莫蓓莘,符曉婕,莫小為,劉 麗,2,徐曉峰,岳路明
1)深圳大學(xué)生命科學(xué)學(xué)院,深圳市微生物基因工程重點(diǎn)實(shí)驗(yàn)室,深圳 518060;2)加州大學(xué)河濱分校植物學(xué)與植物科學(xué)研究院,綜合基因組生物學(xué)研究所,美國(guó)河濱 92521;3)深圳大學(xué)生命科學(xué)學(xué)院,深圳市海洋生物技術(shù)與生態(tài)環(huán)境重點(diǎn)實(shí)驗(yàn)室,深圳 518060
?
【生物工程 / Bioengineering】
細(xì)胞質(zhì)處理小體(P-小體)與基因表達(dá)的調(diào)控
莫蓓莘1,符曉婕1,莫小為1,劉 麗1,2,徐曉峰3,岳路明3
1)深圳大學(xué)生命科學(xué)學(xué)院,深圳市微生物基因工程重點(diǎn)實(shí)驗(yàn)室,深圳 518060;2)加州大學(xué)河濱分校植物學(xué)與植物科學(xué)研究院,綜合基因組生物學(xué)研究所,美國(guó)河濱 92521;3)深圳大學(xué)生命科學(xué)學(xué)院,深圳市海洋生物技術(shù)與生態(tài)環(huán)境重點(diǎn)實(shí)驗(yàn)室,深圳 518060
mRNA處理小體,又稱P-小體(processing bodies,P-bodies),是細(xì)胞質(zhì)中含有多種功能蛋白和RNA的聚集體. 評(píng)述P-小體的形成和運(yùn)動(dòng)特點(diǎn),以及其與小RNA、外切體相互作用,參與基因表達(dá)的調(diào)控. 介紹了本實(shí)驗(yàn)室在P-小體植物細(xì)胞中的最新研究進(jìn)展. 指出P-小體是mRNA降解和儲(chǔ)存的場(chǎng)所,在轉(zhuǎn)錄后水平參與基因表達(dá)的調(diào)控,P-小體在細(xì)胞中是動(dòng)態(tài)變化的,P-小體中多樣化的功能蛋白在P-小體的組裝、功能行使中發(fā)揮重要作用.P-小體作為細(xì)胞質(zhì)內(nèi)mRNA的儲(chǔ)存和降解結(jié)構(gòu)在基因表達(dá)的轉(zhuǎn)錄后調(diào)控中起重要作用,其調(diào)控機(jī)制尚待進(jìn)一步研究補(bǔ)充,P-小體與小RNA分子(microRNA,miRNA)調(diào)控的基因沉默之間也存在關(guān)聯(lián)性.
細(xì)胞生物學(xué);P-小體;基因表達(dá)調(diào)控;mRNA降解;翻譯抑制;小RNA分子
2002年,Eystathioy等[1]利用患者血清通過免疫篩選建立cDNA文庫(kù),并從該文庫(kù)中鑒定和克隆出能與mRNA相互作用、大小為182 kD的蛋白質(zhì)(命名為GW182). GW182位于胞質(zhì)中的獨(dú)立區(qū)域,該區(qū)域不同于其他任何已知的細(xì)胞器,這一能被GW182抗體標(biāo)記的胞質(zhì)區(qū)域被命名為GW body(GWB),隨后的研究發(fā)現(xiàn)GWB是mRNA在細(xì)胞質(zhì)中儲(chǔ)存和降解的位點(diǎn). 2003年,Sheth等[2]在酵母細(xì)胞中發(fā)現(xiàn)參與mRNA降解的相關(guān)因子,包括mRNA脫帽因子decapping protein(Dcp1和Dcp2)、5′-3′核酸外切酶1(5′-3′exonuclease1,Xrn1)、Sm樣蛋白(Sm-like proteins,LSm proteins)以及碳代謝抑制物4(carbon catabolite repression4,Ccr4,一種失活酶)等,這些因子與mRNA降解中間產(chǎn)物同樣聚集在細(xì)胞質(zhì)的特定區(qū)域,這一聚集區(qū)域被命名為細(xì)胞質(zhì)處理小體,即P-小體(processing bodies[2],P-bodies). 有充分證據(jù)表明,哺乳動(dòng)物中的GWB蛋白和酵母中的P-小體蛋白是同源的[1],P-小體不僅是mRNA降解或翻譯抑制的場(chǎng)所[3],且在microRNA(miRNA)介導(dǎo)的翻譯抑制中起作用. 在miRNA介導(dǎo)的翻譯抑制中起重要作用的蛋白Argonaute 1(Ago1)和Argonaute 10(Ago10)均定位于P-小體上,顯示P-小體與miRNA調(diào)控的翻譯抑制之間的關(guān)聯(lián)性[4]. 本文評(píng)述P-小體的特點(diǎn)、功能及其與小RNA、外切體互作調(diào)控基因表達(dá)的方式,展望P-小體今后的研究方向.
1.1 P-小體的形成
Jain等[5]根據(jù)大量實(shí)驗(yàn)結(jié)果提出P-小體在酵母細(xì)胞中的組裝模型,其主要組裝過程為:首先,P-小體的相關(guān)因子組成Pat1、Xrn1、Lsm1-7復(fù)合物和Dcp1/Dcp2/Edc3(可能包括Dhh1)復(fù)合物,這兩種復(fù)合物被招募到mRNA上;然后,Edc3、Dcp2與Pat1的相互作用,進(jìn)而形成一個(gè)更大的RNA-蛋白復(fù)合物[6-7],由于Pat1-Lsm1-7復(fù)合物綁定3′端,而脫帽酶Dcp1/Dcp2偏好結(jié)合5′帽子結(jié)構(gòu),致使該RNA-蛋白復(fù)合物形成一個(gè)“閉環(huán)”結(jié)構(gòu)[8];最終組成可見的細(xì)胞質(zhì)顆粒,即P-小體.
