• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      兒童數(shù)字估計(jì)能力的研究進(jìn)展及其啟示

      2015-04-10 16:39:42許曉暉
      關(guān)鍵詞:對(duì)數(shù)研究者線性

      許曉暉

      數(shù)字心理表征在數(shù)學(xué)學(xué)習(xí)中具有舉足輕重的作用,從測(cè)量、空間幾何到有理數(shù)、坐標(biāo)系統(tǒng)、真實(shí)數(shù)字線的學(xué)習(xí)都離不開它的參與①Dehaene,S.,Izard,V.,Spelke,E.,& Pica,P.. Log or linear?Distinct intuitions of the number scale in Western and Amazonian indigene cultures. Science,2008,320(5880):1217-1220.。為此,近年來(lái)數(shù)字心理表征一直是數(shù)學(xué)認(rèn)知領(lǐng)域的研究熱點(diǎn)與焦點(diǎn)。眾多心理物理學(xué)與神經(jīng)心理學(xué)的研究表明,個(gè)體頭腦中數(shù)字沿著心理數(shù)字線被表征②Dehaene,S.,Dupoux,E. & Mehler,J.. Is numerical comparison digital?Analogical and symbolic effects in two-digit number comparison. Journal of Experimental Psychology: Human Perception and Performance,1990,16(3):626-641.③Gallistel,C.R.& Gelman,R.Preverbal and verbal counting and computation.Cognition,1992,44(1-2):43-74.。因此,數(shù)字線估計(jì)任務(wù)被用作檢驗(yàn)個(gè)體如何表征數(shù)的經(jīng)典實(shí)驗(yàn),其要求被試在一條兩端標(biāo)有數(shù)字的線段上標(biāo)出給定數(shù)字所處的位置(例如,線段的一端是0,另一端是10,請(qǐng)個(gè)體標(biāo)出8 在該線段上的位置)①Dehaene,S.,Dupoux,E. & Mehler,J.. Is numerical comparison digital?Analogical and symbolic effects in two-digit number comparison. Journal of Experimental Psychology: Human Perception and Performance,1990,16(3):626-641.Whyte,J. C.,& Bull,R.. Number games,magnitude representation,and basic number skills in preschoolers.Developmental Psychology,2008,44(2):588-596.②Barth,H. C.,Slusser,E. B.,Cohen,D.,& Paladino,A. M.. A sense of proportion: Commentary on Opfer,Siegler and Young. Developmental Science,2011,14(5):1205-1206.③Barth,H. C.,& Paladino,A. M.. The development of numerical estimation: Evidence against a representational shift. Developmental Science,2011,14(1):125-135.④Ebersbach,M.,Luwel,K.,F(xiàn)rick,A.,Onghena,P.,& Verschaffel,L.. The relationship between the shape of the mental number line and familiarity with numbers in 5- to 9-year old children: Evidence for a segmented linear model. Journal of Experimental Child Psychology,2008,99(1):1-17.⑤Geary,D. C.,Hoard,M. K.,Nugent,L.,& Byrd-Craven,J.. Development of number line representations in children with mathematical learning disability. Developmental Neuropsychology,2008,33(3):277-299.⑥Moeller,K.,Pixner,S.,Kaufmann,L.,& Nuerk,H. C.. Children’s early mental number line: Logarithmic or decomposed linear?Journal of Experimental Child Psychology,2009,103(4):503-515.⑦M(jìn)uldoon,K.,Simms,V.,Towse,J.,Menzies,V.,& Yue,G.. Cross-cultural Comparisons of 5-year-olds’estmating and mathematical ability. Cross-Cutural Psychology,2011,42(4):669-681.⑧Siegler,R. S.,& Booth,J. L.. Development of numerical estimation in young children. Child Development,2004,75(2):428-444.⑨Siegler,R. S.,& Opfer,J. E.. The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science,2003,14(3):237-243.⑩Slusser,E. B.,Santiago,R. T.,& Barth,H. C.. Developmental change in numerical estimation. Journal Experimtental Psychology: General,2013,142(1):193-208.??Young,C. J.,& Opfer,J. E.. Psychophysics of numerical representation: A unified approach to single- and multi-digit magnitude estimation. Zeitschrift fu¨ r Psychologie/Journal of Psychology,2011,219(1):58-63.。采用數(shù)字線任務(wù)的研究結(jié)果既說(shuō)明了個(gè)體的數(shù)字估計(jì)能力,更揭示了個(gè)體的數(shù)字心理表征。數(shù)字估計(jì)能力是兒童早期數(shù)學(xué)認(rèn)知發(fā)展的關(guān)鍵經(jīng)驗(yàn),它可幫助兒童建立關(guān)于數(shù)字順序、數(shù)量大小、數(shù)字之間相互關(guān)系以及數(shù)字空間表征的相關(guān)概念,從而為兒童數(shù)學(xué)認(rèn)知能力的深入發(fā)展奠定基礎(chǔ)。兒童數(shù)字估計(jì)能力的研究結(jié)果既可豐富有關(guān)、兒童數(shù)學(xué)認(rèn)知、兒童認(rèn)知發(fā)展等方面的相關(guān)理論,又可豐富兒童數(shù)學(xué)教育的內(nèi)容,為建構(gòu)相關(guān)課程提供堅(jiān)實(shí)的理論基礎(chǔ)與實(shí)證支持。縱觀已有的相關(guān)研究,研究者首先探討了多種數(shù)字心理表征即數(shù)字估計(jì)的模型,以嘗試回答不同大小的數(shù)字如何映射到心理數(shù)字線上。在此基礎(chǔ)上,研究者又進(jìn)一步探討了數(shù)字估計(jì)能力與數(shù)學(xué)認(rèn)知發(fā)展的關(guān)系,影響個(gè)體數(shù)字估計(jì)能力發(fā)展的家庭與文化因素、數(shù)字估計(jì)能力發(fā)展的干預(yù)策略等。以下本文將從上述幾個(gè)方面梳理有關(guān)兒童數(shù)字估計(jì)能力的研究進(jìn)展,并嘗試闡明作者對(duì)今后研究方向的思考。

      一、數(shù)字估計(jì)模型

      基于數(shù)字線任務(wù)的考察,研究者提出了對(duì)數(shù)模型、線性模型、對(duì)數(shù)—線性表征轉(zhuǎn)換模型、雙線性模型與單/雙循環(huán)比例冪模型等五種數(shù)字估計(jì)模型即數(shù)字心理表征模型。

