lesmana LA,Tateishi R,et al.Asian Pacific Association for the Study of the Liver consensus recommendations on hepatocellular carcinoma[J].Hepatol Int,2010,4:439-474.
[3]Bruix J,Sherman M,Llovet JM,et al.Clinical management of hepatocellular carcinoma.Conclusions of the Barcelona-2000 EASL conference.European Association for the Study of the Liver[J].J Hepatol,2001,35:421-430.
[4] 中華人民共和國衛(wèi)生部.原發(fā)性肝癌診療規(guī)范(2011年版)[J].臨床腫瘤學雜志,2011,16(10):929-946.
[5]Ishigami K.Hepatocellular carcinoma with a pseudocapsule on gadolinium-enhanced MR images:correlation with histopathologic findings[J].Radiology,2009,250:435-443.
[6]Surachate S,Jeong KL,Steven SR,et al.MRI Detection of Intratumoral Fat in Hepatocellular Carcinoma:Potential Biomarker for a More Favorable Prognosis[J].AJR,2012,199:1018-1025.
[7]M Kadoya,O Matsui,T Takashima,et al.Hepatocellular carcinoma:correlation of MR imaging and histopathologic findings[J].Radiology,1992,183(3):819-825.
[8]Kojiro M.Nodule-in-Nodule Appearance in Hepatocellular Carcinoma:Its significance as a Morphologic Marker of Dedifferentiation[J].Intervirology,2004,47:179-183.
[9]Chandarana H,Robinson E,Hajdu CH,et al.Babb JS and Taouli B:Microvascular invasion in hepatocellular carcinoma:is it predictable with pretransplant MRI[J].AJR Am J Roentgenol,2011,196:1083-1089.
[10]Kornberg A,Freesmeyer M,B?rthel E et al.18F-FDG-uptake of hepatocellular carcinoma on PET predicts microvascular tumor invasion in liver transplant patients[J].Am J Transplant,2009,9:592-600.
[11]Choi BI,Lee JM.Advancement in HCC imaging:diagnosis,staging and treatment efficacy assessments:imaging diagnosis and staging of hepatocellular carcinoma[J].Journal of hepatobiliary-pancreatic sciences,2010,17:369-373.
[12]Lee JM,Choi BI.Hepatocellular nodules in liver cirrhosis:MR evaluation[J].Abdom Imaging,2011,36:282-289.
[13]Jarnagin WR,Schwartz LH,Gultekin DH,et al.Regional chemotherapy for unresectable primary liver cancer:results of a phase II clinical trial and assessment of DCE-MRI as a biomarker of survival[J].Ann Oncol,2009,20:1589-1595.
[14]Braren R,Altomonte J,Settles M,et al.Validation of preclinical multiparametric imaging for prediction of necrosis in hepatocellular carcinoma after embolization[J].J Hepatol,2011,55:1034-1040.
[15]O’Connor JP,Jackson A,Parker GJ,et al.DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents[J].Br J Cancer,2007,96:189-195.
[16]Koh TS,Thng CH,Hartono S,et al.A comparative study of dynamic contrast-enhanced MRI parameters as biomarkers for anti-angiogenic drug therapy[J].NMR Biomed,2011,24:1169-1180.
[17]Kelly RJ,Rajan A,Force J,et al.Evaluation of KRAS mutations,angiogenic biomarkers,and DCE-MRI in patients with advanced non-small-cell lung cancer receiving sorafenib[J].Clin Cancer Res,2011,17:1190-1199.
[18]Hahn OM,Yang C,Medved M,et al.Dynamic contrast-en-h(huán)anced magnetic resonance imaging pharmacodynamic biomarker study of sorafenib in metastatic renal carcinoma[J].J Clin Oncol,2008,26:4572-4578.
[19]Mita MM,Spear MA,Yee LK,et al.Phase 1 first-in-h(huán)uman trial of the vascular disrupting agent plinabulin(NPI-2358)in patients with solid tumors or lymphomas[J].Clin Cancer Res,2010,16:5892-5899.