文獻(xiàn)[5]證明Edc3、Pat1和Lsm4這3種蛋白在P-小體的裝配過程中發(fā)揮重要作用,mRNA脫帽和P-小體形成都受Edc3蛋白的調(diào)控, Edc3通過3個(gè)不同的結(jié)構(gòu)域直接與P-小體中的脫帽酶Dcp2和RNA解旋酶Dhh1/Rck相互作用[9],表明Edc3是P-小體組裝過程中重要的支架蛋白,該蛋白還具有促進(jìn)mRNA脫帽和抑制翻譯的功能. 在酵母細(xì)胞中,位于Pat1蛋白中間的結(jié)構(gòu)域與Lsm1相互作用,位于C-端的結(jié)構(gòu)域與Edc3、Dcp1相互作用促進(jìn)P-小體組裝,并招募Lsm1進(jìn)入到P-小體中[10]. 與P-小體形成相關(guān)的第3個(gè)蛋白質(zhì)是酵母細(xì)胞中的Lsm4[11]. Lsm4 C端延伸區(qū)含有一個(gè)富含谷氨酰胺和天冬酰胺(Q/N-rich)的功能結(jié)構(gòu)域,研究發(fā)現(xiàn),在Edc3缺失的酵母突變體中,Lsm4C末端的(Q/N-rich)結(jié)構(gòu)域能在一定程度上促使P-小體的形成;而Lsm4 C端(Q/N-rich)結(jié)構(gòu)域的單獨(dú)缺失對(duì)P-小體的形成沒有影響,但在Edc3Lsm4雙突變株中P-小體數(shù)量大幅減少[12]. 綜上可見,Edc3、Pat1和Lsm4是P-小體形成過程中必不可少的核心蛋白,除以上核心蛋白外,還有許多相關(guān)的蛋白質(zhì)共同參與P-小體的組裝.
1.2 P-小體的運(yùn)動(dòng)
P-小體在細(xì)胞質(zhì)中的運(yùn)動(dòng)與肌球蛋白有關(guān).
擬南芥肌球蛋白家族包含17個(gè)蛋白成員[13],分為VIII和XI兩類. VIII類肌球蛋白成員與內(nèi)源結(jié)構(gòu)內(nèi)質(zhì)網(wǎng)及胞間連絲相關(guān)[14]. P-小體在細(xì)胞質(zhì)中的運(yùn)動(dòng)主要受XI類肌球蛋白調(diào)控,XI類肌球蛋白與真菌及動(dòng)物肌球蛋白V有相似結(jié)構(gòu)域,這類肌球蛋白含有1個(gè)與肌動(dòng)蛋白相連的N-末端馬達(dá)狀結(jié)構(gòu)域[15];1個(gè)伸展的可以和鈣調(diào)蛋白結(jié)合的內(nèi)部頸域[16];以及1個(gè)C-末端尾部區(qū)域,該區(qū)域包含一定程度可變的卷曲螺旋結(jié)構(gòu)域和二分球形結(jié)構(gòu)域[17]. XI類肌球蛋白與各種膜性細(xì)胞器和囊泡的運(yùn)動(dòng)有關(guān)[18-19]. XI類肌球蛋白參與高爾基體、線粒體和過氧化物酶體的快速運(yùn)輸[20],內(nèi)膜囊泡的長(zhǎng)距離運(yùn)輸[21],質(zhì)體運(yùn)動(dòng)[22-23]及ER流動(dòng)[20]和重塑[24]. 最近研究發(fā)現(xiàn),沒有膜結(jié)構(gòu)的RNA聚集體,如P-小體的運(yùn)動(dòng)也是由XI類肌球蛋白調(diào)控的[18-19].
在哺乳動(dòng)物、酵母和擬南芥細(xì)胞中,Dcp1與肌球蛋白XI -K是共定位的,過量表達(dá)顯性抑制的肌球蛋白尾部區(qū)域可有效抑制P小體的運(yùn)動(dòng);兩個(gè)XI-K等位基因沉默后,P-小體的運(yùn)動(dòng)幾乎完全消失,在肌球蛋白XI-K沉默突變體中表達(dá)XI-K全長(zhǎng)基因可恢復(fù)P-小體的運(yùn)動(dòng)[25]. 這些結(jié)果均表明:P-小體在細(xì)胞內(nèi)沿肌動(dòng)蛋白的運(yùn)輸是由XI類肌球蛋白介導(dǎo)的,肌球蛋白調(diào)控有膜包裹的細(xì)胞器的運(yùn)動(dòng)需要有銜接蛋白的參與,而調(diào)控P-小體的運(yùn)動(dòng)則是通過直接與P-小體的核心組分Dcp1相互作用的.
2.1 P-小體與mRNA降解
mRNA的降解通過兩條通用且高度保守的途徑進(jìn)行[26],分別是由外切體介導(dǎo)的3′-5′降解途徑和由P-小體參與調(diào)控的5′-3′降解途徑(圖1).
