• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      小窩蛋白在骨骼肌肉系統(tǒng)中的研究進(jìn)展

      2015-04-15 16:19:10曾國偉波解放軍9507部隊門診部廣西南寧500解放軍95部隊遼寧大連60第四軍醫(yī)大學(xué)航空航天生物動力學(xué)教研室陜西西安700
      關(guān)鍵詞:小窩肌細(xì)胞細(xì)胞膜

      曾國偉,曲 博,石 菲,劉 波解放軍9507部隊門診部,廣西南寧 500;解放軍95部隊,遼寧大連 60;第四軍醫(yī)大學(xué)航空航天生物動力學(xué)教研室,陜西西安 700

      綜 述

      小窩蛋白在骨骼肌肉系統(tǒng)中的研究進(jìn)展

      曾國偉1,曲 博2,石 菲3,劉 波11
      解放軍95072部隊門診部,廣西南寧 530021;2解放軍93253部隊,遼寧大連 116023;3第四軍醫(yī)大學(xué)航空航天生物動力學(xué)教研室,陜西西安 710032

      小窩蛋白是構(gòu)成小窩的不可或缺的支架蛋白。近年來,研究發(fā)現(xiàn)小窩蛋白具有多種生物學(xué)功能,能夠影響信號通路和疾病的發(fā)生、發(fā)展。本文主要綜述各種小窩蛋白在正常骨骼肌肉系統(tǒng)中的作用。

      小窩;小窩蛋白;骨骼肌;骨骼

      細(xì)胞膜是由蛋白質(zhì)、膽固醇和脂質(zhì)構(gòu)成的復(fù)雜的非均質(zhì)混合物。膽固醇和多種脂質(zhì)組成了細(xì)胞膜上微小的結(jié)構(gòu)域—脂筏[1-4]。這種富含膽固醇和磷脂的微小膜結(jié)構(gòu)和多種細(xì)胞活動有關(guān),脂筏參與多種細(xì)胞膜上離子通道蛋白的更替,根據(jù)蛋白標(biāo)記物、形態(tài)結(jié)構(gòu)和膽固醇與磷脂含量的不同,脂筏有多種[4-6]。本文針對骨骼肌肉系統(tǒng)上的小窩蛋白的結(jié)構(gòu)和特性等相關(guān)研究進(jìn)行綜述。

      1 小窩和小窩蛋白

      小窩是一種細(xì)胞膜上內(nèi)陷的小泡。1953年P(guān)alade[7]首次應(yīng)用電子顯微鏡觀察大鼠毛細(xì)血管內(nèi)皮細(xì)胞時發(fā)現(xiàn)小窩結(jié)構(gòu),因其在電子顯微鏡下的形態(tài)結(jié)構(gòu)酷似小窩而得名。典型的小窩結(jié)構(gòu)是直徑50 ~ 100 nm、內(nèi)陷、燒瓶狀的結(jié)構(gòu),這個結(jié)構(gòu)在質(zhì)膜上呈現(xiàn)連續(xù)分布。然而,小窩的結(jié)構(gòu)會隨著細(xì)胞生理狀態(tài)的不同而稍有不同[8-12]。許多細(xì)胞膜上都有小窩結(jié)構(gòu),包括成骨細(xì)胞和肌細(xì)胞,但不是所有種類的細(xì)胞上都有,如神經(jīng)元細(xì)胞[13-15]。不同種類細(xì)胞膜表面小窩密度也有所不同,脂肪細(xì)胞約50%的細(xì)胞膜表面有小窩結(jié)構(gòu)[16],但成纖維細(xì)胞只有約5%的細(xì)胞膜有此結(jié)構(gòu)[17]。小窩蛋白是小窩的最重要特征,它可以和膽固醇相互作用[18]。膽固醇是構(gòu)成小窩的主要成分,膽固醇的耗竭會使小窩變得平坦,甚至?xí)辜?xì)胞膜上的小窩減少[19]。種種研究表明,足量的膽固醇對于小窩的形成和保持發(fā)揮了重要作用[20-21]。但是小窩蛋白和膽固醇的相互作用還有待于進(jìn)一步研究。