      (一)對(duì)數(shù)模型

      對(duì)數(shù)模型(logarithmic model)是指?jìng)€(gè)體表征數(shù)字時(shí)采用了一種對(duì)數(shù)關(guān)系的分布模型,前疏后密,夸大了低端數(shù)字間的距離,縮小了中高端數(shù)字間的距離,如數(shù)字1 和75 間的心理距離遠(yuǎn)遠(yuǎn)大于75 到1000 的距離。研究者借用費(fèi)希納定律提出該模型?Bank,W. P.,& Hill,D. K.. The apparent magnitude of number scaled by random production. Journal of Experimental Psychology,1974,102(2): 353-376. Dehaene,S.. The number sense: How the mind creates mathematics.New York: Oxford University Press,1997.,并將嬰兒和動(dòng)物表征數(shù)字的距離效應(yīng)作為有力證明?Dehaene,S.,Dehaene-Lambertz,G.,& Cohen,L.. Abstract representations of numbers in the animal and human brain. Trends in Neuroscience,1998,21(8):355-361.?Starkey,P.,& Cooper,R. G.. Perception of numbers by human infants. Science,1980,210(4473):1033-1035.。除來(lái)自嬰兒與動(dòng)物的研究證據(jù)外,Dehaene 等的研究發(fā)現(xiàn),亞馬遜地區(qū)的Mnundurucu 人,無(wú)論是成人還是兒童,對(duì)0-10符號(hào)與非符號(hào)數(shù)字線的估計(jì)都呈現(xiàn)對(duì)數(shù)表征?Dehaene,S.,Izard,V.,Spelke,E.,& Pica,P.. Log or linear?Distinct intuitions of the number scale in Western and Amazonian indigene cultures. Science,2008,320(5880):1217-1220.。研究者認(rèn)為,此結(jié)果可能源于Mnundurucu 人既無(wú)結(jié)構(gòu)化的數(shù)字系統(tǒng),也無(wú)正規(guī)的學(xué)校教育?;谏鲜鲅芯浚珼ehaene 等試圖證明一個(gè)觀點(diǎn):個(gè)體將數(shù)字映射到空間上的最初、最直觀的表征方式是對(duì)數(shù)表征①Dehaene,S.,Izard,V.,Spelke,E.,& Pica,P.. Log or linear?Distinct intuitions of the number scale in Western and Amazonian indigene cultures. Science,2008,320(5880):1217-1220.Booth,J. L.,& Siegler,R. S.. Numerical magnitude representations influence arithmetic learning. Child Development,2008,79(4):1016-1031.。

      (二)線性模型

      另一些研究者則提出了線性模型(linear model),是指?jìng)€(gè)體對(duì)數(shù)量的估計(jì)符合線性函數(shù),即個(gè)體對(duì)所有數(shù)字的表征具有相等的空間距離,相鄰數(shù)字之間的距離不隨著數(shù)量的增加幅度而改變②Brannon,E. M.,Wusthoff,C. J.,Gallistel,C. R. & Gibbon,J.. Numerical Subtraction in the Pigeon: Evidence for a Linear Subjective Number Scale. Psychological science,2001,12(3):238-243.③Gibbon,J.,& Church,R. M.. Time left: Linear versus logarithmic subjective time. Journal of the Experimental Analysis of Behavior,1981,7 (2):87-107.。線性表征符合現(xiàn)實(shí)中數(shù)字的分布情況,因此,使用線性表征對(duì)兒童能否準(zhǔn)確估計(jì)具有重大意義。通過(guò)研究,線性模型的支持者探討了兒童獲得線性表征的年齡,Case 和Okamoto 指出,4 歲兒童甚至不能準(zhǔn)確估計(jì)兩個(gè)個(gè)位數(shù)中哪個(gè)距離第三個(gè)數(shù)更近(如3 與8 哪個(gè)距離6 更近),4-5 歲兒童只擁有一種數(shù)字表征的定性中央概念結(jié)構(gòu),如僅僅能比較多和少,而6 歲或者更大點(diǎn)的兒童開始并一直使用線性表征④Case,R.,& Okamoto,Y.. The role of conceptual structures in the development of children’s thought. Monographs of the Society for Research in Child Development,1996,61(246): Nos.1-2.。Case 和Sowder 又進(jìn)一步指出,在獲得線性表征之前,兒童似乎不可能擁有精確的數(shù)字估計(jì)⑤Case,R. & Sowder,J. T.. The Development of Computational Estimation: A Neo-Piagetian Analysis. Cognition and Instruction,1990,7(2):79-104.。然而,Huntley-Fenner發(fā)現(xiàn),在點(diǎn)估計(jì)任務(wù)中,5-7 歲兒童的估計(jì)符合線性模型的預(yù)測(cè)⑥Huntley-Fenner G.. Children’s understanding of number is similar to adults’ and rats’:numerical estimation by 5-7-year-olds. Cognition,2001,78(3): B27-B40.。