圖1 mRNA降解途徑(外切體介導(dǎo)的3′-5′降解途徑和 P-小體參與調(diào)控的5′-3′降解途徑)及其相關(guān)酶Fig.1 The mRNA degradation pathways(exosome mediated 3′-5′ degradation pathway and P-bodies involved in regulation of 5′-3′ degradation pathway)and related enzymes
2.1.1 外切體介導(dǎo)的3′-5′降解途徑
外切體(exosome)是一種蛋白質(zhì)復(fù)合物,它的核心是由6個(gè)蛋白亞基所組成的環(huán)狀結(jié)構(gòu),這6個(gè)蛋白質(zhì)都屬于同一類核糖核酸酶(核糖核酸酶PH類似蛋白,含有PH結(jié)構(gòu)域)具有3′-5′核糖核酸外切酶活性,輔助蛋白包括一些因子和RNA解旋酶(Ski2/Ski3/Ski8復(fù)合物和Ski7蛋白)[27]. 外切體除可以降解細(xì)胞質(zhì)mRNA外,對(duì)細(xì)胞內(nèi)大量RNA的加工、調(diào)控和運(yùn)輸也具有重要意義[28].
大多數(shù)mRNA進(jìn)行降解的第1步是脫腺苷酸化,即脫去3′端多聚腺苷酸尾(polyA tail),包括PloyA結(jié)合蛋白(PABP)的解離和脫腺苷酸酶Ccr4的降解作用,去腺苷化后再通過由Ski2/Ski3/Ski8復(fù)合物和Ski7蛋白作為輔助因子的外切體由3′-5′端方向降解mRNA[29].
2.1.2 P-小體參與調(diào)控的5′-3′降解途徑
與3′-5′mRNA降解不同,5′-3′mRNA降解從脫帽開始. 這一過程由P-小體的核心蛋白脫帽酶催化. 在釀酒酵母中,脫帽酶是由Dcp1和Dcp2構(gòu)成的二聚體,Dcp2的MutT結(jié)構(gòu)域提供催化活性[30],一些組裝因子也參與到脫帽過程,如七聚Lsm1~Lsm7復(fù)合物可結(jié)合到脫腺苷酸化mRNA的3′末端,促進(jìn)mRNA脫帽[31-32]. 參與脫帽過程的蛋白還包括Edc、Dhh1和Pat1[33]等. 脫帽完成后,P-小體中的核酸外切酶Xrn1從5′-3′降解mRNA[25].
Dis3(Rrp44)是外切體復(fù)合物中的關(guān)鍵亞基,能從3′-5′方向消化RNA上的核苷酸. 最新研究結(jié)果表明,釀酒酵母中Dis3的同源物Dis3l2可以??炕蚬捕ㄎ坏絇-小體中,參與細(xì)胞質(zhì)中mRNA的降解,且其功能是獨(dú)立于外切體的[34]. 這一結(jié)果表明,外切體介導(dǎo)的3′-5′降解和P-小體介導(dǎo)的5′-3′端方向降解之間有相互作用.
由AU富集元件介導(dǎo)的mRNA降解(ARE(AU-richelement)-mediatedMrnadecay)途徑,又稱AMD途徑,也受P-小體的調(diào)控.AMD在調(diào)節(jié)基因表達(dá)的過程中是普遍存在的:5%~8%的mRNA,包括許多細(xì)胞因子和原癌基因,mRNA的3′非編碼區(qū)(UTRs)含有ARE因子[35].ARE因子通過介導(dǎo)mRNA降解從而有效地抑制基因表達(dá),研究表明,超過20種不同的蛋白質(zhì),特別是串聯(lián)鋅指蛋白家族,能特異地與ARE結(jié)合,誘導(dǎo)AMD途徑[36]. 在哺乳動(dòng)物細(xì)胞中,tristetraprolin(TTP),butyrateresponsefactor(BRF)1和BRF2都是十分有效的AMD誘導(dǎo)劑[37-39]. 這些蛋白質(zhì)的主要功能是作為轉(zhuǎn)接器將含ARE的mRNAs與外切體結(jié)合,從而進(jìn)行脫帽或5′至3′方向的降解,進(jìn)一步使綁定的mRNA進(jìn)入常規(guī)的降解途徑[40-42]. 研究發(fā)現(xiàn),TTP、BRF1和BRF2定位于P-小體中[43-44].P-小體和應(yīng)激顆粒的相互作用可以增強(qiáng)TT和BRF1的過量表達(dá)[45].
2.2P-小體與基因表達(dá)
進(jìn)入P-小體中的mRNA并不是全部被P-小體中的脫帽酶脫帽,然后被核酸外切酶從5′-3′降解;而是部分P-小體中的mRNA可進(jìn)一步結(jié)合活化子而重新進(jìn)入多核糖體,恢復(fù)翻譯活化狀態(tài). 這部分mRNA進(jìn)入P-小體中從而被屏蔽于翻譯機(jī)器(多核糖體)之外, 進(jìn)一步加強(qiáng)了mRNA的翻譯抑制狀態(tài)[45].
在細(xì)胞質(zhì)中,起儲(chǔ)存mRNA作用的結(jié)構(gòu)除P-小體外,還有應(yīng)激顆粒,它是細(xì)胞在受到環(huán)境刺激時(shí)產(chǎn)生的一種胞漿集合體,該顆粒包括mRNA、轉(zhuǎn)錄起始因子、RNA結(jié)合蛋白TIA和TIA受體蛋白(TIAR),及40S核蛋白體亞單位[46]. 在不同生理環(huán)境下,mRNA可在P-小體、應(yīng)激顆粒和多核糖體之間運(yùn)動(dòng),從而調(diào)節(jié)和影響細(xì)胞的翻譯水平,但mRNA的動(dòng)態(tài)變化及影響翻譯進(jìn)程的機(jī)制尚不清楚. 研究發(fā)現(xiàn),PCBP2(poly-Cbindingprotein2)在應(yīng)激顆粒和P-body之間活躍移動(dòng),PCBP2的快速遷移對(duì)mRNA進(jìn)入P-小體的存儲(chǔ)和翻譯起重要作用[47]. 在酵母(S.cerevisiae)中,葡萄糖缺乏導(dǎo)致多聚核糖體丟失,同時(shí)促進(jìn)P-小體體積增大和數(shù)目增多,并促進(jìn)被抑制的mRNA在P-小體中積累[48]. 這些結(jié)果顯示,P-小體與mRNA翻譯抑制密切相關(guān).