      3種小窩蛋白(CAV1、CAV2和CAV3)編碼6種小窩蛋白亞型(Caveolin-1α與Caveolin-1β、Caveolin-2α、Caveolin-2β、Caveolin-2γ和Caveolin-3)。小窩蛋白的分子量為18 ~ 24 kU,有著特殊的發(fā)卡狀結(jié)構(gòu)。絕大多數(shù)種類的細(xì)胞上都有Caveolin-1的表達(dá),包括脂肪細(xì)胞、內(nèi)皮細(xì)胞、上皮細(xì)胞、成纖維細(xì)胞、平滑肌細(xì)胞、骨骼肌細(xì)胞和骨細(xì)胞等[22-23]。根據(jù)細(xì)胞種類的不同,Caveolin-1有可溶的細(xì)胞質(zhì)形式,也有分泌形式。Caveolin-1的細(xì)胞膜定位需要Caveolin-2的協(xié)助。Caveolin-2和Caveolin-3又稱為M-caveolin。一般來說,Caveolin-2和Caveolin-1共表達(dá)在細(xì)胞膜表面,但是Caveolin-3特定的表達(dá)在平滑肌細(xì)胞和骨骼肌細(xì)胞上。絕大多數(shù)的細(xì)胞小窩只有Caveolin-1的表達(dá),Caveolin-2的缺失不會影響小窩的形成。最近有證據(jù)表明,Caveolin-2參與到Caveolin-1的動態(tài)轉(zhuǎn)運(yùn)和小窩的某些特殊功能。Caveolin-3特定地表達(dá)在心肌細(xì)胞、骨骼肌細(xì)胞和平滑肌細(xì)胞上[24-25]。

      小窩和小窩蛋白在細(xì)胞功能上發(fā)揮重要作用,它們參與到囊泡的運(yùn)輸、膽固醇的穩(wěn)態(tài)和內(nèi)吞過程[24-25]。小窩還在信號轉(zhuǎn)導(dǎo)、細(xì)胞增殖和腫瘤遷徙中扮演重要角色。最近研究報道,小窩蛋白能夠獨立于小窩結(jié)構(gòu)在細(xì)胞中發(fā)揮作用[26]。

      2 小窩蛋白和骨骼肌

      雖然小窩和小窩蛋白已經(jīng)研究了50多年,但其在骨骼和肌肉系統(tǒng)中的作用研究只在起步階段。許多研究證實,Caveolin-1和Caveolin-2共表達(dá)在成纖維細(xì)胞、平滑肌細(xì)胞和成骨細(xì)胞上。Caveolin-3特異地表達(dá)在心肌細(xì)胞、平滑肌細(xì)胞和骨骼肌細(xì)胞上[27-30]。

      小窩蛋白在肌細(xì)胞的發(fā)生和分化中發(fā)揮重要作用。骨骼成肌細(xì)胞在細(xì)胞周期的增殖期表達(dá)Caveolin-1和Caveolin-2,而在分化的后期這兩種蛋白幾乎檢測不到,但是Caveolin-3在這一時期高表達(dá)[31]。這3種蛋白的表達(dá)并不是相互排斥,在成肌細(xì)胞到肌細(xì)胞的某些重要分化階段,3種小窩蛋白會同時表達(dá)于同一個細(xì)胞上[32]。肌細(xì)胞分化過程中3種小窩蛋白的伴隨表達(dá)不是巧合,而是在肌細(xì)胞的發(fā)生和分化的最后過程發(fā)揮重要的作用[32]。雖然Caveolin-3在骨骼肌上發(fā)揮重要功能,但是Caveolin-1和Caveolin-2敲除鼠的骨骼肌發(fā)育出現(xiàn)嚴(yán)重缺陷,從而證明這些“非骨骼肌型”的小窩蛋白能夠控制肌細(xì)胞的增殖和分化[26]。Caveolin-1和Caveolin-2在肌衛(wèi)細(xì)胞前體上高表達(dá),但在肌細(xì)胞分化過程中表達(dá)逐漸下降。相反,Caveolin-3在肌衛(wèi)細(xì)胞前體上無表達(dá),但隨著肌細(xì)胞的分化其表達(dá)逐漸增多。Caveolin-3在肌纖維質(zhì)膜上表達(dá),Caveolin-1和Caveolin-2則只在靜止期的衛(wèi)星細(xì)胞上表達(dá),所以,Caveolin-1、Caveolin-2和Caveolin-3在新生的骨骼肌上均有表達(dá)[26,33]。