[20]Ricart AD,Ashton EA,Cooney MM,et al.A phase I study of MN-029(denibulin),a novel vascular-disrupting agent,in patients with advanced solid tumors[J].Cancer Chemother Pharmacol,2011,68:959-970.
[21]Baar J,Silverman P,Lyons J,et al.A vasculature-targeting regimen of preoperative docetaxel with or without bevacizumab for locally advanced breast cancer:impact on angiogenic biomarkers[J].Clin Cancer Res,2009,15:3583-3590.
[22]Kitao A,Zen Y,Matsui O,et al.Hepatocarcinogenesis:multistep changes of drainage vessels at CT during arterial portography and hepatic arteriography-radiologic-pathologic correlation[J].Radiology,2009,252:605-614.
[23]Taouli B,Ehman RL,Reeder SB.Advanced MRI methods for assessment of chronic liver disease[J].AJR Am J Roentgenol,2009,193:14-27.
[24]Yu JS,Chung JJ,Kim JH,et al.Detection of small intrahepatic metastases of hepatocellular carcinomas using diffusion-weighted imaging:comparison with conventional dynamic MRI[J]. Magn Reson Imaging,2011,29:985-992.
[25]Bonekamp S,Jolepalem P,Lazo M,et al.Hepatocellular carcinoma:response to TACE assessed with semiautomated volumetric and functional analysis of diffusion-weighted and contrast-enhanced MR imaging data[J].Radiology,2011,260:752-761.
[26]Babsky AM,Ju S,George B,et al.Predicting response to benzamide riboside chemotherapy in hepatocellular carcinoma using apparent diffusion coefficient of water[J].Anticancer Res,2011,31:2045-2051.
[27]Lee MH,Kim SH,Park MJ,et al.Gadoxetic acid-enhanced hepatobiliary phase MRI and highb-value diffusion-weighted imaging to distinguish well-differentiated hepatocellular carcinomas from benign nodules in patients with chronic liver disease[J]. AJR Am J Roentgenol,2011,197:868-875.
[28]Nakanishi M,Chuma M,Hige S,et al.Relationship between diffusion-weighted magnetic resonance imaging and histological tumor grading of hepatocellular carcinoma[J].Ann Surg Oncol,2012,19:1302-1309.
[29]Nishie A,Tajima T,Asayama Y,et al.Diagnostic performance of apparent diffusion coefficient for predicting histological grade of hepatocellular carcinoma[J].Eur J Radiol,2011,80:29-33.
[30]Kamel IR,Bluemke DA,Ramsey D,et al.Role of diffusionweighted imaging in estimating tumor necrosis after chemoembolization of hepatocellular carcinoma[J].AJR Am J Roentgenol,2003,181:708-710.
[31]Dudeck O,Zeile M,Wybranski C,et al.Early prediction of anticancer effects with diffusion-weighted MR imaging in patients with colorectal liver metastases following selective internal ra-diotherapy[J].Eur Radiol,2010,20:2699-2706.
[32]Nasu K,Kuroki Y,Tsukamoto T,et al.Diffusion-weighted imaging of surgically resected hepatocellular carcinoma:imaging characteristics and relationship among signal intensity,apparent diffusion coefficient,and histopathologic grade[J].AJR Am J Roentgenol,2009,193:438-444.
[33]Xu Pengju,Zeng Mengsu,et al.Microvascular invasion in small hepatocellular carcinoma:Is it predictable with preoperative diffusion-weighted imaging[J].Journal of Gastroenterology and Hepatology,2014,29:330-336.
[34]Tanaka M,Nakashima O,Wada Y,et al.Pathomorphological study of Kupffer cells in hepatocellular carcinoma and hyperplastic nodular lesions in the liver[J].Hepatology,1996,24:807-812.
[35]Park HS,Lee JM,Kim SH,et al.Differentiation of well-differentiated hepatocellular carcinomas from other hepatocellular nodules in cirrhotic liver:value of SPIO-enhanced MR imaging at 3.0 Tesla[J].J Magn Reson Imaging,2009,29:328-335.
