聶 闖,羅 靈,張卯年解放軍總醫(yī)院 眼科,北京 0085;解放軍醫(yī)學(xué)院,北京 0085;解放軍第06醫(yī)院 眼科,北京000
年齡相關(guān)性黃斑變性的動(dòng)物模型
聶 闖1,2,羅 靈3,張卯年1,2
1解放軍總醫(yī)院 眼科,北京 100853;2解放軍醫(yī)學(xué)院,北京 100853;3解放軍第306醫(yī)院 眼科,北京100101
年齡相關(guān)性黃斑變性(age-related macular degeneration,AMD)已成為65歲以上人群視力損失的主要原因,是一種年齡、基因、環(huán)境等多因素共同作用的慢性疾病,首先表現(xiàn)為Bruch膜的損害,隨后影響到視網(wǎng)膜色素上皮和光感受器。隨著疾病研究的深入,已發(fā)現(xiàn)了越來(lái)越多的特殊類型,但是其具體發(fā)病機(jī)制仍不明確。因此研究者們?yōu)榱烁钊氲匮芯考膊∫约把邪l(fā)新的治療手段建立了各種各樣的動(dòng)物模型。我們復(fù)習(xí)了國(guó)內(nèi)外經(jīng)典以及較新的動(dòng)物模型文獻(xiàn),并按不同疾病類型進(jìn)行綜述,希望為研究者尋找理想的動(dòng)物實(shí)驗(yàn)平臺(tái)提供思路。
年齡相關(guān)性黃斑變性;動(dòng)物模型;病因?qū)W
年齡相關(guān)性黃斑變性(age-related macular degeneration,AMD)是工業(yè)化國(guó)家65歲以上人群致盲的主要原因[1]。AMD是一種復(fù)雜的慢性疾病,涉及到基因、環(huán)境等多因素對(duì)黃斑結(jié)構(gòu)的共同作用。AMD的發(fā)病機(jī)制不明,預(yù)防和治療仍面臨很大挑戰(zhàn)。AMD主要分為干性和濕性兩型,以及息肉狀脈絡(luò)膜血管病變(polypoidalchoroidalvasculopathy,PCV)、視網(wǎng)膜血管瘤樣增生(retinal angiomatous proliferation,RAP)兩個(gè)特殊類型。干性AMD比濕性AMD更常見(jiàn),但是濕性AMD的脈絡(luò)膜新生血管(choroidal neovascularization,CNV)是視力喪失的主要原因[2-3]。動(dòng)物模型對(duì)于研究疾病的發(fā)病機(jī)制和治療至關(guān)重要。理想的動(dòng)物模型應(yīng)具有模型簡(jiǎn)單、重復(fù)性強(qiáng)、經(jīng)濟(jì)及短期就能完整重現(xiàn)AMD特征的優(yōu)勢(shì)。目前用于AMD研究的動(dòng)物模型很多,但仍未獲得完美的AMD動(dòng)物模型。本綜述將參考以往的AMD動(dòng)物模型,按不同疾病類型進(jìn)行綜述,力圖提供一個(gè)綜合的動(dòng)物模型報(bào)告,為研究者尋找不同研究目的的理想動(dòng)物實(shí)驗(yàn)平臺(tái)提供思路。
目前已經(jīng)建立了嚙齒類動(dòng)物、兔、豬和靈長(zhǎng)類哺乳動(dòng)物的AMD模型。盡管嚙齒類動(dòng)物(如小鼠、大鼠等)不具有黃斑結(jié)構(gòu),但因黃斑是視網(wǎng)膜一部分,類似病變表現(xiàn)同樣可發(fā)生在視網(wǎng)膜上,且擁有人類90%的同源基因,實(shí)驗(yàn)費(fèi)用低,基因操作簡(jiǎn)單成熟,同時(shí)發(fā)病周期較短,有利于我們對(duì)AMD疾病特點(diǎn)的觀察[4]。而靈長(zhǎng)類動(dòng)物盡管基因操作困難、維持費(fèi)用高、疾病進(jìn)展時(shí)間緩慢,但具有與人類最接近的解剖結(jié)構(gòu)[4]。并且在多種基因與藥物有效性的AMD研究中發(fā)現(xiàn),人與鼠存在差異,而與靈長(zhǎng)類動(dòng)物卻具有一致性,這說(shuō)明了AMD是一種復(fù)雜的人猴共患遺傳疾病,可能存在著共同發(fā)病機(jī)制[5]。因而靈長(zhǎng)類動(dòng)物AMD模型的發(fā)病機(jī)制更加接近于人類。
黃斑區(qū)出現(xiàn)多種小或中等大小的玻璃膜疣(drusen) (≥63μm且≤125μm)是早期AMD的典型病理特征[6]。干性AMD又稱為無(wú)新生血管性AMD,具有以下眼部特征:大面積Drusen(≥125μm),視網(wǎng)膜色素上皮細(xì)胞(retinal pigment epithelium,RPE)改變以及地圖狀萎縮。研究者從以下多種途徑建模,觀察到了干性AMD的各種表現(xiàn),為我們不同因素與AMD相關(guān)性的研究提供了思路。