      (三)對(duì)數(shù)—線性表征轉(zhuǎn)換模型

      基于對(duì)數(shù)模型和線性模型,Siegler 等提出了對(duì)數(shù)—線性模型轉(zhuǎn)換(logarithmic-to-linear shift)的假設(shè),以此來(lái)解釋兒童數(shù)字估計(jì)能力發(fā)展的表征轉(zhuǎn)換⑦Siegler,R. S.,& Booth,J. L.. Development of numerical estimation in young children. Child Development,2004,75(2):428-444.⑧Siegler,R. S.,& Opfer,J. E.. The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science,2003,14(3):237-243.⑨Young,C. J.,& Opfer,J. E.. Psychophysics of numerical representation: A unified approach to single- and multi-digit magnitude estimation. Zeitschrift fu¨ r Psychologie/Journal of Psychology,2011,219(1):58-63.⑩Booth,J. L.,& Siegler,R. S.. Developmental and individual differences in pure numerical estimation.Developmental Psychology,2006,42(1):189-201.??Laski,E. V.,& Siegler,R. S.. Is 27 a big number?Correlational and causal connections among numerical categorization,number line estimation,and numerical magnitude comparison. Child Development,2007,78(6):1723-1743.?Opfer,J. E.,& Siegler,R. S.. Representational change and children’s numerical estimation. Cognitive Psychology,2007,55(3):169-195.?Opfer,J. E.,Siegler,R. S.,& Young,C. J.. The powers of noise- fitting: Reply to Barth and Paladino.Developmental Science,2011,14(5):1194-1204.?Opfer,J. E.,& Thompson,C. A.. The trouble with transfer:Insights from microgenetic changes in the representation of numerical magnitude. Child Development,2008,79(3):788-804.?Ramani,G. B.,& Siegler,R. S.. Promoting broad and stable improvements in low-income children’s numerical knowledge through playing number board games. Child Development,2008,79(2):375-394.?Siegler,R. S.,& Mu,Y. Chinese children excel on novel mathematics problems even before elementary school.Psychological Science,2008,19(8):759-763.?Siegler,R. S.,& Ramani,G. B.. Playing linear numerical board games promotes low-income children’s numerical development. Developmental Science,2008,11(5):655-661.?Siegler,R. S.,& Ramani,G. B.. Playing linear number board games—but not circular ones—improves low-income preschoolers’ numerical understanding. Journal of Educational Psychology,2009,101(3):545-560.。與Case 等采用階段性觀點(diǎn)來(lái)解釋這種發(fā)展不同,Siegler 秉持重波理論(Overlapping Waves Theory),認(rèn)為個(gè)體了解并能夠使用多種數(shù)字表征方式,發(fā)展不是一種表征取代另一種,而是各種表征共存并競(jìng)爭(zhēng),不同的情境下使用不同的表征模式,隨著年齡和經(jīng)驗(yàn)的增長(zhǎng),兒童會(huì)逐漸依賴于特定情境中最適合的表征模式。

      Siegler 等進(jìn)行了一系列研究來(lái)證明對(duì)數(shù)—線性數(shù)字估計(jì)模型轉(zhuǎn)換的存在①Siegler,R. S.,& Booth,J. L.. Development of numerical estimation in young children. Child Development,2004,75(2):428-444.Ebersbach,M.,Luwel,K.,F(xiàn)rick,A.,Onghena,P.,& Verschaffel,L.. The relationship between the shape of the mental number line and familiarity with numbers in 5- to 9-year old children: Evidence for a segmented linear model. Journal of Experimental Child Psychology,2008,99(1):1-17.②Siegler,R. S.,& Opfer,J. E.. The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science,2003,14(3):237-243.③Booth,J. L.,& Siegler,R. S.. Developmental and individual differences in pure numerical estimation.Developmental Psychology,2006,42(1):189-201.④Laski,E. V.,& Siegler,R. S.. Is 27 a big number?Correlational and causal connections among numerical categorization,number line estimation,and numerical magnitude comparison. Child Development,2007,78(6):1723-1743.⑤Opfer,J. E.,& Siegler,R. S.. Representational change and children’s numerical estimation. Cognitive Psychology,2007,55(3):169-195.⑥Opfer,J. E.,& Thompson,C. A.. The trouble with transfer:Insights from microgenetic changes in the representation of numerical magnitude. Child Development,2008,79(3):788-804.⑦Ramani,G. B.,& Siegler,R. S.. Promoting broad and stable improvements in low-income children’s numerical knowledge through playing number board games. Child Development,2008,79(2):375-394.⑧Siegler,R. S.,& Ramani,G. B.. Playing linear numerical board games promotes low-income children’s numerical development. Developmental Science,2008,11(5):655-661.⑨Siegler,R. S.,& Ramani,G. B.. Playing linear number board games—but not circular ones—improves low-income preschoolers’ numerical understanding. Journal of Educational Psychology,2009,101(3):545-560.。如在同一數(shù)量情境中,學(xué)前班兒童對(duì)0-100 數(shù)字線的估計(jì)更擬合對(duì)數(shù)函數(shù),一年級(jí)學(xué)生的估計(jì)同等擬合對(duì)數(shù)與線性函數(shù),二年級(jí)學(xué)生的估計(jì)則更擬合線性函數(shù)。對(duì)于同一年齡段兒童,二年級(jí)學(xué)生對(duì)0-100 數(shù)字線的估計(jì)更擬合線性函數(shù),對(duì)0-1000 數(shù)字線的估計(jì)更擬合對(duì)數(shù)函數(shù)。對(duì)成人的研究也證明了個(gè)體同時(shí)擁有兩種表征模式,Dehaene 等研究表明,美國(guó)成年人對(duì)0-10 符號(hào)與1-10 點(diǎn)數(shù)字線的估計(jì)呈線性模式,但對(duì)于0-100 點(diǎn)數(shù)字線與0-10 聲音數(shù)字線的估計(jì)則呈現(xiàn)對(duì)數(shù)模式⑩Dehaene,S.,Izard,V.,Spelke,E.,& Pica,P.. Log or linear?Distinct intuitions of the number scale in Western and Amazonian indigene cultures. Science,2008,320(5880):1217-1220.。

      (四)雙線性模型

      盡管有大量研究結(jié)果可支持對(duì)數(shù)—線性轉(zhuǎn)換模型,仍有研究者對(duì)此模型提出異議。Ebersbach等不同意幼兒最初的數(shù)字估計(jì)擬合對(duì)數(shù)表征的理論,提出在解釋學(xué)前班、一年級(jí)兒童0-100 數(shù)字線任務(wù)的表現(xiàn)時(shí),雙線性模型(two-linear model)比對(duì)數(shù)模型具有更好的解釋力?Siegler,R. S.,& Booth,J. L.. Development of numerical estimation in young children. Child Development,2004,75(2):428-444.Ebersbach,M.,Luwel,K.,F(xiàn)rick,A.,Onghena,P.,& Verschaffel,L.. The relationship between the shape of the mental number line and familiarity with numbers in 5- to 9-year old children: Evidence for a segmented linear model. Journal of Experimental Child Psychology,2008,99(1):1-17.。Ebersbach 等認(rèn)為,心理表征模式反映兒童在不同數(shù)量范圍的數(shù)字技能,因此,在數(shù)字估計(jì)中存在一種由至少兩條線段組成圖像的表征模式,兩條線段的分界點(diǎn)在于幼兒熟悉與非熟悉的數(shù)字。年幼兒童在面對(duì)熟悉的數(shù)字時(shí),心理表征符合斜度較大的線性函數(shù);在面對(duì)不熟悉的數(shù)字時(shí),心理表征符合斜度較小的線性函數(shù)。Ebersbach 等對(duì)學(xué)前班到三年級(jí)兒童的研究結(jié)果支持了該模型。