[36]Tanimoto A,Kuribayashi S.Application of superparamagnetic iron oxide to imaging of hepatocellular carcinoma[J].Eur J Radiol,2006,58:200-216.
[37]Yoo HJ,Lee JM,Lee JY,et al.Additional value of SPIO-enhanced MR imaging for the noninvasive imaging diagnosis of hepatocellular carcinoma in cirrhotic liver[J].Invest Radiol,2009,44:800-807.
[38]Yoon MA,Kim SH,Park HS,et al.Value of dual contrast liver MRI at 3.0 T in differentiating well-differentiated hepatocellular carcinomas from dysplastic nodules:preliminary results of multivariate analysis[J].Invest Radiol,2009,44:641-649.
[39]Frericks BB,Loddenkemper C,Huppertz A,et al.Qualitative and quantitative evaluation of hepatocellular carcinoma and cirrhotic liver enhancement using Gd-EOB-DTPA[J].AJR,2009,193:1053-1060.
[40]Kogita S,Imai Y,Okada M,et al.Gd-EOB-DTPA-enhanced magnetic resonance images of hepatocellular carcinoma:correlation with histological grading and portal blood flow[J].Eur Radiol,2010,20:2405-2413.
[41]Sano K,Ichikawa T,Motosugi U,et al.Imaging study of early hepatocellular carcinoma:usefulness of gadoxetic-acid-enhanced MR imaging[J].Radiology,2011,261:834-844.
[42]Lee JM,Zech CJ,Bolondi L,et al.Consensus report of the 4th international forum for gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid magnetic resonance imaging[J].Korean J Radiol,2011,12:403-415.
[43]Kitao A,Zen Y,Matsui O,et al.Hepatocellular carcinoma:signal intensity at gadoxetic acid-enhanced MR Imaging--correlation with molecular transporters and histopathologic features[J].Radiology,2010,256(3):817-826.
[44]Ishimaru H,Nakashima K,Sakugawa T,et al.Local recurrence after chemoembolization of hepatocellular carcinoma:uptake of gadoxetic acid as a new prognostic factor[J].AJR Am J Roentgenol,2014,202:744-751.
[45]Jin-Young Choi JY,Kim MJ,Young NP,et al.Gadoxetate Disodium-Enhanced Hepatobiliary Phase MRI of Hepatocellular Carcinoma:Correlation With Histological Characteristics[J]. AJR,2011,197:399-405.
[46]Choi JW,Lee JM,Kim SJ,et al.Hepatocellular carcinoma:imaging patterns on gadoxetic acid-enhanced MR Images and their value as an imaging biomarker[J].Radiology,2013,267:776-786.
[47]Barash H,Gross E,Edrei Y,et al.Functional magnetic resonance imaging monitoring of pathological changes in rodent livers during hyperoxia and hypercapnia[J].Hepatology,2008,48(4):1232-1241.
[48]Barash H,Gross E,Matot I,et al.Functional MR imaging during hypercapnia and hyperoxia:noninvasive tool for monitoring changes in liver perfusion and hemodynamics in a rat model[J].Radiology,2007,243(3):727-735.
[49]Park HJ,Kim YK,Min JH,et al.Feasibility of blood oxygenation level-dependent MRI at 3T in the characterization of hepatic tumors[J].Abdom Imaging,2014,39:142-152.
[50]Hwang J,Kim YK,Lee WJ,et al.Unenhanced magnetic resonance portography using repetitive arterial or vein labeling method at 3.0-T[J].J Comput Assist Tomogr,2013,37:856-861.
[51]Katada Y,Shukuya T,Kawashima M,et al.A comparative study between arterial spin labeling and CT perfusion methods on hepatic portal venous flow[J].Jpn J Radiol,2012,30:863-869.
[52]Reeder SB,Cruite I,Hamilton G,et al.Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy[J].J Magn Reson Imaging,2011,34:729-749.
[53]Soper R,Himmerlreich U,Painter D,et al.Pathology of hepatocellular carcinoma and its precursors using proton magnetic resonance spectroscopy and a statistical classification strategy[J].Pathology,2002,34:417-422.