      因為表達(dá)Caveolin-1和Caveolin-2的細(xì)胞在體外培養(yǎng)時不能分化出肌小管,所以在細(xì)胞上過表達(dá)這類小窩蛋白就能夠負(fù)向調(diào)控肌細(xì)胞的分化。Caveolin-1還參與到肌細(xì)胞的修復(fù)過程。衛(wèi)星細(xì)胞是靜態(tài)的肌細(xì)胞前體,在肌細(xì)胞受到損傷時其有絲分裂被激活,衛(wèi)星細(xì)胞增殖、融合或形成新的肌纖維,從而開啟了肌再生的關(guān)鍵步驟[26,33]。Volonte等[33]證實,Caveolin-1的下調(diào)確實是肌再生中衛(wèi)星細(xì)胞激活的一個關(guān)鍵信號。

      Caveolin-3是特異性表達(dá)在成熟肌纖維上的小窩蛋白,被認(rèn)為是終末期分化肌管的標(biāo)記物[33]。在成熟的肌細(xì)胞中,Caveolin-3表達(dá)在肌纖維細(xì)胞膜上,也可表達(dá)在神經(jīng)肌肉接處,但是在T管上沒有表達(dá)[34]。Caveolin-3基因敲除小鼠的肌纖維上沒有小窩結(jié)構(gòu)的表達(dá),且其T管系統(tǒng)的形成異常,敲除鼠還會出現(xiàn)肌纖維變性,原因不明。被干擾的斑馬魚出現(xiàn)了異常的成肌細(xì)胞融合和肌纖維分解[35-36]。研究表明,Caveolin-3突變會引起4種形式不同但又相互重疊的肌肉疾病[37]。首先,被發(fā)現(xiàn)的是常染色體顯性遺傳的肢帶型肌營養(yǎng)不良癥(limb-girdle muscular dystrophy,LGMD),特點是進(jìn)行性近端肌肉逐漸無力和功能失調(diào)。LGMD在兒童中最為常見,常伴隨有肌肉疼痛和肌肉痙攣[38]。Caveolin-3突變患者在細(xì)胞膜上的Caveolin-3表達(dá)量較常人下降95%以上,至于小窩結(jié)構(gòu)的缺失引起LGMD患者特異性癥狀的機(jī)制還有待進(jìn)一步研究[37]。T管異常和鈣離子的失調(diào)可能是解釋骨骼肌過度興奮的原因之一[26,39]。有學(xué)者證實,Caveolin-3突變能夠引起Src在高爾基體上的定位異常[40-41],同時,Ohsawa等[42]發(fā)現(xiàn)Caveolin-3在肌肉生長抑制素信號通路上的調(diào)控作用。肌肉生長抑制素是骨骼肌特異的轉(zhuǎn)化生長因子超家族成員,能夠負(fù)性調(diào)節(jié)骨骼肌體積。Ohsawa等[42]證實,Caveolin-3通過抑制肌肉生長抑制素介導(dǎo)的信號通路,從而防止肌肉萎縮,而過度激活的肌肉生長抑制素介導(dǎo)的信號能夠參與到肢帶型肌營養(yǎng)不良小鼠肌肉萎縮的發(fā)生、發(fā)展過程[42]。

      與Caveolin-3突變不同,Caveolin-3的表達(dá)上調(diào)會引起Duchenne肌綜合征(Duchenne muscular dystrophy,DMD)。DMD是最為嚴(yán)重的肌肉疾病之一,由抗肌萎縮蛋白表達(dá)缺失引起,而抗肌萎縮蛋白由DMD基因編碼。研究已經(jīng)證實,在DMD患者和DMD動物模型中都存在Caveolin-3的表達(dá)升高。骨骼肌纖維免疫組化研究表明,Caveolin-3定位在骨骼肌細(xì)胞膜上,與抗肌萎縮蛋白分布一致,這個發(fā)現(xiàn)可能和DMD的發(fā)病機(jī)制相關(guān)[43-44]。