      Moeller 等?Moeller,K.,Pixner,S.,Kaufmann,L.,& Nuerk,H. C.. Children’s early mental number line: Logarithmic or decomposed linear?. Journal of Experimental Child Psychology,2009,103(4):503-515.?Moeller,K.,Huber,S.,Nuerk,H.-C. & Willmes,K.. Two-digit number processing: holistic,decomposed or hybrid?A computational modelling approach. Psychological Research,2011,75(4):290-306.支持雙線性模型,但基于一系列有關(guān)一位數(shù)與兩位數(shù)分離加工的研究證據(jù),他們提出,對(duì)于尚未完全將兩種加工機(jī)制整合于阿拉伯?dāng)?shù)字系統(tǒng)數(shù)位結(jié)構(gòu)的低齡幼兒,其雙線性模型的分界點(diǎn)應(yīng)位于一位數(shù)和兩位數(shù)之間。Moeller 等采用0-100 數(shù)字線任務(wù)對(duì)一年級(jí)兒童的研究結(jié)果支持了這一觀點(diǎn)。Moeller 等推斷,隨著年齡的增長(zhǎng)和教育的影響,個(gè)體從一位數(shù)和兩位數(shù)或兩位數(shù)和三位數(shù)為分界點(diǎn)的雙線性表征,逐漸轉(zhuǎn)換為單一線性表征,這一轉(zhuǎn)換與對(duì)數(shù)—線性表征轉(zhuǎn)換相比,更能合理地解釋個(gè)體的數(shù)量表征。

      (五)單/雙循環(huán)比例冪模型

      Barth 和Plaladino 是對(duì)數(shù)—線性表征轉(zhuǎn)換模型的堅(jiān)定反對(duì)者,認(rèn)為該模型存在三個(gè)問(wèn)題:首先,如果對(duì)數(shù)—線性表征轉(zhuǎn)換模型是兒童心理表征中的一個(gè)普遍轉(zhuǎn)換,此轉(zhuǎn)換也應(yīng)該存在于其它估計(jì)任務(wù)中,但非數(shù)字線任務(wù)的研究并無(wú)證據(jù)支持該轉(zhuǎn)換模型;其次,對(duì)于兒童所表現(xiàn)出的系統(tǒng)高估或低估模式,對(duì)數(shù)—線性表征轉(zhuǎn)換模型無(wú)法提供充分解釋;第三,對(duì)數(shù)—線性表征轉(zhuǎn)換模型不能反映出解決數(shù)字線估計(jì)任務(wù)需要進(jìn)行比例判斷的特性①Barth,H. C. ,Slusser,E. B. ,Cohen,D. ,& Paladino,A. M. . A sense of proportion: Commentary on Opfer,Siegler and Young. Developmental Science,2011,14(5): 1205-1206.②Barth,H. C. ,& Paladino,A. M. . The development of numerical estimation: Evidence against a representational shift. Developmental Science,2011,14(1): 125-135.。因此,Barth 和Plaladino 提出了單/雙循環(huán)比例冪模 型 (one- and two-cycle versions of the proportional power model)來(lái)解釋個(gè)體的數(shù)字估計(jì)表現(xiàn)②Barth,H. C. ,& Paladino,A. M. . The development of numerical estimation: Evidence against a representational shift. Developmental Science,2011,14(1): 125-135.。單循環(huán)比例冪模型是指模擬個(gè)體估計(jì)的線段準(zhǔn)確通過(guò)被估數(shù)量范圍的中點(diǎn),高估了位于前50% 的數(shù)字,低估了位于后50% 的數(shù)字;雙循環(huán)比例冪模型則是模擬個(gè)體估計(jì)的線段準(zhǔn)確通過(guò)位于25% 和75% 的被估值,高估了位于前25% 和50%-75% 之間的數(shù)字,低估了位于25%- 50% 之間和后75% 的數(shù)字。

      Barth 等的研究表明,5 歲兒童對(duì)0-100 數(shù)字線的估計(jì)擬合單循環(huán)比例冪模型;7-10 歲兒童對(duì)0-1000 數(shù)字線的估計(jì)、8-10 歲兒童對(duì)0-10000 數(shù)字線的估計(jì)則擬合雙循環(huán)比例冪模型②Barth,H. C. ,& Paladino,A. M. . The development of numerical estimation: Evidence against a representational shift. Developmental Science,2011,14(1): 125-135.③Slusser,E. B.,Santiago,R. T.,& Barth,H. C.. Developmental change in numerical estimation. Journal Experimtental Psychology: General,2013,142(1):193-208.。Barth 等認(rèn)為,單/雙循環(huán)比例冪模型與對(duì)數(shù)模型同樣為低齡幼兒數(shù)字估計(jì)表征提供了很好的解釋,而與線性模型相比,單/雙循環(huán)比例冪模型能為高齡兒童的數(shù)字估計(jì)表征提供更好的解釋。與對(duì)數(shù)—線性表征轉(zhuǎn)換不同,比例判斷依據(jù)兩種顯著的改變來(lái)解釋個(gè)體數(shù)字估計(jì)表征的變化:一為參數(shù)β 的值會(huì)隨著個(gè)體年齡和經(jīng)驗(yàn)的增長(zhǎng)而逐漸趨向于1,從而數(shù)字估計(jì)結(jié)果會(huì)越來(lái)越準(zhǔn)確;二為隨著個(gè)體年齡和經(jīng)驗(yàn)增長(zhǎng)而變化的參照數(shù)字,最初參照數(shù)字只是所估計(jì)數(shù)字范圍的兩個(gè)端點(diǎn),接著加入了位于25% 和75% 的兩個(gè)數(shù)字③Slusser,E. B.,Santiago,R. T.,& Barth,H. C.. Developmental change in numerical estimation. Journal Experimtental Psychology: General,2013,142(1):193-208.。