免疫熒光實(shí)驗(yàn)研究表明,在丙型肝炎病毒(hepatitisCvirus,HCV)感染過的Huh7(高度分化的肝細(xì)胞)細(xì)胞中,P-小體和應(yīng)激顆粒的大部分蛋白與病毒核心蛋白共定位于脂肪滴(病毒RNA的包裝位點(diǎn)),HCV通過感染細(xì)胞,破壞P-小體和應(yīng)激顆粒的組分,進(jìn)而調(diào)節(jié)病毒基因表達(dá)[49]. 由于HCV的RNA豐度是受P-小體的組分(miR-122、Argonaute2和RNA解旋酶RCK/P54)調(diào)控的,HCV感染細(xì)胞后,P-小體和應(yīng)激顆粒的數(shù)量都發(fā)生明顯變化,P-小體的豐度明顯降低,而應(yīng)激顆粒的數(shù)量增加;敲除P-小體和應(yīng)激顆粒內(nèi)特定蛋白后,HCV的RNA豐度明顯降低,但是細(xì)胞外傳染性HCV病毒積累增加. 這充分說明P-小體對(duì)HCV基因表達(dá)具有重要的調(diào)控作用[49].
2.3P-小體與小RNA的協(xié)同作用
小RNA包括microRNA(miRNA)和小干擾分子RNA(siRNA),可以通過激活核酸內(nèi)切酶活性、促進(jìn)翻譯抑制、或通過加速mRNA脫帽,進(jìn)而在一定程度上影響mRNA的降解和翻譯[50].
文獻(xiàn)[51]的研究表明,哺乳動(dòng)物中P-小體的重要組成GW182蛋白家族在miRNA介導(dǎo)的翻譯抑制過程起重要作用. 首先,在哺乳動(dòng)物細(xì)胞中,敲除GW182功能基因會(huì)減少細(xì)胞中P-小體的形成和抑制miRNA介導(dǎo)的翻譯抑制[4,51];其次,在哺乳動(dòng)物細(xì)胞中引入GW182顯性負(fù)等位基因會(huì)降低P-小體的形成,并影響miRNA/siRNA介導(dǎo)的基因沉默[51];而且敲除果蠅S2細(xì)胞中GW182功能基因會(huì)抑制miRNA介導(dǎo)的翻譯抑制[52]. 這充分說明小RNA介導(dǎo)的基因沉默和P小體的形成相關(guān).RNA誘導(dǎo)沉默復(fù)合體(RNA-inducedsilencingcomplex,RISC)是由siRNA與Argonaute蛋白和Dicer酶復(fù)合形成的復(fù)合物.RISC在RNA干擾(RNAi)過程起重要作用. 在RNAi中,RISC利用siRNA的反義鏈切割靶mRNA,達(dá)到基因沉默. 研究發(fā)現(xiàn),許多與RISC相關(guān)的蛋白都集中在P-小體中,如人體細(xì)胞中的4個(gè)Argonaute蛋白家族成員,及兩個(gè)RNA解旋酶Rck和Mov10定位在P-小體中[53].miRNA及其靶mRNAs也定位于P-小體中[53-54]. 植物中也發(fā)現(xiàn)Argonaute蛋白家族成員,如AGO1和AGO10定位在P-小體中,顯示mRNA的區(qū)域化引起的翻譯抑制與miRNA調(diào)控的翻譯抑制之間的關(guān)聯(lián)性[4,55].Bhattacharyya等[46]發(fā)現(xiàn)肝細(xì)胞中內(nèi)源性CAT-1(cationicaminoacidtransporter-1)mRNA與miR-122共定位于P-小體中,在翻譯被miR-122抑制的條件下,CAT-1mRNA從P-存在于P-小體中,當(dāng)翻譯被激活時(shí),CAT-1mRNA小體中被釋放. 當(dāng)mRNA沉默被阻止時(shí)(通過敲除miRNA的生物合成途徑的成分)會(huì)導(dǎo)致P-小體的解聚[56-57],重新引入siRNA可使P-小體再次出現(xiàn).這些結(jié)果充分說明,P-小體通過聚集和解聚參與小RNA介導(dǎo)的基因沉默.
P-小體作為細(xì)胞質(zhì)內(nèi)mRNA儲(chǔ)存和降解結(jié)構(gòu),對(duì)基因表達(dá)的轉(zhuǎn)錄后調(diào)控起重要作用,其調(diào)控機(jī)制尚待研究[58-59]. 對(duì)P-小體的研究在哺乳動(dòng)物細(xì)胞中取得令人矚目的成績(jī)[60-61],在酵母細(xì)胞中也開展了較深入的研究,但在植物細(xì)胞中的研究才剛起步[62-63].