      3 小窩蛋白和骨骼

      骨密度是由新生骨形成和骨溶解的速度決定的。成骨細(xì)胞為主要的骨質(zhì)生成細(xì)胞,其細(xì)胞膜上表達(dá)大量的小窩結(jié)構(gòu)。和其他種類細(xì)胞一樣,成骨細(xì)胞的小窩結(jié)構(gòu)可能也是為其他信號轉(zhuǎn)導(dǎo)蛋白提供附著位點或是與細(xì)胞膜表面的信號分子受體發(fā)生聯(lián)系[27,45-46]。

      正常小鼠和人成骨細(xì)胞表達(dá)大量的Caveolin-1和Caveolin-2,但至今沒有檢測到Caveolin-3的表達(dá)[27-28,45]。從功能角度看,與Caveolin-2相比,Caveolin-1與成骨細(xì)胞生物學(xué)功能的關(guān)系更為密切,且Caveolin-2不能夠構(gòu)成小窩的內(nèi)陷結(jié)構(gòu),也幾乎不能和其他分子發(fā)生聯(lián)系。所以,在成骨細(xì)胞和骨組織的研究中關(guān)于Caveolin-2的報道很少,絕大多數(shù)的研究集中在Caveolin-1上,而且已經(jīng)發(fā)現(xiàn)Caveolin-1能夠參與到成骨細(xì)胞的分化等功能[46-47]。有研究報道,Caveolin-1通過調(diào)節(jié)內(nèi)皮一氧化氮合成酶的活性調(diào)節(jié)成骨細(xì)胞的多種功能[28]。

      越來越多的證據(jù)證明,Caveolin-1不是單獨存在于成骨細(xì)胞膜上,而是像維生素D受體、Wnt信號分子和β連接蛋白等膜相關(guān)信號分子組成Caveolin-1富集的膜信號分子復(fù)合體,從而發(fā)揮對成骨細(xì)胞的調(diào)節(jié)作用[48-50]。Rubin等發(fā)現(xiàn)Caveolin-1能夠保持成骨祖細(xì)胞的欠分化狀態(tài),也就是說成骨細(xì)胞上的Caveolin-1通過調(diào)節(jié)細(xì)胞內(nèi)的信號途徑影響骨祖細(xì)胞的活性,從而反饋調(diào)節(jié)成骨細(xì)胞的分化功能。除此之外,Caveolin-1還能參與到成骨細(xì)胞介導(dǎo)的細(xì)胞外基質(zhì)鈣化過程。Rubin等發(fā)現(xiàn)Caveolin-1敲除鼠有正常的骨骼形態(tài),但是皮質(zhì)骨增大,骨小梁沉積的細(xì)胞外基質(zhì)增多。以上研究表明,Caveolin-1抑制成骨細(xì)胞的分化和礦化。然而,Sawada等的研究表明,Caveolin-1調(diào)解骨骼礦化的研究更加復(fù)雜,他們證明在MC3T3-E1細(xì)胞中過表達(dá)Caveolin-1會促進(jìn)其礦化,這與之前Rubin等的報道相反。

      除了參與骨生成,Caveolin-1還調(diào)解鈣離子穩(wěn)態(tài)和骨溶解過程。機(jī)體內(nèi)鈣離子穩(wěn)態(tài)受到成骨活性和破骨活性的調(diào)控。Jung等[51]的研究小組發(fā)現(xiàn),Caveolin-1通過與鈣離子敏感受體結(jié)合從而調(diào)節(jié)機(jī)體鈣離子平衡。在骨細(xì)胞上,鈣離子敏感受體和Caveolin-1共定位于小窩結(jié)構(gòu)中,并且鈣離子敏感受體和Caveolin-1形成了復(fù)雜的復(fù)合體。在正常生理條件下,Caveolin-1促進(jìn)細(xì)胞外鈣離子濃度的增加。眾所周知,破骨細(xì)胞外鈣離子濃度的改變會影響細(xì)胞形態(tài)的變化,還會抑制骨溶解過程;然而在成骨細(xì)胞中細(xì)胞外鈣離子濃度的增加將會促進(jìn)成骨細(xì)胞的增殖過程。還有報道表明,骨吸收陷窩局部鈣離子濃度的增加時抑制破骨細(xì)胞的溶骨功能?;谝陨涎芯靠梢缘贸觯珻aveolin-1在骨重塑的病理生理過程或鈣離子敏感受體相關(guān)的骨骼疾病中發(fā)揮重要作用[52]。