      二、數(shù)字估計(jì)能力發(fā)展的相關(guān)因素研究

      對(duì)于數(shù)字估計(jì)能力的相關(guān)因素,為數(shù)不多的研究者探討了個(gè)體數(shù)字估計(jì)能力與數(shù)學(xué)認(rèn)知發(fā)展之間的關(guān)系。研究表明,估計(jì)的絕對(duì)錯(cuò)誤率與學(xué)前班至二年級(jí)兒童數(shù)學(xué)成績(jī)之間存在顯著負(fù)相關(guān),兒童數(shù)字估計(jì)的絕對(duì)錯(cuò)誤率越低,其數(shù)學(xué)成績(jī)?cè)礁?。兒童?shù)字估計(jì)的線性函數(shù)擬合度與其數(shù)學(xué)成績(jī)之間存在顯著正相關(guān),兒童數(shù)字估計(jì)的線性擬合度越高,其數(shù)學(xué)成績(jī)?cè)礁撷躍iegler,R. S.,& Booth,J. L.. Development of numerical estimation in young children. Child Development,2004,75(2):428-444.⑤Booth,J. L.,& Siegler,R. S.. Developmental and individual differences in pure numerical estimation.Developmental Psychology,2006,42(1):189-201.。在此基礎(chǔ)上,Siegler 等進(jìn)一步考察了數(shù)字估計(jì)的線性表征對(duì)一、二年級(jí)兒童即將進(jìn)行的加法學(xué)習(xí)的貢獻(xiàn)率,結(jié)果表明,數(shù)字估計(jì)的線性擬合程度是兒童后期加法學(xué)習(xí)效果的唯一預(yù)測(cè)源⑥Booth,J.L.,& Siegler,R. S.. Numerical magnitude representations influence arithmetic learning. Child Development,2008,79(4):1016-1031.。

      我國(guó)研究者李曉芹重復(fù)了Siegler 等的研究,考察了一、二、三年級(jí)兒童在0-100 數(shù)字線上的估計(jì)表現(xiàn)與其數(shù)學(xué)認(rèn)知的關(guān)系,獲得了一致的研究結(jié)果,即數(shù)字估計(jì)越準(zhǔn)確、越符合線性函數(shù),兒童數(shù)學(xué)成績(jī)?cè)礁撷倮顣郧郏骸缎W(xué)兒童數(shù)字線估計(jì)的發(fā)展研究》,曲阜:曲阜師范大學(xué)學(xué)位論文,2008年。Perry,M.. Explanations of mathematical concepts in Japanese,Chinese and U.S. first- and fifth-grade classrooms.Cognition and Instruction,2000,18,181-207.。Geary 對(duì)數(shù)學(xué)學(xué)習(xí)困難、數(shù)學(xué)學(xué)業(yè)成就低和正常兒童的數(shù)字估計(jì)能力的追蹤研究發(fā)現(xiàn),數(shù)學(xué)學(xué)習(xí)困難和低數(shù)學(xué)成績(jī)的兒童其估計(jì)準(zhǔn)確性顯著低于正常兒童②Geary,D. C.,Hoard,M. K.,Nugent,L.,& Byrd-Craven,J.. Development of number line representations in children with mathematical learning disability. Developmental Neuropsychology,2008,33(3):277-299.。Muldoon 等選取運(yùn)算能力相等的中國(guó)兒童(平均4.5 歲)與蘇格蘭兒童(平均5.3 歲)作為被試,考察其在0-10與0-100 數(shù)字線上的估計(jì)表現(xiàn),研究結(jié)果表明,雖然中國(guó)兒童年齡低于蘇格蘭兒童,但二者數(shù)字線估計(jì)的線性擬合度不存在顯著差異,這一結(jié)果也間接說(shuō)明數(shù)字估計(jì)能力與數(shù)學(xué)認(rèn)知之間存在正向關(guān)系③Muldoon,K.,Simms,V.,Towse,J.,Menzies,V.,& Yue,G.. Cross-cultural Comparisons of 5-year-olds’estmating and mathematical ability. Cross-Cutural Psychology,2011,42(4):669-681.。究其原因,Case 等認(rèn)為心理數(shù)字線為學(xué)習(xí)其他數(shù)學(xué)知識(shí)提供了一個(gè)核心概念結(jié)構(gòu)④Case,R.,& Okamoto,Y.. The role of conceptual structures in the development of children’s thought. Monographs of the Society for Research in Child Development,1996,61(246): Nos.1-2.。數(shù)字估計(jì)線性程度比之前算術(shù)知識(shí)更能預(yù)測(cè)兒童后期算術(shù)學(xué)習(xí)的事實(shí)則表明,兒童對(duì)數(shù)值大小的表征可能是影響其學(xué)習(xí)新算術(shù)知識(shí)的關(guān)鍵因素①李曉芹:《小學(xué)兒童數(shù)字線估計(jì)的發(fā)展研究》,曲阜:曲阜師范大學(xué)學(xué)位論文,2008年。Perry,M.. Explanations of mathematical concepts in Japanese,Chinese and U.S. first- and fifth-grade classrooms.Cognition and Instruction,2000,18,181-207.。

      少數(shù)研究者考察了家庭與文化背景對(duì)兒童數(shù)字心理表征發(fā)展的影響。已有研究結(jié)果表明,來(lái)自不同社會(huì)經(jīng)濟(jì)地位家庭的幼兒其數(shù)字估計(jì)能力存在顯著差異。Siegler 與Ramani 考察了美國(guó)中產(chǎn)階級(jí)家庭與低收入家庭幼兒(平均年齡4.7歲)0-10 數(shù)字線的估計(jì)表征,研究發(fā)現(xiàn),與低收入家庭的幼兒相比,中產(chǎn)階級(jí)家庭幼兒的估計(jì)更擬合線性函數(shù)(沒(méi)有擬合對(duì)數(shù)函數(shù)的數(shù)據(jù)報(bào)告)⑤Siegler,R. S.,& Ramani,G. B.. Playing linear numerical board games promotes low-income children’s numerical development. Developmental Science,2008,11(5):655-661.。跨文化比較發(fā)現(xiàn),中國(guó)兒童比西方兒童更早出現(xiàn)線性表征。Siegler 和Mu 的研究發(fā)現(xiàn),對(duì)于0-100 的數(shù)字線估計(jì),美國(guó)學(xué)前班兒童的估計(jì)更擬合對(duì)數(shù)函數(shù),而中國(guó)大班兒童的估計(jì)更擬合線性函數(shù)⑥Siegler,R. S.,& Mu,Y.. Chinese children excel on novel mathematics problems even before elementary school.Psychological Science,2008,19(8):759-763.。許曉暉等研究發(fā)現(xiàn),對(duì)于0-10 數(shù)字線,中國(guó)小班幼兒的估計(jì)呈現(xiàn)對(duì)數(shù)與線性表征并存的模式,中、大班幼兒呈現(xiàn)線性表征;對(duì)于0-100 數(shù)字線,中國(guó)大班幼兒估計(jì)的線性擬合度顯著高于美國(guó)同齡幼兒,等同于美國(guó)一、二年級(jí)兒童估計(jì)的線性擬合度;對(duì)于0-1000 數(shù)字線,中國(guó)大班幼兒估計(jì)的線性擬合度遠(yuǎn)遠(yuǎn)高于美國(guó)二年級(jí)兒童的線性擬合度⑦Xu,X.,Chen,C.,Pan,M. & Li,N.. Development of numerical estimation in Chinese preschool children. Journal of Experimental Child Psychology,2013,116(2):351-366.。亞馬遜地區(qū)的Mnundurucu人則是一個(gè)更為極端的案例,即使是Mnundurucu成年人,其對(duì)0-10 數(shù)字線的估計(jì)仍呈現(xiàn)對(duì)數(shù)表征,研究者將其歸因?yàn)镸nundurucu 人沒(méi)有系統(tǒng)的數(shù)字符號(hào)以及正式的數(shù)學(xué)教育。