(Olympus FV1000型激光共聚焦顯微鏡觀察, 青色標(biāo)記為CFP融合蛋白發(fā)光情況,bar=10 μm)圖2 脅迫條件下煙草細(xì)胞中P-小體的聚集[67]Fig.2 Assembly of P-bodies in tobacco cells under stress[67]
本實(shí)驗(yàn)室以植物離體培養(yǎng)懸浮細(xì)胞(煙草懸浮細(xì)胞)為材料,將特異存在于P-小體中的蛋白Dcp1的基因和青色熒光蛋白的基因融合并轉(zhuǎn)入煙草懸浮細(xì)胞中,對(duì)轉(zhuǎn)基因煙草細(xì)胞進(jìn)行低溫(4 ℃)、高溫(41 ℃)和鹽脅迫(100mmol/L的NaCl)處理[62,64-66](圖2),在激光共聚焦掃描顯微鏡下觀察P-小體形態(tài)和數(shù)量的變化,發(fā)現(xiàn)低溫、高溫和鹽脅迫處理后,轉(zhuǎn)基因煙草活體細(xì)胞中P-小體的數(shù)量和體積都有所增加,脅迫解除后,P-小體較脅迫條件下數(shù)量和體積都明顯下降(圖3). 說明P-小體的數(shù)量和體積受逆境誘導(dǎo)變化,并且這種變化具有可逆性.
(Olympus FV1000型激光共聚焦顯微鏡觀察, 青色標(biāo)記為CFP融合蛋白發(fā)光情況,bar=10 μm)圖3 脅迫解除后P-小體解聚恢復(fù)正常水平[67]Fig.3 P-bodies back to normal after stress relieving[67]
圖4 脅迫條件下多聚核糖體解體[67] Fig.4 Polysomes disintegration under stress[67]
本實(shí)驗(yàn)室進(jìn)一步的研究發(fā)現(xiàn),高溫和鹽脅迫下多聚核糖體的特征峰明顯降低(圖4)[68],說明細(xì)胞內(nèi)的多聚核糖體在逆境條件下減少. 多聚核糖體是蛋白質(zhì)翻譯的場(chǎng)所,多聚核糖體的解體,是翻譯水平受到抑制的體現(xiàn). 該結(jié)果證實(shí)了逆境條件下煙草細(xì)胞內(nèi)整體翻譯水平受到抑制. 同時(shí),在脅迫條件下P-小體富集區(qū)域,即密度為20%~25%的區(qū)域,可以看到有明顯波峰出現(xiàn),說明RNA在此富集,逆境下多聚核糖體特征峰的改變與圖2中的共聚焦觀察結(jié)果一致. 說明逆境條件下形成的P-小體為離開多聚核糖體的mRNA提供儲(chǔ)存或降解的場(chǎng)所. 脅迫解除后,多聚核糖體恢復(fù)正常水平,P-小體特征峰減小甚至消失(圖5). 結(jié)果進(jìn)一步驗(yàn)證了P-小體的聚集和多聚核糖體的解體是一種翻譯水平的基因表達(dá)調(diào)控.
圖5 脅迫解除后多聚核糖體恢復(fù)正常水平[67]Fig.5 Polysomes back to normal after stress relieving[67]
選取β微管蛋白和谷氨酰胺合成酶兩種基因,對(duì)其mRNA在脅迫處理和解除條件下在細(xì)胞內(nèi)的分布研究發(fā)現(xiàn),在脅迫條件下兩種基因的mRNA在多聚核糖體中的量明顯下降,在處理小體中的量有所上升;而脅迫解除后又恢復(fù)正常水平(圖6和圖7). 說明脅迫時(shí)多聚核糖體解體,RNA離開多聚核糖體后進(jìn)入處理小體并儲(chǔ)存在處理小體中,脅迫解除后回到多核糖體中作為翻譯的模板.P-小體通過調(diào)控mRNA的亞細(xì)胞分布實(shí)現(xiàn)轉(zhuǎn)錄后水平基因表達(dá)的調(diào)控.
圖6 實(shí)時(shí)定量PCR檢測(cè)脅迫和脅迫解除情況下 煙草懸浮細(xì)胞兩種亞細(xì)胞結(jié)構(gòu)中 β微管蛋白mRNA量的變化[67]Fig.6 Changes of β-tubulin mRNA in two sub-cellular structures under stress and stress-relieved situations in tobacco suspension cells detected by real-time PCR[67]
圖7 實(shí)時(shí)定量PCR檢測(cè)脅迫和脅迫解除情況下 煙草懸浮細(xì)胞兩種亞細(xì)胞結(jié)構(gòu)中 谷氨酰胺合成酶mRNA量的變化[67]Fig.7 Changes in amount of Glutamine synthetase mRNA in two sub-cellular structures under stress and stress-relieved situations in tobacco suspension cells detected by real-time PCR[67]
P-小體的形成能夠使細(xì)胞應(yīng)對(duì)脅迫環(huán)境,P-小體在轉(zhuǎn)錄后的基因表達(dá)調(diào)節(jié)過程中發(fā)揮作用,對(duì)維持細(xì)胞內(nèi)蛋白質(zhì)水平具有重要意義. 但仍有不少問題有待進(jìn)一步研究:①P-小體成分是其獨(dú)有的,還是其他高度有序的細(xì)胞結(jié)構(gòu)的一部分?②P-小體中mRNA降解中間體和被抑制的mRNA的空間限制是否是mRNA的翻譯調(diào)節(jié)乃至細(xì)胞發(fā)揮正常功能所必需的?③P-小體的主要功能在于加強(qiáng)和維持mRNA的抑制狀態(tài),還是不可逆轉(zhuǎn)地促使mRNA走向降解?④P-小體的組分在細(xì)胞中是如何動(dòng)態(tài)流動(dòng)的?對(duì)這些問題的回答有助于深入了解P-小體在細(xì)胞生命活動(dòng)的作用.
/ References:
[1] Eystathioy T, Chan E K L, Tenenbaum S A, et al. A phosphorylated cytoplasmic autoantigen,GW182,associates with a unique population of human mRNAs within novel cytoplasmic speckles[J]. Molecular Cell, 2002, 13(4):1338-1351.
[2] Sheth U, Parker R. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies[J]. Science, 2003, 300(5620):805-808.