      與成骨細(xì)胞相比,罕有破骨細(xì)胞小窩蛋白的研究報道。Luegmayr等[53]發(fā)現(xiàn),在人破骨細(xì)胞上有極低表達(dá)的Caveolin-1和Caveolin-2,然而,他們又證明小窩蛋白可能通過影響膽固醇的轉(zhuǎn)運(yùn)調(diào)節(jié)破骨細(xì)胞的生成。實際上,破骨細(xì)胞的生成和活性受到雌激素來源膽固醇的嚴(yán)格調(diào)節(jié)。小窩蛋白在小窩膜結(jié)構(gòu)上和膽固醇有著密切的聯(lián)系,并且在膽固醇在小窩結(jié)構(gòu)、內(nèi)質(zhì)網(wǎng)和高爾基體轉(zhuǎn)運(yùn)中發(fā)揮重要作用。所以,小窩蛋白可能通過間接的方式調(diào)節(jié)破骨細(xì)胞的生物學(xué)功能[53-55]。

      4 結(jié)語

      基于以上的研究報道可得出結(jié)論,雖然Caveolin-1毫無疑問地參與到骨生成、骨成熟和骨量調(diào)節(jié)的過程中,但是Caveolin-1在其中發(fā)揮的具體作用和相關(guān)機(jī)制仍然不明確。一方面,Caveolin-1作為成骨分化的抑制因子,抑制骨骼成熟和礦化;另一方面,Caveolin-1通過與成骨細(xì)胞外基質(zhì)和鈣離子敏感受體相互作用減弱破骨細(xì)胞介導(dǎo)的骨溶解過程。關(guān)于Caveolins對骨組織影響生理學(xué)意義和相關(guān)調(diào)控機(jī)制有待進(jìn)一步闡明。

      1 Kovtun O, Tillu VA, Ariotti N, et al. Cavin family proteins and the assembly of caveolae[J]. J Cell Sci, 2015, 128(7): 1269-1278.

      2 Arza P, Netti V, Perosi F, et al. Involvement of nitric oxide and caveolins in the age-associated functional and structural changes in a heart under osmotic stress[J]. Biomed Pharmacother, 2015, 69:380-387.

      3 Najafipour R, Heidari A, Alizadeh SA, et al. Association between upstream purine complexes of human caveolin-1 gene and schizophrenia in qazvin province of Iran[J]. Iran Red Crescent Med J,2014, 16(12): e21484.

      4 Caliceti C, Zambonin L, Rizzo B, et al. Role of plasma membrane caveolae/lipid rafts in VEGF-induced redox signaling in human leukemia cells[J/OL]. http://www.hindawi.com/journals/ bmri/2014/857504.

      5 Xu L, Guo R, Xie Y, et al. Caveolae: molecular insights and therapeutic targets for stroke[J]. Expert Opin Ther Targets, 2015,19(5):633-650.

      6 雷雨欣,焦凱.磷脂酶C在胰島中的分布及作用[J].解放軍醫(yī)學(xué)院學(xué)報,2014,35(10):1078-1080.

      7 Palade GE. An electron microscope study of the mitochondrial structure[J]. J Histochem Cytochem, 1953, 1(4): 188-211.

      8 Bruns RR, Palade GE. Studies on blood capillaries. I. General organization of blood capillaries in muscle[J]. J Cell Biol, 1968,37(2): 244-276.

      9 Bruns RR, Palade GE. Studies on blood capillaries. II. Transport of ferritin molecules across the wall of muscle capillaries[J]. J Cell Biol, 1968, 37(2): 277-299.

      10 PaladE GE. Blood capillaries of the heart and other organs[J]. Circulation, 1961, 24:368-388.

      11 Palade GE, Bruns RR. Structural modulations of plasmalemmal vesicles[J]. J Cell Biol, 1968, 37(3): 633-649.

      12 Schl?rmann W, Steiniger F, Richter W, et al. The shape of caveolae is omega-like after glutaraldehyde fixation and cup-like after cryofixation[J]. Histochem Cell Biol, 2010, 133(2): 223-228.