      其他研究者同樣以教育的原因來(lái)解釋東西方兒童數(shù)字估計(jì)能力及數(shù)學(xué)成就的差異。研究者認(rèn)為,東亞兒童在課堂上、放學(xué)后花費(fèi)更多的時(shí)間學(xué)習(xí)數(shù)學(xué)⑧Chen,C.,& Stevenson,H.W.. Homework: A cross-cultura examination. Child Development,1989,60,551-561.⑨Stigler,J.W.,& Hiebert,J.. The teaching gap: Best ideas from the world’s teachers for improving education in the classroom. New York: Free Press,1999.;相比于美國(guó)教師,東亞教師理解更多的數(shù)學(xué)基本概念,可采用更多有針對(duì)性的教學(xué)方法⑩Ma,L.. Knowing and teaching elementary mathematics:Teachers’ understanding of fundamental mathematics in China and the United States. Mahwah,NJ: Erlbaum,1999.,可提供更多實(shí)質(zhì)性解釋?李曉芹:《小學(xué)兒童數(shù)字線估計(jì)的發(fā)展研究》,曲阜:曲阜師范大學(xué)學(xué)位論文,2008年。Perry,M.. Explanations of mathematical concepts in Japanese,Chinese and U.S. first- and fifth-grade classrooms.Cognition and Instruction,2000,18,181-207.,并且可針對(duì)學(xué)生提問(wèn)提供多種解答方案?Geary,D. C.. Children’ s mathematical development: Research and practical Applications. Washington,DC:American Psychological Association,1994.;相比于美國(guó)的家長(zhǎng),中國(guó)的家長(zhǎng)更加重視子女的數(shù)學(xué)學(xué)習(xí),且更多地參與孩子的數(shù)學(xué)學(xué)習(xí)①Huntsinger,C.S.,Jose,P.E.,Liaw,F(xiàn).R.,& Ching,W.. Cultural differences in early mathematics learning: A comparison of Euro- American,Chinese- American,and Taiwan- Chinese families. International Journal of Behavioral Development,1997,21,371-388.②Zhou,X.,Huang,J.,Wang,Z.,Wang,B.,Zhao,Z.,Yang,L.,& Y,Z.. Parent- child interaction and children’s number learning. Early Child Development and Care,2006,176(7),763-775.,不同社經(jīng)地位家長(zhǎng)的投入與此同理,同時(shí)低收入父母與高收入父母還存在教育能力的差異,可為子女提供的數(shù)學(xué)經(jīng)驗(yàn)較少。另有研究者從學(xué)習(xí)方式來(lái)解釋東西方兒童數(shù)學(xué)學(xué)習(xí)的差異,認(rèn)為提供多樣的、同步的、冗余的學(xué)習(xí)線索可促進(jìn)兒童多類型的數(shù)學(xué)學(xué)習(xí)。如中國(guó)兒童會(huì)使用數(shù)手指或者其它物體來(lái)幫助其解決算術(shù)問(wèn)題或者確定集合的大小,其中包含了豐富的關(guān)于數(shù)量的觸覺(jué)、視覺(jué)、聽覺(jué)的信息,從而促進(jìn)了其各類數(shù)學(xué)知識(shí)的學(xué)習(xí)與理解③Siegler,R. S.,& Mu,Y.. Chinese children excel on novel mathematics problems even before elementary school.Psychological Science,2008,19(8):759-763.。

      三、數(shù)字估計(jì)能力的干預(yù)

      如上所述數(shù)字估計(jì)能力與兒童數(shù)學(xué)成就之間存在顯著正相關(guān),為此,探索促進(jìn)兒童數(shù)學(xué)估計(jì)能力發(fā)展的干預(yù)措施,以間接促進(jìn)其數(shù)學(xué)認(rèn)知能力的發(fā)展也成為研究者著重探討的問(wèn)題。目前已有三類促進(jìn)兒童數(shù)字估計(jì)能力發(fā)展的干預(yù)策略:估計(jì)數(shù)字訓(xùn)練、數(shù)字分類和數(shù)字棋游戲。

      估計(jì)數(shù)字訓(xùn)練包括對(duì)所有被估數(shù)字和特定被估數(shù)字的估計(jì)反饋訓(xùn)練兩種。Siegler 和Booth 對(duì)幼兒園大班、小學(xué)一、二年級(jí)兒童進(jìn)行所有被估數(shù)字的反饋訓(xùn)練,即請(qǐng)被試將所有被估數(shù)字估計(jì)在同一條數(shù)字線上,在估計(jì)的過(guò)程中被試可以隨時(shí)進(jìn)行修改和調(diào)整。研究結(jié)果表明,干預(yù)訓(xùn)練可顯著提高一、二年級(jí)兒童數(shù)字估計(jì)的線性度,但無(wú)法顯著提高大班兒童數(shù)字估計(jì)的線性度④Siegler,R. S.,& Booth,J. L.. Development of numerical estimation in young children. Child Development,2004,75(2):428-444.。特定被估數(shù)字的反饋訓(xùn)練則基于對(duì)數(shù)差異假設(shè)(log discrepancy hypothesis),該假設(shè)認(rèn)為,針對(duì)線性模式與對(duì)數(shù)模式之間差異最大區(qū)域的數(shù)字進(jìn)行估計(jì)反饋訓(xùn)練將促使兒童由對(duì)數(shù)表征轉(zhuǎn)為線性表征,且這種變化是突然的、整體性的?;诖?,Opfer與Siegler 對(duì)二年級(jí)兒童進(jìn)行了0-1000 數(shù)字線估計(jì)的干預(yù),確定150 周圍的數(shù)字作為特定數(shù)字,研究結(jié)果顯示,與5、725 和無(wú)反饋組相比,150 反饋組兒童成功地由對(duì)數(shù)表征轉(zhuǎn)變?yōu)榫€性表征⑤Opfer,J. E.,& Siegler,R. S.. Representational change and children’s numerical estimation. Cognitive Psychology,2007,55(3):169-195.。李曉芹對(duì)國(guó)內(nèi)小學(xué)生的研究也得出基本一致的結(jié)論⑥李曉芹:《小學(xué)兒童數(shù)字線估計(jì)的發(fā)展研究》,曲阜:曲阜師范大學(xué)學(xué)位論文,2008年。。