[3] Mo Beixin. RNA localization in plant cells and advances in the research[J]. Journal of Shenzhen University Science and Engineering, 2011, 28(3):229-236.(in Chinese) 莫蓓莘. RNA在植物細(xì)胞中的定位及其研究進(jìn)展[J]. 深圳大學(xué)學(xué)報(bào)理工版,2011, 28(3):229-236.
[4] Liu J, Valencia-Sanchez, Parker R, et al. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies[J]. Nature Cell Biology, 2005, 7(7):719-723.
[5] Jain S, Parker R. Ten years of progress in GW/P body research[J]. Advances in Experimental Medicine and Biology, 2013, 768:23-43.
[6] Nissan T, Rajyaguru P, She M, et al. Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms[J]. Molecular Cell, 2010, 39(5):773-783.
[7] Pilkington G R,Parker R.Pat1 contains distinct functional domains that promote P-body assembly and activation of decapping[J]. Molecular and Cellular Biology, 2008, 28(4):1298-1312.
[8] Oishi K, Kurahashi H, Pack C G, et al. A bipolar functionality of Q/N-rich proteins:Lsm4 amyloid causes clearance of yeast prions[J]. Microbiology Open, 2013, 2(3):415-430.
[9] Fromm S A, Truffault V, Kamenz J, et al. The structural basis of Edc3 and Scd6-mediated activation of the Dcp1:Dcp2 mRNA decapping complex[J]. The EMBO Journal, 2012, 31(2):279-290.
[10] Teixeira D, Parker R. Analysis of P-body assembly in Saccharomyces cerevisiae[J]. Molecular Biology of the Cell, 2007, 18(6):2274-2287.
[11] Decker C J, Teixeira D, Parker R. Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae[J]. Journal of Cell Biology, 2007, 179(3):437-449.
[12] Reijns M A, Alexander R D, Spiller M P, et al. A role for Q/N-rich aggregation-prone regions in P-body localization[J]. Journal of Cell Science, 2008, 121(15): 2463-2472.
[13] Peremyslov V V, Mockler T C, Filichkin S A, et al. Expression, splicing, and evolution of the myosin gene family in plants[J]. Plant Physiology, 2011, 155(3):1191-1204.
[14] Avisar D, Prokhnevsky A I, Dolja V V. Class VIII myosins are required for plasmodesmatal localization of a closterovirus Hsp70 homolog[J]. Journal of Virology, 2008, 82(6):2836-2843.
[15] Tominaga M, Kojima H, Yokota E, et al. Higher plant myosin XI moves processively on actin with 35 nm steps at high velocity[J]. The EMBO Journal, 2003, 22(6):1263-1272.
[16] Kinkema M, Schiefelbein J A. Myosin from a higher plant has structural similarities to class V myosins[J]. Journal of Molecular Biology, 1994, 239(4):591-597.
[17] Pashkova N, Jin Y, Ramaswamy S, et al. Structural basis for myosin V discrimination between distinct cargoes[J]. The EMBO Journal, 2006, 25(4):693-700.
[18] Sparkes I A. Motoring around the plant cell:insights from plant myosins[J]. Biochemical Society Transactions, 2010, 38(3):833-838.
[19] Sparkes I. Recent advances in understanding plant myosin function: life in the fast lane[J]. Molecular Plant, 2011, 4(5):805-812.
[20] Peremyslov V V, Prokhnevsky A I, Dolja V V, et al. Myosins are required for development, cell expansion, and F-actin organization in Arabidopsis[J]. The Plant Cell, 2010, 22(6): 1883-1897.
[21] Peremyslov V V, Morgun E A, Kurth E G, et al. Identification of myosin XI receptors in Arabidopsis defines a distinct class of transport vesicles[J]. BMC Plant Cell, 2013, 25(8):3022-3038.
[22] Natesan S K, Su llivan J A, Gray J. Myosin XI is required for actin-associated movement of plastid stromules[J]. Molecular Plant, 2009, 2(6):1262-1272.
[23] Sattarzadeh A, Krahmer J, Germain A D, et al. A myosin XI tail domain homologous to the yeast myosin vacuole-binding domain interacts with plastids and stromules in Nicotiana benthamiana[J]. Molecular Plant, 2009, 2(6):1351-1358.
[24] Ueda H, Yokota E, Kutsuna N, et al. Myosin-dependent endoplasmic reticulum motility and F-actin organization in plant cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(15):6894-6899.
[25] Steffens A, Jaegle A, Trech A, et al. Processing body movement inArabidopsisthalianadependsonaninteractionbetweenmyosinsandDCP1[J].PlantPhysiology, 2014, 164(4):1879-1892.
[26]ParkerR,SongH.TheenzymesandcontrolofeukaryoticmRNAturnover[J].NatureStructural&MolecularBiology, 2004, 11(2):121-127.
[27]HouseleyJ,LaCavaJ,TollerveyD.RNA-qualitycontrolbytheexosome[J].NatureReviewsMolecularCellBiology, 2006, 7(7):529-539.
[28]SchaefferD,ClarkA,KlauerAA,etal.Functionsofthecytoplasmicexosome[J].AdvancesinExprimentalMedicineandBiology, 2011, 702:79-90.
[29]AndersonJS,ParkerRP.The3′to5′degradationofyeastmRNAsisageneralmechanismformRNAturnoverthatrequirestheSKI2DEVHboxproteinand3′to5′exonucleasesoftheexosomecomplex[J].TheEMBOJournal, 1998, 17(5):1497-1506.
[30]SteigerM,Carr2SchmidA,SchwartzDC.Analysisofrecombinantyeastdecappingenzyme[J].RNA-APublicationofTheRNASociety, 2003, 9(2):231-238.