2.1 致病基因模型 目前發(fā)現(xiàn)有數(shù)種基因的突變能產(chǎn)生黃斑萎縮性損傷或合并有視網(wǎng)膜斑點(diǎn)沉著的AMD,特異性的基因敲除雖然存在基因操作困難、費(fèi)用高的缺點(diǎn),但是能獲得遺傳穩(wěn)定的特異性黃斑病變模型,采用的方式是將已變性或刪除特定疾病相關(guān)片段的DNA片段構(gòu)建成靶向載體,并用電穿孔方式注入胚胎干細(xì)胞,將此胚胎干細(xì)胞再植入小鼠胚囊內(nèi)并繁殖,最后用聚合酶鏈反應(yīng)(polymerase chain reaction,PCR)和DNA印跡法篩選出子代中已刪除或具有此變性片段的小鼠,從而獲得了由該片段變性或缺失引起的小鼠疾病模型。1)敲除Elovl4 5-bp基因后的E_mut+/-鼠模擬出了RPE的空泡狀改變等早期AMD變化,獲得了由ELOVL4的延伸變性引起Stargardt樣黃斑變性的疾病模型[7]。2)Sorsby眼底退化病(sorsby fundus dystrophy,SFD)是一種罕見(jiàn)遲發(fā)性的視網(wǎng)膜和脈絡(luò)膜變性遺傳病,與TIMPS基因突變相關(guān),Timp3-/-鼠能夠構(gòu)建此模型[8]。3)補(bǔ)體調(diào)節(jié)因子H(complement regulatory gene factor H,CFH)SNP基因多態(tài)性與AMD發(fā)病有關(guān)[9]:Cfh-/-鼠模型視網(wǎng)膜下有Drusen樣改變,提示AMD可能[10]。
2.2 易感基因模型 有部分基因雖然不是引起黃斑病變的直接基因,也不會(huì)增加AMD的患病風(fēng)險(xiǎn),但是遭受破壞后動(dòng)物也會(huì)表現(xiàn)出AMD的臨床特征[11]。
AMD與炎癥的相關(guān)性一直被認(rèn)為是相輔相成的,炎癥趨化因子CCL-2與CCR-2結(jié)合后能控制組織的滲出,用上述基因技術(shù)獲得的CCL2-/-和CCR2-/-鼠發(fā)生AMD早期表現(xiàn),甚至出現(xiàn)CNV[12];而Luhmann等[13]用同樣方式卻沒(méi)有得出AMD模型。因此CCL2/CCR2準(zhǔn)確通路仍待深入研究。
血漿銅藍(lán)蛋白是一種亞鐵氧化酶,人缺乏此蛋白會(huì)出現(xiàn)年齡相關(guān)的Drusen和視網(wǎng)膜色素變化[14],第二亞鐵氧化酶-Hephaestin能部分彌補(bǔ)其損傷[15]。缺失銅藍(lán)蛋白和Hephaestin基因的小鼠模型[16],能表現(xiàn)出多種干性AMD病變,晚期還誘發(fā)視網(wǎng)膜下的新生血管[17],然而,由于運(yùn)動(dòng)系統(tǒng)紊亂,很多雙基因敲除小鼠幼時(shí)就死亡,限制了對(duì)衰老小鼠的研究。
補(bǔ)體因子C3的過(guò)度表達(dá)能加速補(bǔ)體活化和視網(wǎng)膜疾病的進(jìn)展。將轉(zhuǎn)染后表達(dá)鼠C3腺病毒注入成年老鼠的視網(wǎng)膜下[18],表現(xiàn)出RPE萎縮和補(bǔ)體沉積等數(shù)種干性AMD的特征,可用于補(bǔ)體參與的疾病與AMD的相關(guān)性的研究。
2.3 氧化相關(guān)模型 流行病學(xué)研究表明,光及吸煙的氧化損傷,將增加AMD的風(fēng)險(xiǎn)[19]。同時(shí)經(jīng)證實(shí),AMD患者具有高水平的脂質(zhì)過(guò)氧化產(chǎn)物[20]。因此,缺乏內(nèi)在抗氧化機(jī)制或給予氧化刺激后動(dòng)物能表現(xiàn)出AMD的許多特征,可用于研究吸煙以及光損傷與AMD的相關(guān)性。
光可誘發(fā)視紫紅質(zhì)、脂褐素等感光分子產(chǎn)生活性氧中間體,對(duì)視網(wǎng)膜造成損傷[21]。將SD大鼠暴露在1 000 lux明亮光(BCL)持續(xù)照射24 h,構(gòu)造了萎縮性AMD模型[22]。藍(lán)光照射大鼠6 h RPE出現(xiàn)空泡狀改變、細(xì)胞固縮、壞死等[23];Sprague-Dawley白鼠暴露眼A2E氧化產(chǎn)物增加誘導(dǎo)AMD的發(fā)生[24]。香煙煙霧中也含有許多強(qiáng)氧化劑如一氧化氮,一氧化碳和氫醌。暴露于香煙煙霧或氫醌的小鼠出現(xiàn)早期AMD,部分動(dòng)物發(fā)生了脈絡(luò)膜毛細(xì)血管侵入Bruch膜[25-26]。野生型小鼠飲用含氫醌的水后,RPE和脈絡(luò)膜上CCL-2表達(dá)減少以及VEGF、PEDF比率改變[27]。
Hollyfield等[28-29]用CEP-內(nèi)收鼠血清白蛋白免疫小鼠進(jìn)行研究驗(yàn)證氧化損傷產(chǎn)生的CEP內(nèi)收蛋白引發(fā)AMD這一假設(shè):動(dòng)物出現(xiàn)Bruch膜沉著增厚,RPE、光感受器的病理性改變,無(wú)新生血管發(fā)生,表明此模型適用于干性AMD。此模型的優(yōu)點(diǎn)是不需要進(jìn)行基因操作和特需的照明條件。