      13 Gabella G. Quantitative morphological study of smooth muscle cells of the guinea-pig taenia coli[J]. Cell Tissue Res, 1976, 170(2):161-186.

      14 Mobley BA, Eisenberg BR. Sizes of components in frog skeletal muscle measured by methods of stereology[J]. J Gen Physiol,1975, 66(1): 31-45.

      15 Napolitano L. The differentiation of white adipose cells. an electron microscope study[J]. J Cell Biol, 1963, 18: 663-679.

      16 Badaut J, Ajao DO, Sorensen DW, et al. Caveolin expression changes in the neurovascular unit after juvenile traumatic brain injury: signs of blood-brain barrier healing?[J]. Neuroscience, 2015, 285:215-226.

      17 Guillot FL, Audus KL, Raub TJ. Fluid-phase endocytosis by primary cultures of bovine brain microvessel endothelial cell monolayers[J]. Microvasc Res, 1990, 39(1): 1-14.

      18 Murata M, Per?nen J, Schreiner R, et al. VIP21/caveolin is a cholesterol-binding protein[J]. Proc Natl Acad Sci U S A, 1995,92(22): 10339-10343.

      19 Rothberg KG, Heuser JE, Donzell WC, et al. Caveolin, a protein component of caveolae membrane coats[J]. Cell, 1992, 68(4):673-682.

      20 Chang WJ, Rothberg KG, Kamen BA, et al. Lowering the cholesterol content of Ma104 cells inhibits receptor-mediated transport of folate[J]. J Cell Biol, 1992, 118(1): 63-69.

      21 Grundner M, Zemlji? Jokhadar S. Cytoskeleton modification and cholesterol depletion affect membrane properties and caveolae positioning of CHO cells[J]. J Membr Biol, 2014, 247(3):201-210.

      22 Parton RG, Simons K. The multiple faces of caveolae[J]. Nat Rev Mol Cell Biol, 2007, 8(3): 185-194.

      23 Razani B, Woodman SE, Lisanti MP. Caveolae: from cell biology to animal physiology[J]. Pharmacol Rev, 2002, 54(3):431-467.

      24 Williams TM, Lisanti MP. The caveolin genes: from cell biology to medicine[J]. Ann Med, 2004, 36(8): 584-595.

      25 Gumbleton M, Abulrob AG, Campbell L. Caveolae: an alternative membrane transport compartment[J]. Pharm Res, 2000, 17(9):1035-1048.

      26 Schubert W, Sotgia F, Cohen AW, et al. Caveolin-1(-/-)- and caveolin-2(-/-)-deficient mice both display numerous skeletal muscle abnormalities, with tubular aggregate formation[J]. Am J Pathol, 2007, 170(1): 316-333.

      27 Solomon KR, Danciu TE, Adolphson LD, et al. Caveolin-enriched membrane signaling complexes in human and murine osteoblasts[J]. J Bone Miner Res, 2000, 15(12): 2380-2390.

      28 Lofthouse RA, Davis JR, Frondoza CG, et al. Identification of caveolae and detection of caveolin in normal human osteoblasts[J]. J Bone Joint Surg Br, 2001, 83(1): 124-129.

      29 Shankar J, Boscher C, Nabi IR. Caveolin-1, galectin-3 and lipid raft domains in cancer cell signalling[J]. Essays Biochem, 2015, 57:189-201.

      30 Kwon H, Lee J, Jeong K, et al. Fatty acylated caveolin-2 is a substrate of insulin receptor tyrosine kinase for insulin receptor substrate-1-directed signaling activation[J]. Biochim Biophys Acta, 2015, 1853(5): 1022-1034.

      31 Parton RG, Way M, Zorzi N, et al. Caveolin-3 associates with developing T-tubules during muscle differentiation[J]. J Cell Biol,1997, 136(1): 137-154.

      32 Capozza F, Cohen AW, Cheung MW, et al. Muscle-specific interaction of caveolin isoforms: differential complex formation between caveolins in fibroblastic vs. muscle cells[J]. Am J Physiol Cell Physiol, 2005, 288(3): C677-C691.

      33 Volonte D, Liu Y, Galbiati F. The modulation of caveolin-1 expression controls satellite cell activation during muscle repair[J]. FASEB J, 2005, 19(2): 237-239.