[31]TharunS,HeW,MayesAE,etal.YeastSm-likeproteinsfunctioninmRNAdecappinganddecay[J].Nature, 2000, 404(6777):515-518
[32]TharunS,ParkerR.TargetinganmRNAfordecapping:displacementoftranslationfactorsandassociationoftheLsm1p27pcomplexondeadenylatedyeastmRNAs[J].MolecularCell, 2001, 8(5):1075-1083.
[33]CollerJ,ParkerR.GeneraltranslationalrepressionbyactivatorsofmRNAdecapping[J].Cell, 2005, 122(6):875-886.
[34]MaleckiM,ViegasSC,CarneiroT,etal.TheexoribonucleaseDis3L2definesanoveleukaryoticRNAdegradationpathway[J].TheEMBOJournal, 2013, 32(13):1842-1854.
[35]BakheetT,WilliamsBR,KhabarKS.AnupdateofAU-richelementmRNAdatabase[J].NucleicAcidsResearch, 2003, 31(1):421-423.
[36]ShawG,KamenR.AconservedAUsequencefromthe3′untranslatedregionofGM-CSFmRNAmediatesselectivemRNAdegradation[J].Cell, 1986, 46(5):659-667.
[37]CarballoE,LaiWS,BlackshearPJ.Feedbackinhibitionofmacrophagetumornecrosisfactor-alphaproductionbytristetraprolin[J].Science, 1998, 281(5379):1001-1005.
[38]LaiWS,CarballoE,ThornJM,etal.InteractionsofCCCHzincfingerproteinswithmRNA:bindingoftristetraprolin-relatedzincfingerproteinstoAu-richelementsanddestabilizationofmRNA[J].JournalofBiologicalChemistry, 2000, 275(23):17827-17837.
[39]StoecklinG,ColombiM,RaineriI,etal.FunctionalcloningofBRF1,aregulatorofARE-dependentmRNAturnover[J].TheEMBOJournal, 2002, 21(17):4709-4718.
[40]ChenCY,GherziR,OngSE,etal.AUbindingproteinsrecruittheexosometodegradeARE-containingmRNAs[J].Cell, 2001, 107(4):451-464.
[41]LykkeAJ,WagnerE.RecruitmentandactivationofmRNAdecayenzymesbytwoARE-mediateddecayactivationdomainsintheproteinsTTPandBRF-1[J].Genes&Development, 2005, 19(3):351-361.
[42]StoecklinG,MayoT,AndersonP.ARE-mRNAdegradationrequiresthe5′-3′decaypathway[J].TheEMBOJournal, 2006, 7(1):72-77.
[43]KedershaN,StoecklinG,AyodeleM,etal.StressgranulesandprocessingbodiesaredynamicallylinkedsitesofmRNPremodeling[J].JournalofCellBiology, 2005, 169(6):871-884.
[44]StoecklinG,AndersonP.Inatightspot:ARE-mRNAsatprocessingbodies[J].Genes, 2007, 21:627-631.
[45]BhattacharyyaSN,HabermacherR,MartineU,etal.ReliefofmicroRNA-mediatedtranslationalrepressioninhumancellssubjectedtostress[J].Cell, 2006, 125(6):1111-1124.
[46]KedershaNL,GuptaM,LiW,etal.RNA-bindingproteinsTIA-1andTIARlinkthephosphorylationofeIF-2alphatotheassemblyofmammalianstressgranules[J].JournalofCellBiology, 1999, 147(7):1431-1441.
[47]FujimuraK,KanoF,MurataM.IdentificationofPCBP2,afacilitatorofIRES-mediatedtranslation,asanovelconstituentofstressgranulesandprocessingbodies[J].RNA-APublicationoftheRNASociety, 2008, 14(3):425-431.
[48]TeixeiraD,ShethU,Valencia-SanchezMA,etal.ProcessingbodiesrequireRNAforassemblyandcontainnontranslatingmRNAs[J].RNA-APublicationoftheRNASociety, 2005, 11(4):371-382.
[49]CaraTP,SylviaS,TeresaMA,etal.ModulationofhepatitisCvirusRNAabundanceandvirusreleasebydispersionofprocessingbodiesandenrichmentofstressgranules[J].Virology, 2013, 435(2):472-484.
[50]Valencia-SanchezMA,LiuJD,HannonGJ,etal.ControloftranslationandmRNAdegradationbymiRNAsandsiRNAs[J].Genes&Development, 2006, 20(5):515-524.
[51]JakymiwA,LianS,Eystathioy,etal.DisruptionofGWbodiesimpairsmamalianRNAinterference[J].NatureCellBiology, 2005, 7(12):1167-117.
[52]RehwinkelJ,Behm-AnsmantI,GatfieldD,etal.AcrucialroleforGW182andtheDCP1:DCP2decappingcomplexinmiRNA-mediatedgenesilencing[J].RNA-APublicationOfTheRNASociety, 2005, 11(11):1640-1647.
[53]PillaiRS,BhattacharyyaSN,ArtusCG,etal.InhibitionoftranslationalinitiationbyLet-7microRNAinhumancells[J].Science, 2005, 309(5740):1573-1576.
[54]ChuCY,RanaTM.TranslationrepressioninhumancellsbymicroRNA-inducedgenesilencingrequiresRCK/p54[J].PLOSBiology, 2006, 4(7):1122-1136.
[55]BrodersenP,Sakvarelidze-AchardL,Bruun-RasmussenM,etal.WidespreadtranslationalinhibitionbyplantmiRNAsandsiRNAs[J].Science, 2008, 320(5880):1185-1190.