氧化應(yīng)激會(huì)引起視網(wǎng)膜的細(xì)胞分子損傷,而此時(shí)主要的抗氧化系統(tǒng)為超氧化物歧化酶(superoxide dismutase,SOD):包括SOD1、SOD2和SOD3[30],視網(wǎng)膜中SOD1活性最高[31]。實(shí)驗(yàn)證實(shí)了SOD1-/-鼠發(fā)生干性AMD表現(xiàn),衰老后表現(xiàn)更明顯[32]。經(jīng)視網(wǎng)膜下注射AAV核酶介導(dǎo)敲除野生型小鼠RPE的SOD2 mRNA模型[33],也成功誘導(dǎo)出AMD。此類模型可用于進(jìn)一步研究不同氧化酶與AMD進(jìn)展之間的關(guān)系。
2.4 飲食模型 眾所周知,高糖高脂飲食在心血管疾病中是危險(xiǎn)事件[34],經(jīng)證實(shí)人玻璃膜疣中存在進(jìn)展期糖基化終末產(chǎn)物(advanced glycation end products,AGEs)[35]。而動(dòng)脈粥樣硬化斑塊中膽固醇和脂質(zhì)的沉積,類似于Bruch膜堆積的物質(zhì),因此心血管疾病和AMD患病之間可能存在著相關(guān)[36]。進(jìn)行低血糖指數(shù)(glycemic index,GI)喂食的C57BL/6鼠能夠預(yù)防AMD發(fā)生,高GI飲食則能構(gòu)建一種早期AMD損傷模型[37]。另外高脂肪飲食的C57BL/6小鼠年長(zhǎng)后發(fā)生了基底層的沉著物[25,38],這與老年性脂質(zhì)增高而伴隨AMD發(fā)生的病程一致。
此外,缺乏類葉黃素和玉米黃素飲食的恒河猴,表現(xiàn)出血管造影窗口缺陷[39],這與流行病學(xué)表明葉黃素和玉米黃素的攝入能夠減少AMD的患病風(fēng)險(xiǎn)結(jié)論一致[40]。
2.5 其他模型 加速衰老小鼠(senescence-accelerated mouse,SAM)種系是由AKR/J小鼠選擇性近交產(chǎn)生的,隨后又?jǐn)U展到9種近交衰老品系(SAMP)和4種抗衰老品系(SAMR)[41],可以不受動(dòng)物年齡影響較早出現(xiàn)實(shí)驗(yàn)期望的AMD病理改變。其中SAMP1小鼠出現(xiàn)年齡相關(guān)的Bruch膜增厚和RPE改變[42-43];SAMP8小鼠早期發(fā)生RPE基底膜微絨毛的斷裂,之后出現(xiàn)嚴(yán)重的RPE退化[42]。
CNV是滲出性AMD的標(biāo)志性病變,也是老年人視力喪失的一個(gè)重要原因[9]。目前大多數(shù)動(dòng)物模型制作依賴于激光或RPE/Bruch膜復(fù)合物的直接機(jī)械損傷或網(wǎng)膜下腔注射外源性化合物。
3.1 激光損傷模型 激光造模能很快地誘發(fā)新生血管[44],還具有定量、重復(fù)性好、容易觀察等優(yōu)勢(shì),在CNV研究中應(yīng)用較廣。用激光破壞Bruch膜誘導(dǎo)CNV最早應(yīng)用于靈長(zhǎng)類動(dòng)物,特別是斷尾的短尾猴(獼猴屬)(Macacaspeciosa)[45]。近期對(duì)非洲綠猴的激光參數(shù)研究表明,750 mW和950 mW激光分別可產(chǎn)生72.9%和69.4%的Ⅲ級(jí)損傷;950 mW和1 500 mW激光產(chǎn)生Ⅳ級(jí)損傷的發(fā)生率分別為19.4%和31%[46]。40%激光損傷眼出現(xiàn)了血管生長(zhǎng)和Ⅳ級(jí)滲漏[47],此模型為激光損傷研究分級(jí)提供了參考。然而,激光造模最多的動(dòng)物卻是嚙齒動(dòng)物。早在1989年Dobi等[48]第一次用氪激光對(duì)大鼠造模時(shí)認(rèn)為,120 mW的激光能有效誘導(dǎo)Bruch膜斷裂并產(chǎn)生CNV。近期的Askou等[49]使用綠光氬激光誘導(dǎo)小鼠CNV,認(rèn)為光凝部位出現(xiàn)氣泡時(shí)為Btuch膜斷裂標(biāo)志,利于CNV的形成。大鼠和小鼠激光后CNV的發(fā)展時(shí)間相似,第一周為早期階段,10~14 d發(fā)展為成熟膜[50-51]。但嚙齒動(dòng)物激光創(chuàng)傷模型也許不能反映人類疾病誘發(fā)CNV的一系列復(fù)雜動(dòng)態(tài)過(guò)程。此外,嚙齒動(dòng)物還與人還存在黃斑解剖差異。激光模型所造成的細(xì)胞反應(yīng)與人發(fā)生CNV時(shí)新生血管變化相似,但是這種機(jī)械性損傷導(dǎo)致的CNV是迅速的,而且是自限性的,往往伴有視網(wǎng)膜不可逆的灼傷[52]。
3.2 視網(wǎng)膜下注射模型 視網(wǎng)膜下注射多采用自睫狀體扁平部進(jìn)針,通過(guò)玻璃體達(dá)到視網(wǎng)膜下,注射誘發(fā)CNV的物質(zhì)。因?yàn)檠軆?nèi)皮生長(zhǎng)因子在新生血管性CNV中的核心作用早已確定[53],但VEGF蛋白的作用時(shí)間段,單純注射VEGF蛋白是不能建立可用的動(dòng)物模型。為了達(dá)到持續(xù)表達(dá)的目的,Baffi等[54]和Spilsbury等[55]制備了表達(dá)VEGF的腺病毒載體從而成功塑造了CNV模型。