      34 Carlson BM, Carlson JA, Dedkov EI, et al. Concentration of caveolin-3 at the neuromuscular junction in young and old rat skeletal muscle fibers[J]. J Histochem Cytochem, 2003, 51(9): 1113-1118.

      35 Hnasko R, Lisanti MP. The biology of caveolae: lessons from caveolin knockout mice and implications for human disease[J]. Mol Interv, 2003, 3(8): 445-464.

      36 Nixon SJ, Wegner J, Ferguson C, et al. Zebrafish as a model for caveolin-associated muscle disease; caveolin-3 is required for myofibril organization and muscle cell patterning[J]. Hum Mol Genet, 2005, 14(13): 1727-1743.

      37 Woodman SE, Sotgia F, Galbiati F, et al. Caveolinopathies:mutations in caveolin-3 cause four distinct autosomal dominant muscle diseases[J]. Neurology, 2004, 62(4): 538-543.

      38 Scola RH, Carducci C, Amaral VG, et al. A novel missense mutation pattern of the GCH1 gene in dopa-responsive dystonia[J]. Arq Neuropsiquiatr, 2007, 65(4B): 1224-1227.

      39 Couchoux H, Allard B, Legrand C, et al. Loss of caveolin-3 induced by the dystrophy-associated P104L mutation impairs L-type Calcium Channel function in mouse skeletal muscle cells[J]. J Physiol,2007, 580(Pt.3): 745-754.

      40 沈定國,董偉.進(jìn)行性肌營養(yǎng)不良癥等疾病的紅細(xì)胞膜ATP酶研究[J].中國人民解放軍軍醫(yī)進(jìn)修學(xué)院學(xué)報,1982(3):289-292.

      41 Hernández-Deviez DJ, Martin S, Laval SH, et al. Aberrant dysferlin trafficking in cells lacking caveolin or expressing dystrophy mutants of caveolin-3[J]. Hum Mol Genet, 2006, 15(1): 129-142.

      42 Ohsawa Y, Hagiwara H, Nakatani M, et al. Muscular atrophy of caveolin-3-deficient mice is rescued by myostatin inhibition[J]. J Clin Invest, 2006, 116(11): 2924-2934.

      43 Vaghy PL, Fang J, Wu W, et al. Increased caveolin-3 levels in mdx mouse muscles[J]. FEBS Lett, 1998, 431(1): 125-127.

      44 Gervásio OL, Whitehead NP, Yeung EW, et al. TRPC1 binds to caveolin-3 and is regulated by Src kinase - role in Duchenne muscular dystrophy[J]. J Cell Sci, 2008, 121(Pt 13): 2246-2255.

      45 Solomon KR, Adolphson LD, Wank DA, et al. Caveolae in human and murine osteoblasts[J]. J Bone Miner Res, 2000, 15(12):2391-2401.

      46 Gangadharan V, Nohe A, Caplan J, et al. Caveolin-1 regulates P2X7 receptor signaling in osteoblasts[J]. Am J Physiol Cell Physiol,2015, 308(1): C41-C50.

      47 Sawada N, Taketani Y, Amizuka N, et al. Caveolin-1 in extracellular matrix vesicles secreted from osteoblasts[J]. Bone, 2007, 41(1):52-58.

      48 Navarro G, Borroto-Escuela DO, Fuxe K, et al. Potential of caveolae in the therapy of cardiovascular and neurological diseases[J]. Front Physiol, 2014, 5: 370.

      49 Smolders LA, Meij BP, Onis D, et al. Gene expression profiling of early intervertebral disc degeneration reveals a down-regulation of canonical Wnt signaling and caveolin-1 expression: implications for development of regenerative strategies[J]. Arthritis Res Ther,2013, 15(1): R23.

      50 Wang Z, Wang N, Li W, et al. Caveolin-1 mediates chemoresistance in breast cancer stem cells via β-catenin/ABCG2 signaling pathway[J]. Carcinogenesis, 2014, 35(10): 2346-2356.

      51 Jung SY, Kwak JO, Kim HW, et al. Calcium sensing receptor forms complex with and is up-regulated by caveolin-1 in cultured human osteosarcoma (Saos-2) cells[J]. Exp Mol Med, 2005, 37(2):91-100.