      數(shù)字分類是指兒童基于數(shù)量對(duì)數(shù)字形成主觀的大小分類,即請(qǐng)被試把給定數(shù)字分別放入不同的組別中,如將0-100 的數(shù)字分為非常小至非常大五組(非常小:1-20,小:21-40,中等:41-60,大:61-80,非常大:81-100)。Laski 與Siegler采用此方案對(duì)大班兒童進(jìn)行0-100 數(shù)字線估計(jì)的干預(yù),實(shí)驗(yàn)組和控制組兒童同時(shí)接受一對(duì)一的數(shù)字分類訓(xùn)練,但只對(duì)實(shí)驗(yàn)組兒童給予反饋。研究結(jié)果表明,實(shí)驗(yàn)組兒童后測(cè)的估計(jì)線性擬合度比前測(cè)的線性擬合度顯著提升,控制組兒童線性擬合度提升幅度微小,說(shuō)明對(duì)兒童進(jìn)行數(shù)字分類反饋訓(xùn)練可有效促進(jìn)其表征模式的轉(zhuǎn)變⑦Laski,E. V.,& Siegler,R. S.. Is 27 a big number?Correlational and causal connections among numerical categorization,number line estimation,and numerical magnitude comparison. Child Development,2007,78(6):1723-1743.。究其原因,研究者認(rèn)為數(shù)字分類可幫助幼兒對(duì)所有被估數(shù)字按數(shù)量大小進(jìn)行主觀判斷,從中獲得有關(guān)這些數(shù)字的新信息,以此來(lái)簡(jiǎn)化估計(jì)任務(wù),達(dá)到分而治之的作用,從而可更準(zhǔn)確地判斷某個(gè)數(shù)字在數(shù)字線上的位置。

      Siegler 與Ramani 提出,玩線性數(shù)字棋游戲可幫助兒童生成線性表征模式,因?yàn)槠灞P游戲可提供排序和數(shù)量的知識(shí),且能以實(shí)物的形式幫助兒童認(rèn)識(shí)線性或是心理數(shù)字線。所謂數(shù)字棋游戲是指在呈線性排列、大小相同、標(biāo)有數(shù)字的方格棋盤上,兒童通過(guò)擲骰子的點(diǎn)數(shù)確定需走的格數(shù),一邊走棋一邊說(shuō)出所走過(guò)的數(shù)字。Siegler 等人對(duì)來(lái)自低收入家庭的中班兒童進(jìn)行了0-10 的數(shù)字棋干預(yù)(控制組為顏色棋),研究結(jié)果表明,玩數(shù)字棋游戲的幼兒其數(shù)字估計(jì)線性度得到顯著提升,玩顏色棋游戲的幼兒其數(shù)字估計(jì)線性度反而有所下降,說(shuō)明數(shù)字棋游戲可有效提升幼兒0-10 數(shù)字估計(jì)表征的線性擬合度①Siegler,R. S.,& Ramani,G. B.. Playing linear numerical board games promotes low-income children’s numerical development. Developmental Science,2008,11(5):655-661.②Siegler,R. S.,& Ramani,G. B.. Playing linear number board games—but not circular ones—improves low-income preschoolers’ numerical understanding. Journal of Educational Psychology,2009,101(3):545-560.。

      四、啟示

      綜上所述,研究者已對(duì)數(shù)字估計(jì)的模型、數(shù)字估計(jì)與數(shù)學(xué)認(rèn)知發(fā)展的關(guān)系、數(shù)字估計(jì)的家庭與文化影響因素及數(shù)字估計(jì)的干預(yù)進(jìn)行了深入的探索,獲得了豐富的研究結(jié)果,但仍有一些問(wèn)題值得進(jìn)一步探討。在借鑒已有研究成果的基礎(chǔ)上,我們將提出對(duì)今后研究方向與思路的初步思考:

      (一)進(jìn)一步驗(yàn)證模型之爭(zhēng)。首先,研究者提出了五個(gè)數(shù)字估計(jì)模型,并都力證自己所提模型的科學(xué)與準(zhǔn)確。但已有研究分別針對(duì)不同被試進(jìn)行考察得出了不同模型,國(guó)外尚無(wú)采用同一批被試數(shù)據(jù)模擬五個(gè)模型以直接比較模型擬合程度的研究結(jié)果,為此,無(wú)法獲得確定五個(gè)模型優(yōu)劣的直接證據(jù)。許曉暉等采用0-100 和0-1000 數(shù)字線任務(wù)對(duì)中國(guó)大班城市兒童進(jìn)行了考察,對(duì)其估計(jì)結(jié)果分別擬合了五個(gè)不同的模型,結(jié)果顯示,中國(guó)大班城市兒童的數(shù)字估計(jì)更加擬合雙線性模型與線性模型③Xu,X.,Chen,C.,Pan,M. & Li,N.. Development of numerical estimation in Chinese preschool children. Journal of Experimental Child Psychology,2013,116(2):351-366.。但是,許曉暉的研究也僅是針對(duì)平均年齡為6 歲的中國(guó)兒童進(jìn)行了考察,仍缺乏來(lái)自低齡幼兒的研究證據(jù),應(yīng)進(jìn)一步擴(kuò)大被試的年齡范圍,如對(duì)3-5 歲中國(guó)兒童的數(shù)字估計(jì)能力進(jìn)行深入探討,以進(jìn)一步驗(yàn)證不同估計(jì)模型對(duì)中國(guó)兒童的適宜性,同時(shí)驗(yàn)證模型擬合的優(yōu)劣程度。其次,對(duì)數(shù)—線性表征轉(zhuǎn)換模型意在清晰刻畫兒童估計(jì)表征的發(fā)展,但已有研究?jī)H采用橫斷研究數(shù)據(jù)來(lái)證明此轉(zhuǎn)換的存在,仍存在一些不足,如可采用追蹤研究數(shù)據(jù)來(lái)進(jìn)行驗(yàn)證則更為科學(xué)嚴(yán)謹(jǐn)。此外,當(dāng)前研究所考察最小年齡的被試為平均4歲的兒童,迄今仍無(wú)幼兒數(shù)字估計(jì)擬合對(duì)數(shù)表征優(yōu)于線性表征的研究結(jié)果,應(yīng)對(duì)更低齡如3 歲的幼兒進(jìn)行考察,以揭示在接受正式數(shù)學(xué)教育前,個(gè)體的數(shù)字估計(jì)是否更符合對(duì)數(shù)表征。