除了病毒載體,基質(zhì)膠也是常采用的方法?;|(zhì)膠是一種注入體內(nèi)后能轉(zhuǎn)化為固體并緩慢釋放血管生成因子的蛋白混合物[56-57]?;|(zhì)膠單獨(dú)注射或聯(lián)合VEGF注射,產(chǎn)生100%的CNV病變,并能成功模擬出人滲出性AMD中參與新生血管反應(yīng)的相似細(xì)胞組分[58]。Drusen含有補(bǔ)體成分且與CFH有關(guān)[59],因此通過(guò)注射能活化視網(wǎng)膜下補(bǔ)體系統(tǒng)的聚乙二醇(polyethylene glycol,PEG-8)創(chuàng)建新的CNV模型:第3天新生血管即可穿透Bruch膜,第5天出現(xiàn)完整的新生血管和視網(wǎng)膜退化[60]。最近羅靈等[61]發(fā)現(xiàn)了視網(wǎng)膜光感受器和角膜無(wú)血管特性的重要保護(hù)因子,即VEGF受體1(sFlt-1),利用其可降低VEGF血管生成的作用,通過(guò)視網(wǎng)膜下注射攜帶shRNA序列靶向敲除sFlt-1的腺病毒載體后,誘發(fā)了CNV。這種CNV在眼內(nèi)長(zhǎng)期存在,并在注射后6周左右,在遠(yuǎn)離注射部位的正常視網(wǎng)膜也出現(xiàn)繼發(fā)性CNV,可排除注射產(chǎn)生機(jī)械性損傷的干擾。
3.3 基因模型 缺乏IL-27的EBI3缺陷小鼠,在激光損傷后,比C57BL/6小鼠表現(xiàn)出更多的CNV[62],因而能更加容易快速地制備動(dòng)物模型。羅靈等[61]用條件靶向基因敲除的方法,成功制備了轉(zhuǎn)基因CNV的動(dòng)物模型,通過(guò)VMD-Cre與Flt-1 loxp/loxp鼠雜交,靶向敲除色素上皮細(xì)胞的VEGF受體1,誘導(dǎo)出CNV模型。此種CNV發(fā)病年齡早(<28 d),CNV的病灶大小不一[61]。此方法能夠在遺傳水平純化穩(wěn)定的提供CNV模型,不用篩選即可直接進(jìn)行藥物等干預(yù)實(shí)驗(yàn)。
3.4 手術(shù)模型 Bruch膜的破壞是新生血管形成的必要條件[63]。Kiilgaard等[64]將Danish Landrace豬眼RPE進(jìn)行手術(shù)切除,并對(duì)Bruch膜行機(jī)械化損傷,誘發(fā)了CNV。而有研究發(fā)現(xiàn),不先行RPE清除的Bruch膜穿孔處理是誘導(dǎo)CNV發(fā)生的最可靠方法[65]。此外,脈絡(luò)膜上腔是血管生成物質(zhì)的傳遞和基因治療載體的另一個(gè)潛在空間[66]。Zahn等[47]經(jīng)鞏膜切口用睫狀體分離鏟進(jìn)入兔眼脈絡(luò)膜上腔并植入浸潤(rùn)有VEGF顆粒,在第2周出現(xiàn)新紅色的CNV和滲漏。雖然手術(shù)模型具有減少神經(jīng)視網(wǎng)膜損害的優(yōu)勢(shì),但該技術(shù)成本較高,且受熟練的手術(shù)操作的限制。
PCV以內(nèi)層脈絡(luò)膜出現(xiàn)非正常的囊樣薄壁血管擴(kuò)張是其主要特征[67]。因?yàn)镻CV為一種特殊的亞型,因此此類動(dòng)物模型較少。2008年,Lee等[68]研究發(fā)現(xiàn),HTRA1的rs11200638的單核苷酸多態(tài)性與華人PCV的危險(xiǎn)高度相關(guān)。Jones等[69]通過(guò)給鼠表達(dá)人HTRA1的轉(zhuǎn)基因處理后,誘導(dǎo)出了PCV的主要病理特征:脈絡(luò)膜分支血管網(wǎng),息肉狀病變,脈絡(luò)膜血管彈力層和中膜的衰退。衰老的HTRA1鼠發(fā)生了隱蔽的CNV。實(shí)驗(yàn)結(jié)果表明,HTRA1的增加足夠誘發(fā)PCV,同時(shí)也是CNV的一個(gè)重要的危險(xiǎn)因素。
RAP占新生血管性AMD患者的12%~15%,主要表現(xiàn)為神經(jīng)視網(wǎng)膜自身血管的增殖,逐漸向視網(wǎng)膜下生長(zhǎng)合并或不合并色素上皮的脫離,最終產(chǎn)生CNV[70]。大家都希望基因缺陷模型能夠帶來(lái)遺傳穩(wěn)定的實(shí)驗(yàn)動(dòng)物來(lái)源:極低密度脂蛋白受體基因的敲除和突變模型成功模擬出了RAP,因其激活視網(wǎng)膜血管內(nèi)皮細(xì)胞且促進(jìn)體內(nèi)外的血管生成[71]。CCDKO鼠模型(Ccl2/Cx3cr1雙基因敲除小鼠)視網(wǎng)膜外核層下早期即出現(xiàn)類似于視網(wǎng)膜毛細(xì)血管擴(kuò)張的病理改變[72]。靶向敲除光感受器的VEGF受體1,也能誘導(dǎo)出RAP模型[61]。