[56]PauleyKM,EystathioyT,JakymiwA,etal.FormationofGWbodiesisaconsequenceofmicroRNAgenesis[J].TheEMBOJournal, 2006, 7(9):904-910.
[57]EulalioA,Behm-AnsmantI,SchweizerD,etal.P-bodyformationisaconsequence,notthecause,ofRNA-mediatedgenesilencing[J].MolecularandCellBiology, 2007, 27(11):3970-3981.
[58]BeckhamCJ,ParkerR.Pbodies,stressgranulesandvirallifecycles[J].CellHost&Microbe, 2008, 3(4):206-212.
[59]MandalMN,VasireddyV,ReddyGB,etal.CTRP5isamembrane-associatedandsecretoryproteinintheRPEandciliarybodyandtheS163RmutationofCTRP5impairsitssecretion[J].InvestigativeOphthalmology&VisualScience, 2006, 47(12):5505-5513.
[60]KulkarniM,OzgurS,StoecklinG.OntrackwithP-bodies[J].BiochemicalSocietyTransactions, 2010, 38:242-251.
[61]KedershaN,AndersonP.Mammalianstressgranulesandprocessingbodies[J].MethodsinEnzymology, 2007, 431: 61-81.
[62]NilssonD,SunnerhagenP.CellularstressinducescytoplasmicRNAgranulesinfissionyeast[J].RNA-APublicationoftheRNASociety, 2011, 17(1):120-133.
[63]YangL,WuG.PoethigRS.MutationsintheGW-repeatproteinSUOrevealadevelopmentalfunctionformicroRNA-mediatedtranslationalrepressioninArabidopsis[J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 2012, 109(1): 315-320.
[64]NakaminamiK,MatsuiA,ShinozakiK,etal.RNAregulationinplantabioticstressresponses[J].BiochimicaetBiophysicaActa(BBA)-GeneRegulatoryMechanisms, 2012, 1819(2):149-153.
[65]KoukalováB,KovaríkA,FajkusJ,etal.Chromatinfragmentationassociatedwithapoptoticchangesintobaccocellsexposedtocoldstress[J].FEBSLetters, 1997, 414(2):289-292.
[66]MoBeixin,YeHao,OuZhonghua,etal.Stress-inducedprocessingbodyformationintobaccosuspensioncells[J].JournalofShenzhenUniversityScienceandEngineering, 2012, 29(1):80-84.(inChinese) 莫蓓莘,葉 浩,歐忠華,等.逆境誘導(dǎo)煙草懸浮細(xì)胞內(nèi)處理小體的形成[J]. 深圳大學(xué)學(xué)報(bào)理工版, 2012, 29(1):80-84.
[67]YeHao.FunctionstudyofmRNA-store/decayprocessingbodiesinplantresponsetostresses[D].Shenzhen:ShenzhenUniversity, 2013.(inChinese) 葉 浩.儲(chǔ)存/降解mRNA的處理小體在植物脅迫應(yīng)答中的功能研究[D]. 深圳:深圳大學(xué), 2013.
[68]LacsinaJR,LaMonteG,NicchittaCV,etal.PolysomeprofilingofthemalariaparasitePlasmodiumfalciparum[J].MolecularandBiochemicalParasitology, 2011, 179(1):42-46.
【中文責(zé)編:晨 兮;英文責(zé)編:艾 琳】
Cytoplasmic processing bodies (P-bodies) and the regulation of gene expression
Mo Beixin1, Fu Xiaojie1, Mo Xiaowei1, Liu Li1,2,Xu Xiaofeng3?, and Yue Luming3
1) College of Life Science, Shenzhen University, Shenzhen Key Laboratory of Microbial Genetic Engineering,Shenzhen 518060, P.R.China 2) Department of Botany and Plant Sciences, University of California, Riverside,Institute of Integrative Genome Biology, Riverside, CA 92521, USA 3) College of Life Science, Shenzhen University, Shenzhen Key Laboratory of Marine Biological Resources and Ecological Environment, Shenzhen 518060, P.R.China
mRNA processing bodies (P-bodies) are cytosolic aggregates containing a variety of functional proteins and RNAs. We briefly review the features of P-bodies formation and movement, the interaction of P-bodies with small RNAs and exosomes in the regulation of gene expression. We also summarize the latest P-bodies related research progress in our lab. P-bodies where mRNA degradation and storage take place play an important role in the posttranscriptional regulation of gene expression. They undergo dynamic changes inside the cell. A variety of functional proteins located in P-bodies are involved in the cytoplasmic assembly and biological functioning of P-bodies. The regulatory mechanism of P-bodies still needs to be investigated futher. P-bodies also participate in microRNA(miRNA)-mediated gene silencing.
cell biology; P-bodies; regulation of gene expression; mRNA degradation; translation inhibition; microRNA(miRNA)
:Mo Beixin,F(xiàn)u Xiaojie,Mo Xiaowei,et al. Cytoplasmic processing bodies(P- bodies)and the regulation of gene expression[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(1): 48-57.(in Chinese)
Q 75
A
10.3724/SP.J.1249.2015.01048
國(guó)家自然科學(xué)基金資助項(xiàng)目(31210103901)
莫蓓莘(1966—),女(漢族),江西省修水縣人,深圳大學(xué)教授.E-mail:bmo@szu.edu.cn
Received:2014-09-03;Accepted:2014-11-09
Foundation:National Natural Science Foundation of China(31210103901)
? Corresponding author:Associate professor Xu Xiaofeng. E-mail: xxf@szu.edu.cn
引 文:莫蓓莘,符曉婕,莫小為,等.細(xì)胞質(zhì)處理小體(P-小體)與基因表達(dá)的調(diào)控[J]. 深圳大學(xué)學(xué)報(bào)理工版,2015,32(1):48-57.