      (二)深刻揭示數(shù)字估計(jì)能力與數(shù)學(xué)認(rèn)知發(fā)展的關(guān)系。研究者采用橫斷研究數(shù)據(jù)表明,兒童數(shù)字估計(jì)能力與當(dāng)前數(shù)學(xué)成績(jī)之間存在顯著正相關(guān),即數(shù)字估計(jì)線性度越高,數(shù)學(xué)認(rèn)知發(fā)展水平越高。正如前文提及,數(shù)字心理表征參與了測(cè)量、空間幾何、有理數(shù)、坐標(biāo)系統(tǒng)、真實(shí)數(shù)字線等一系列的學(xué)習(xí),是個(gè)體數(shù)學(xué)認(rèn)知能力深入發(fā)展的基礎(chǔ)。為此,是否前期個(gè)體數(shù)字估計(jì)能力的線性擬合度可預(yù)測(cè)其后期數(shù)學(xué)認(rèn)知能力的發(fā)展,鮮有追蹤研究說(shuō)明該問(wèn)題,因此,今后應(yīng)嘗試運(yùn)用追蹤研究以更深入揭示數(shù)字估計(jì)能力與數(shù)學(xué)認(rèn)知發(fā)展二者之間的預(yù)測(cè)關(guān)系。同時(shí),應(yīng)進(jìn)一步細(xì)致分析數(shù)字估計(jì)能力與數(shù)學(xué)認(rèn)知各維度之間的特異關(guān)系。

      (三)深入探討個(gè)體數(shù)字估計(jì)能力發(fā)展的影響因素及其作用機(jī)制。已有研究表明,家庭社會(huì)經(jīng)濟(jì)地位是兒童數(shù)字估計(jì)能力發(fā)展的重要影響因素。低收入家庭幼兒數(shù)字估計(jì)能力的線性擬合度顯著低于中產(chǎn)階級(jí)家庭的幼兒,但當(dāng)前對(duì)低收入家庭幼兒的研究甚少,只有來(lái)自Siegler 等的一篇研究。為此,應(yīng)針對(duì)性選取低收入家庭幼兒,如我國(guó)的流動(dòng)(低收入家庭)兒童作為被試,深入探討3-6 歲流動(dòng)兒童數(shù)字估計(jì)能力的發(fā)展,比較其與城市(高收入家庭)兒童數(shù)字估計(jì)能力發(fā)展的差異。同時(shí),進(jìn)入到流動(dòng)兒童的家庭和幼兒園,通過(guò)現(xiàn)場(chǎng)觀察,分析流動(dòng)兒童家庭、幼兒園的數(shù)學(xué)教育環(huán)境,家長(zhǎng)、幼兒園教師與流動(dòng)兒童進(jìn)行數(shù)學(xué)游戲的互動(dòng)質(zhì)量等,以深入揭示家庭、幼兒園影響流動(dòng)兒童數(shù)字估計(jì)能力發(fā)展的具體因素及其作用機(jī)制。

      (四)開發(fā)促進(jìn)中國(guó)兒童數(shù)字估計(jì)能力發(fā)展的干預(yù)措施。國(guó)外研究者已針對(duì)不同數(shù)量情境的數(shù)字線開發(fā)了3 類干預(yù)措施,并通過(guò)實(shí)踐檢驗(yàn)證明其可有效提升兒童數(shù)字估計(jì)的線性表征擬合度。但是,此三類措施是否適用于中國(guó)兒童,仍需通過(guò)本土化研究進(jìn)行驗(yàn)證。同時(shí),針對(duì)中國(guó)兒童數(shù)字估計(jì)能力與數(shù)學(xué)認(rèn)知發(fā)展水平顯著高于西方兒童的現(xiàn)狀,我們需在借鑒國(guó)外研究者思路的基礎(chǔ)上,進(jìn)一步開發(fā)適用于中國(guó)各年齡段兒童的干預(yù)策略,以更好地促進(jìn)中國(guó)兒童數(shù)字心理表征與數(shù)學(xué)認(rèn)知的有效發(fā)展。

      猜你喜歡
      對(duì)數(shù)研究者線性
      漸近線性Klein-Gordon-Maxwell系統(tǒng)正解的存在性
      含有對(duì)數(shù)非線性項(xiàng)Kirchhoff方程多解的存在性
      指數(shù)與對(duì)數(shù)
      高等教育中的學(xué)生成為研究者及其啟示
      線性回歸方程的求解與應(yīng)用
      指數(shù)與對(duì)數(shù)
      研究者稱,經(jīng)CRISPR技術(shù)編輯過(guò)的雙胞胎已出生。科學(xué)將如何回應(yīng)?
      二階線性微分方程的解法
      對(duì)數(shù)簡(jiǎn)史
      研究者調(diào)查數(shù)據(jù)統(tǒng)計(jì)
      中華手工(2018年6期)2018-07-17 10:37:42
      临猗县| 安泽县| 岑溪市| 防城港市| 崇文区| 虎林市| 武胜县| 左权县| 翼城县| 涟水县| 江油市| 平邑县| 东丰县| 冷水江市| 安康市| 台州市| 岑巩县| 嘉义县| 渑池县| 哈巴河县| 黄陵县| 宝兴县| 中宁县| 穆棱市| 克山县| 滨海县| 仁布县| 乐清市| 榆中县| 名山县| 南皮县| 孝感市| 阜平县| 肥乡县| 白山市| 浙江省| 抚顺县| 青河县| 荆州市| 云安县| 浮梁县|