不同模型具有不同的特征和局限。激光模型具有快速成模、定量、重復(fù)性好、容易觀察等優(yōu)勢(shì),視網(wǎng)膜下注射模型多用于某種基因或細(xì)胞因子的功能學(xué)的研究,但是這兩種模型需熟練的顯微操作技術(shù),且同時(shí)機(jī)械性外傷本身能誘發(fā)新生血管,因此與人自發(fā)AMD的病理機(jī)制是相背離的?;蚰P鸵蚰茏园l(fā)產(chǎn)生AMD,排除了物理性損傷因素,因此更接近AMD的發(fā)病特點(diǎn)并能直接體現(xiàn)相關(guān)基因的功能,但是造模技術(shù)復(fù)雜,形成CNV的時(shí)間長(zhǎng)短各異。飲食或環(huán)境干預(yù)可以評(píng)估不同的風(fēng)險(xiǎn)因素,但是存在造模耗時(shí)相對(duì)長(zhǎng)的局限。這些模型都為黃斑變性研究提供巨大幫助,研究者可以根據(jù)實(shí)驗(yàn)?zāi)康膹闹羞x擇適合的動(dòng)物模型。
1 Gehrs KM, Anderson DH, Johnson LV, et al. Age-related macular degeneration--emerging pathogenetic and therapeutic concepts[J]. Ann Med, 2006, 38(7): 450-471.
2 Bressler NM, Bressler SB, Fine SL. Age-related macular degeneration[J]. Surv Ophthalmol, 1988, 32(6):375-413.
3 李曉陵,何守志,王煒,等.Ranibizumab治療老年黃斑變性合并脈絡(luò)膜新生血管短期臨床觀察[J].軍醫(yī)進(jìn)修學(xué)院學(xué)報(bào),2011,32(5):438-440.
4 Pennesi ME, Neuringer M, Courtney RJ. Animal models of age related macular degeneration[J]. Mol Aspects Med, 2012, 33(4):487-509.
5 Lichtlen P, Lam TT, Nork TM, et al. Relative contribution of VEGF and TNF-alpha in the cynomolgus laser-induced CNV model:comparing the efficacy of bevacizumab, adalimumab, and ESBA105[J]. Invest Ophthalmol Vis Sci, 2010, 51(9): 4738-4745.
6 Coleman HR, Chan CC, Ferris FL 3rd, et al. Age-related macular degeneration[J]. Lancet, 2008, 372(9652):1835-1845.
7 Vasireddy V, Jablonski MM, Khan NW, et al. Elovl4 5-bp deletion knock-in mouse model for Stargardt-like macular degeneration demonstrates accumulation of ELOVL4 and lipofuscin[J]. Exp Eye Res, 2009, 89(6): 905-912.
8 Weber BH, Lin B, White K, et al. A mouse model for Sorsby fundus dystrophy[J]. Invest Ophthalmol Vis Sci, 2002, 43(8): 2732-2740.
9 Klein RJ, Zeiss C, Chew EY, et al. Complement factor H polymorphism in age-related macular degeneration[J]. Science,2005, 308(5720):385-389.
10 Coffey PJ, Gias C, Mcdermott CJ, et al. Complement factor H deficiency in aged mice causes retinal abnormalities and visual dysfunction[J]. Proc Natl Acad Sci U S A, 2007, 104(42):16651-16656.
11 Marmorstein AD, Marmorstein LY. The challenge of modeling macular degeneration in mice[J]. Trends Genet, 2007, 23(5):225-231.