      52 Kameda T, Mano H, Yamada Y, et al. Calcium-sensing receptor in mature osteoclasts, which are bone resorbing cells[J]. Biochem Biophys Res Commun, 1998, 245(2): 419-422.

      53 Luegmayr E, Glantschnig H, Wesolowski GA, et al. Osteoclast formation, survival and morphology are highly dependent on exogenous cholesterol/lipoproteins[J]. Cell Death Differ, 2004, 11(Suppl 1): S108-S118.

      54 Kuruppath S, Sharp JA, Lefevre C, et al. Comparative analysis of caveolins in mouse and tammar wallaby: role in regulating mammary gland function[J]. Gene, 2014, 552(1): 51-58.

      55 Morrill GA, Kostellow AB, Gupta RK. The pore-lining regions in cytochrome c oxidases: A computational analysis of caveolin,cholesterol and transmembrane helix contributions to proton movement[J]. Biochim Biophys Acta, 2014, 1838(11): 2838-2851.

      Advances in caveolins in development of musculoskeletal system

      ZENG Guowei1, QU Bo2, SHI Fei3, LIU Bo11Chinese PLA 95072 Unit, Nanning 530021, Guangxi Province, China;2Chinese PLA 93253 Unit, Dalian 116023, Liaoning Province, China;3Teaching and Research Section of Aviation and Aerospace Biomechanics, The Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China

      LIU Bo. Email: 729518279@qq.com

      Caveolins are essential scaffold proteins of caveolae, which have emerged as versatile molecules that can influence numerous signaling pathways and disease processes. This brief review concentrates on the effects of caveolins on the physiology of musculoskeletal system and discusses the important features of caveolins as related to differentiation and diseases of bone and muscle cells.

      caveolae; caveolins; skeletal muscle; skeleton

      R 3

      A

      2095-5227(2015)09-0953-04

      10.3969/j.issn.2095-5227.2015.09.026

      時間:2015-05-21 09:32

      http://www.cnki.net/kcms/detail/11.3275.R.20150521.0932.001.html

      2015-03-09

      國家自然科學(xué)基金項目(81301681)

      Supported by the National Natural Science Foundation of China(81301681)

      曾國偉,男,學(xué)士,主治醫(yī)師。研究方向:老年病學(xué)。Email: 2792586281@qq.com

      劉波,男,學(xué)士,醫(yī)師。Email: 729518279@qq.com

      猜你喜歡
      小窩肌細(xì)胞細(xì)胞膜
      太高的小窩
      防水做不好,住宅竟成了這樣!
      小窩蛋白-1和E-鈣黏蛋白在食管癌TE1細(xì)胞系中的表達(dá)及其意義
      小窩蛋白3在人結(jié)直腸癌組織中的表達(dá)及斑蝥素對其表達(dá)的抑制作用
      皮膚磨削術(shù)聯(lián)合表皮細(xì)胞膜片治療穩(wěn)定期白癜風(fēng)療效觀察
      Caspase12在糖尿病大鼠逼尿肌細(xì)胞內(nèi)質(zhì)網(wǎng)應(yīng)激中的表達(dá)
      宮永寬:給生物醫(yī)用材料穿上仿細(xì)胞膜外衣
      香芹酚對大腸桿菌和金黃色葡萄球菌細(xì)胞膜的影響
      豚鼠乳鼠心房肌細(xì)胞體外培養(yǎng)的探討*
      綠色木霉菌發(fā)酵液萃取物對金黃色葡萄球菌細(xì)胞膜的損傷作用
      信宜市| 康保县| 稻城县| 七台河市| 汉沽区| 红安县| 桓仁| 容城县| 昌乐县| 罗平县| 库伦旗| 宝丰县| 宜君县| 收藏| 尚志市| 龙口市| 万山特区| 轮台县| 突泉县| 静安区| 安陆市| 垫江县| 基隆市| 阿图什市| 宝山区| 和顺县| 门头沟区| 怀仁县| 北宁市| 高平市| 元江| 贵南县| 独山县| 赤峰市| 临洮县| 阿坝县| 泗水县| 巴彦淖尔市| 仁布县| 阳谷县| 庐江县|