12 Ambati J, Anand A, Fernandez S, et al. An animal model of agerelated macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice[J]. Nat Med, 2003, 9(11): 1390-1397.
13 Luhmann UF, Robbie S, Munro PM, et al. The drusenlike phenotype in aging Ccl2-knockout mice is caused by an accelerated accumulation of swollen autofluorescent subretinal macrophages[J]. Invest Ophthalmol Vis Sci, 2009, 50(12): 5934-5943.
14 Yamaguchi K, Takahashi S, Kawanami T, et al. Retinal degeneration in hereditary ceruloplasmin deficiency[J]. Ophthalmologica,1998, 212(1): 11-14.
15 Patel BN, Dunn RJ, Jeong SY, et al. Ceruloplasmin regulates Iron levels in the CNS and prevents free radical injury[J]. J Neurosci,2002, 22(15): 6578-6586.
16 Hahn P, Qian Y, Dentchev T, et al. Disruption of ceruloplasmin and hephaestin in mice causes retinal Iron overload and retinal degeneration with features of age-related macular degeneration[J]. Proc Natl Acad Sci U S A, 2004, 101(38): 13850-13855.
17 Hadziahmetovic M, Dentchev T, Song Y, et al. Ceruloplasmin/ hephaestin knockout mice model morphologic and molecular features of AMD[J]. Invest Ophthalmol Vis Sci, 2008, 49(6): 2728-2736.
18 Cashman SM, Desai A, Ramo K, et al. Expression of complement component 3 (C3) from an adenovirus leads to pathology in the murine retina[J]. Invest Ophthalmol Vis Sci, 2011, 52(6):3436-3445.
19 Wenzel A, Grimm C, Samardzija M, et al. Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration[J]. Prog Retin Eye Res, 2005, 24(2): 275-306.
20 Nowak M, Swietochowska E, Wielkoszyński T, et al. Changes in blood antioxidants and several lipid peroxidation products in women with age-related macular degeneration[J]. Eur J Ophthalmol,2003, 13(3): 281-286.
21 Cai J, Nelson KC, Wu M, et al. Oxidative damage and protection of the RPE[J]. Prog Retin Eye Res, 2000, 19(2): 205-221.
22 Rutar M, Natoli R, Kozulin P, et al. Analysis of complement expression in light-induced retinal degeneration: synthesis and deposition of C3 by microglia/macrophages is associated with focal photoreceptor degeneration[J]. Invest Ophthalmol Vis Sci, 2011,52(8): 5347-5358.
23 Collier RJ, Wang Y, Smith SS, et al. Complement deposition and microglial activation in the outer retina in light-induced retinopathy:inhibition by a 5-HT1A agonist[J]. Invest Ophthalmol Vis Sci,2011, 52(11): 8108-8116.
24 Wielgus AR, Collier RJ, Martin E, et al. Blue light induced A2E oxidation in rat eyes--experimental animal model of dry AMD[J]. Photochem Photobiol Sci, 2010, 9(11): 1505-1512.
25 Cousins SW, Espinosa-Heidmann DG, Alexandridou A, et al. The role of aging, high fat diet and blue light exposure in an experimental mouse model for basal laminar deposit formation[J]. Exp Eye Res,2002, 75(5): 543-553.
26 Espinosa-Heidmann DG, Suner IJ, Catanuto P, et al. Cigarette smoke-related oxidants and the development of sub-RPE deposits in an experimental animal model of dry AMD[J]. Invest Ophthalmol Vis Sci, 2006, 47(2): 729-737.
27 Pons M, Marin-Casta?o ME. Cigarette smoke-related hydroquinone dysregulates MCP-1, VEGF and PEDF expression in retinal pigment epithelium in vitro and in vivo[J]. PLoS One, 2011, 6(2):e16722.
28 Hollyfield JG, Bonilha VL, Rayborn ME, et al. Oxidative damageinduced inflammation initiates age-related macular degeneration[J]. Nat Med, 2008, 14(2): 194-198.
29 Hollyfield JG, Perez VL, Salomon RG. A hapten generated from an oxidation fragment of docosahexaenoic acid is sufficient to initiate age-related macular degeneration[J]. Mol Neurobiol, 2010, 41(2/3): 290-298.
30 Valentine JS, Doucette PA, Zittin Potter S. Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis[J]. Annu Rev Biochem, 2005, 74: 563-593.
31 Behndig A, Svensson B, Marklund SL, et al. Superoxide dismutase isoenzymes in the human eye[J]. Invest Ophthalmol Vis Sci,1998, 39(3): 471-475.
32 Hashizume K, Hirasawa M, Imamura Y, et al. Retinal dysfunction and progressive retinal cell death in SOD1-deficient mice[J]. Am J Pathol, 2008, 172(5): 1325-1331.
33 Justilien V, Pang JJ, Renganathan K, et al. SOD2 knockdown mouse model of early AMD[J]. Invest Ophthalmol Vis Sci, 2007, 48(10):4407-4420.
34 楊秀,高艷紅,田亞平.血脂及脂蛋白在心血管疾病糖尿病及腫瘤等不同疾病中的意義[J] .軍醫(yī)進(jìn)修學(xué)院學(xué)報(bào),2011,32(2):141-142.
35 Crabb JW, Miyagi M, Gu X, et al. Drusen proteome analysis: an approach to the etiology of age-related macular degeneration[J]. Proc Natl Acad Sci U S A, 2002, 99(23): 14682-14687.
36 Klein R, Klein BE, Tomany SC, et al. The association of cardiovascular disease with the long-term incidence of age-related maculopathy: the Beaver Dam eye study[J]. Ophthalmology,2003, 110(4): 636-643.
37 Weikel KA, Fitzgerald P, Shang F, et al. Natural history of agerelated retinal lesions that precede AMD in mice fed high or low glycemic index diets[J]. Invest Ophthalmol Vis Sci, 2012, 53(2):622-632.
38 Cousins SW, Marin-Casta?o ME, Espinosa-Heidmann DG, et al. Female gender, estrogen loss, and Sub-RPE deposit formation in aged mice[J]. Invest Ophthalmol Vis Sci, 2003, 44(3): 1221-1229.
39 Malinow MR, Feeney-Burns L, Peterson LH, et al. Diet-related macular anomalies in monkeys[J]. Invest Ophthalmol Vis Sci,1980, 19(8): 857-863.
40 Age-Related Eye Disease Study Research Group, Sangiovanni JP,Chew EY, et al. The relationship of dietary carotenoid and vitamin A, E, and C intake with age-related macular degeneration in a casecontrol study: AREDS Report No. 22[J]. Arch Ophthalmol,2007, 125(9): 1225-1232.
41 Takada Y, Uyama M, Ohkuma H, et al. Immunohistological study in Bruch’s membrane of senescence accelerated mouse[J]. Nihon Ganka Gakkai Zasshi, 1994, 98(10):955-961.
42 Ogata N, Ohkuma H, Kanai K, et al. Histological changes in the retinal pigment epithelium and Bruch’s membrane in senescence accelerated mouse[J]. Nihon Ganka Gakkai Zasshi, 1992, 96(2):180-189.
43 Takada Y, Ogata N, Ohkuma H, Uyama M. [Age-related changes in Bruch's membrane of the senescence accelerated mouse]. Nippon Ganka Gakkai zasshi. 1993;97(5):595-601.
44 Grossniklaus HE, Kang SJ, Berglin L. Animal models of choroidal and retinal neovascularization [J]. Prog Retin Eye Res, 2010, 29(6): 500-519.
45 Ryan SJ. The development of an experimental model of subretinal neovascularization in disciform macular degeneration[J]. Trans Am Ophthalmol Soc, 1979, 77: 707-745.
46 Goody RJ, Hu W, Shafiee A, et al. Optimization of laser-induced choroidal neovascularization in African green monkeys[J]. Exp Eye Res, 2011, 92(6): 464-472.
47 Zahn G, Vossmeyer D, Stragies R, et al. Preclinical evaluation of the novel small-molecule integrin alpha5beta1 inhibitor JSM6427 in monkey and rabbit models of choroidal neovascularization[J]. Arch Ophthalmol, 2009, 127(10): 1329-1335.
48 Dobi ET, Puliafito CA, Destro M. A new model of experimental choroidal neovascularization in the rat[J]. Arch Ophthalmol,1989, 107(2):264-269.
49 Askou AL, Pournaras JA, Pihlmann M, et al. Reduction of choroidal neovascularization in mice by adeno-associated virus-delivered antivascular endothelial growth factor short hairpin RNA[J]. J Gene Med, 2012, 14(11): 632-641.
50 Edelman JL, Castro MR. Quantitative image analysis of laser-induced choroidal neovascularization in rat[J]. Exp Eye Res, 2000, 71(5):523-533.
51 Tobe T, Ortega S, Luna JD, et al. Targeted disruption of the FGF2 gene does not prevent choroidal neovascularization in a murine model[J]. Am J Pathol, 1998, 153(5): 1641-1646.
52 Luo L, Zhang X, Hirano Y, et al. Targeted intraceptor nanoparticle therapy reduces angiogenesis and fibrosis in Primate and murine macular degeneration[J]. ACS Nano, 2013, 7(4): 3264-3275.
53 Miller JW, Adamis AP, Shima DT, et al. Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a Primate model[J]. Am J Pathol, 1994, 145(3): 574-584.
54 Baffi J, Byrnes G, Chan CC, et al. Choroidal neovascularization in the rat induced by adenovirus mediated expression of vascular endothelial growth factor[J]. Invest Ophthalmol Vis Sci, 2000, 41(11): 3582-3589.
55 Spilsbury K, Garrett KL, Shen WY, et al. Overexpression of vascular endothelial growth factor (VEGF) in the retinal pigment epithelium leads to the development of choroidal neovascularization[J]. Am J Pathol, 2000, 157(1): 135-144.
56 Qiu G, Stewart JM, Sadda S, et al. A new model of experimental subretinal neovascularization in the rabbit[J]. Exp Eye Res, 2006,83(1): 141-152.
57 Shen D, Wen R, Tuo J, et al. Exacerbation of retinal degeneration and choroidal neovascularization induced by subretinal injection of Matrigel in CCL2/MCP-1-deficient mice[J]. Ophthalmic Res, 2006, 38(2): 71-73.
58 Cao J, Zhao L, Li Y, et al. A subretinal matrigel rat choroidal neovascularization (CNV) model and inhibition of CNV and associated inflammation and fibrosis by VEGF trap[J]. Invest Ophthalmol Vis Sci, 2010, 51(11): 6009-6017.
59 Haines JL, Hauser MA, Schmidt S, et al. Complement factor H variant increases the risk of age-related macular degeneration[J]. Science, 2005, 308(5720): 419-421.
60 Lyzogubov VV, Tytarenko RG, Liu J, et al. Polyethylene glycol(PEG)-induced mouse model of choroidal neovascularization[J]. J Biol Chem, 2011, 286(18):16229-16237.
61 Luo L, Uehara H, Zhang X, et al. Photoreceptor avascular privilege is shielded by soluble VEGF receptor-1[J/OL]. http://dx.doi. org/10.7554/eLife.00324
62 Hasegawa E, Oshima Y, Takeda A, et al. IL-27 inhibits pathophysiological intraocular neovascularization due to laser burn[J]. J Leukoc Biol, 2012, 91(2): 267-273.
63 Baba T, Bhutto IA, Merges C, et al. A rat model for choroidal neovascularization using subretinal lipid hydroperoxide injection[J]. Am J Pathol, 2010, 176(6): 3085-3097.
64 Kiilgaard JF, Scherfig E, Prause JU, et al. Transplantation of amniotic membrane to the subretinal space in pigs[J/OL]. http:// www.hindawi.com/journals/sci/2012/716968
65 Lassota N, Kiilgaard JF, Prause JU, et al. Surgical induction of choroidal neovascularization in a porcine model[J]. Graefes Arch Clin Exp Ophthalmol, 2007, 245(8):1189-1198.
66 Peden MC, Min J, Meyers C, et al. Ab-externo AAV-mediated gene delivery to the suprachoroidal space using a 250 micron flexible microcatheter[J]. PLoS One, 2011, 6(2):e17140.
67 Chantaren P, Ruamviboonsuk P, Ponglikitmongkol M, et al. Major single nucleotide polymorphisms in polypoidal choroidal vasculopathy: a comparative analysis between Thai and other Asian populations[J]. Clin Ophthalmol, 2012, 6: 465-471.
68 Lee KY, Vithana EN, Mathur R, et al. Association analysis of CFH,C2, BF, and HTRA1 gene polymorphisms in Chinese patients with polypoidal choroidal vasculopathy[J]. Invest Ophthalmol Vis Sci,2008, 49(6): 2613-2619.
69 Jones A, Kumar S, Zhang N, et al. Increased expression of multifunctional serine protease, HTRA1, in retinal pigment epithelium induces polypoidal choroidal vasculopathy in mice[J]. Proc Natl Acad Sci U S A, 2011, 108(35): 14578-14583.
70 Yannuzzi LA, Negr?o S, Iida T, et al. Retinal angiomatous proliferation in age-related macular degeneration. 2001[J]. Retina,2012, 32(S1):416-434.
71 Jiang A, Hu W, Meng H, et al. Loss of VLDL receptor activates retinal vascular endothelial cells and promotes angiogenesis[J]. Invest Ophthalmol Vis Sci, 2009, 50(2): 844-850.
72 Yin L, Shi Y, Liu X, et al. A rat model for studying the biological effects of circulating LDL in the choriocapillaris-BrM-RPE complex[J]. Am J Pathol, 2012, 180(2): 541-549.
Animal models in research on age-related macular degeneration
NIE Chuang1,2, LUO Ling3, ZHANG Maonian1,2
1Department of Ophthalmology, Chinese PLA General Hospital, Beijing 100853, China;2Chinese PLA Medical School, Beijing 100853, China;3Department of Ophthalmology, The 306th Hospital of PLA, Beijing 100101, China
ZHANG Maonian. Email: zmn301@sina.com; LUO Ling. Email: ling.luoling1208@gmail.com
Age-related macular degeneration (AMD) is the leading cause of blindness in the individuals older than 65 years. It is a complex chronic disease influenced by age, genetic and environmental factors. AMD begins in Bruch's membrane and progresses into the retinal pigment epithelium and ultimately the overlying photoreceptors. It has several subtypes. Its etiology still remains unclear and its therapy is still a big challenge. Recently, there are several AMD animal models have been established for research. This article reviews these diversity of animal models, both on their advantages and limitations, in order to provide some details for further study.
age-related macular degeneration; animal models; etiology
R774.5;R-331
A
2095-5227(2015)03-0294-05< class="emphasis_bold">DOI:1
10.3969/j.issn.2095-5227.2015.03.026
時(shí)間:2014-11-27 10:43
http://www.cnki.net/kcms/detail/11.3275.R.20141205.1041.002.html
2014-07-11
國(guó)家自然科學(xué)基金項(xiàng)目(81271016)
Supported by the National Natural Science Foundation of China(81271016)
聶闖,女,醫(yī)師,在讀博士。研究方向:玻璃體視網(wǎng)膜疾病。Email: liz137@163.com
張卯年,博士,教授,主任醫(yī)師,博士生導(dǎo)師。Email: zmn301@sina.com;羅靈,女,副主任醫(yī)師,出站博士后。Email: li ng.luoling1208@gmail.com