邵建軍, 張姝紅, 李家波, 張永坤, 趙紅光, 穆春國(guó)
(1. 中國(guó)人民解放軍91439部隊(duì), 遼寧 大連 116041; 2. 中國(guó)人民解放軍65589部隊(duì), 遼寧 大連 116041)
水中爆炸對(duì)目標(biāo)的毀傷主要是沖擊波能和氣泡能作用的結(jié)果[1-9]。同沖擊波相比,氣泡脈動(dòng)壓力遠(yuǎn)小于沖擊波峰值壓力,但作用時(shí)間更長(zhǎng),當(dāng)氣泡脈動(dòng)的頻率與目標(biāo)的固有頻率接近時(shí),會(huì)使目標(biāo)產(chǎn)生共振而毀傷。由于水中爆炸氣泡能是氣泡脈動(dòng)周期的函數(shù),氣泡脈動(dòng)周期的精確計(jì)算或測(cè)量是科學(xué)評(píng)估水中爆炸氣泡能的關(guān)鍵環(huán)節(jié)。因此,對(duì)氣泡脈動(dòng)的研究引起了國(guó)內(nèi)外的廣泛關(guān)注,取得了部分成果[10-12],這些成果更偏重于仿真計(jì)算[13-18]。已有描述氣泡脈動(dòng)現(xiàn)象的仿真方法都是基于對(duì)氣泡脈動(dòng)機(jī)理的諸多假設(shè),還不能完全客觀描述水中爆炸氣泡脈動(dòng)周期現(xiàn)象,開展水中爆炸氣泡脈動(dòng)規(guī)律的試驗(yàn)研究更能真實(shí)反映水中爆炸氣泡脈動(dòng)周期特性,意義更加顯著。從已有的研究報(bào)道可知,無限水域條件水中爆炸氣泡脈動(dòng)周期計(jì)算公式都采用與willis[17,19,20-30]公式相同的函數(shù)關(guān)系,存在著引用前人研究成果,但并未闡述獲得方法、未考慮大氣壓力折算、只能在確知炸藥化學(xué)參數(shù)的條件下實(shí)現(xiàn)脈動(dòng)周期計(jì)算等問題。由于忽略了炸藥脈動(dòng)周期固有常數(shù)、大氣壓力折算、炸藥密度等物理特征的影響,氣泡脈動(dòng)周期估算值必然與氣泡脈動(dòng)周期值發(fā)生偏離,進(jìn)而導(dǎo)致氣泡能評(píng)估的失真。基于上述原因,誤差較小的炸藥水中爆炸氣泡脈動(dòng)周期估算公式應(yīng)該通過試驗(yàn)標(biāo)定獲得。
為了預(yù)估炸藥水中爆炸氣泡脈動(dòng)周期,本研究擬通過炸藥水中爆炸氣泡脈動(dòng)理論分析,對(duì)工程中氣泡脈動(dòng)周期估算公式進(jìn)行推導(dǎo),并明確各變量的物理意義; 擬通過開展TNT炸藥、Al/RDX/TNT海中爆炸標(biāo)定試驗(yàn),給出一種水中爆炸氣泡周期的估算方法。
常規(guī)裝藥水中爆炸沖擊波向外傳播的同時(shí),爆轟產(chǎn)物以氣泡形式繼續(xù)膨脹、推動(dòng)周圍水介質(zhì)向四周流動(dòng)。在氣泡收縮、膨脹的循環(huán)過程中能量損失較大。原因在于,每振動(dòng)一次,就要有一定能量在氣泡壓縮至最小時(shí)消耗于產(chǎn)生紊流和音輻射中,通常對(duì)目標(biāo)具有毀傷作用的只有第一次脈動(dòng)過程[19]。水中爆炸氣泡周期性振動(dòng)過程中氣泡能量釋放形式主要由從氣泡表面擴(kuò)散的徑向流動(dòng)能、氣泡內(nèi)能及氣泡膨脹過程中反抗流體靜壓所做的功組成。由于氣泡膨脹的大部分過程中內(nèi)能較小,當(dāng)氣泡擴(kuò)散到最大時(shí)從氣泡表面擴(kuò)散的徑向流動(dòng)能全部消耗且氣泡在無限水域中球形膨脹,假設(shè)氣泡膨脹過程中沒有上浮運(yùn)動(dòng),則在某爆炸深度氣泡膨脹過程中克服流體靜壓所消耗的總能即氣泡能可表示為[19]:
(1)
pl=ph+ph0
(2)
式中,Eb為氣泡能;Rmax為氣泡膨脹最大半徑;pl為爆炸深度處流體靜壓,壓力值為水面上大氣壓ph0與水深壓力ph之和。
氣泡膨脹過程中,在忽略了炸藥尺寸的條件下,氣泡膨脹至最大時(shí)的時(shí)間相當(dāng)于振動(dòng)周期的1/2。氣泡脈動(dòng)周期與膨脹最大半徑的關(guān)系可表示為[19]:
(3)
式中,T為氣泡脈動(dòng)周期;Br為氣泡振動(dòng)特征函數(shù),當(dāng)氣泡膨脹至最大時(shí),函數(shù)值為2.24;ρ0為初始密度。式(3)經(jīng)計(jì)算得:
(4)
式(1)、(4)聯(lián)立得:
(5)
式(5)就是國(guó)內(nèi)外普遍采用的無限水域爆炸氣泡脈動(dòng)周期的理論關(guān)系式,被稱為willis公式。式(5)的正確性已被后來多次水中爆炸試驗(yàn)所證實(shí)[19]。
在水中爆炸實(shí)際試驗(yàn)中,能夠?qū)崿F(xiàn)的是稱量試驗(yàn)炸藥的質(zhì)量,而無法確認(rèn)其能量,需將式(5)變換為水中爆炸試驗(yàn)中可實(shí)施的形式。由于爆炸產(chǎn)生氣泡能與炸藥的質(zhì)量成正比、炸藥的氣泡能與總能有一定的比例系數(shù),炸藥的氣泡能與炸藥質(zhì)量的關(guān)系可表示為:
Eb=k1μm
(6)
式中,k1為能量與質(zhì)量關(guān)系固有常數(shù),μ為炸藥能量中氣泡能比例系數(shù),m為炸藥質(zhì)量。由于k1、μ為特定炸藥的固有常數(shù),式(6)可進(jìn)一步簡(jiǎn)化為:
Eb=k2m
(7)
由于流體內(nèi)靜水壓力與水深成正比、水面上大氣壓力可以按試驗(yàn)水深折算,式(2)可表示為:
pl=ρwg(h+h0)
(8)
式中,ρw為流體密度,g為重力加速度常數(shù)。將式(5)、(7)、(8)聯(lián)立得:
(9)
由于式(9)中對(duì)于確定試驗(yàn)炸藥及試驗(yàn)環(huán)境下,ρ0、ρw、g、k2均為常數(shù),式(9)可簡(jiǎn)化為:
(10)
式中,kx就是x炸藥對(duì)應(yīng)的氣泡脈動(dòng)周期固有常數(shù); 不同的炸藥kx值不同;T為氣泡脈動(dòng)周期, ms;h為炸藥布放深度,m;h0為水面大氣壓換算的海深,m;m為炸藥質(zhì)量,kg。 式(10)就是由式(5)變換的無限水域條件下爆炸氣泡脈動(dòng)試驗(yàn)計(jì)算通式。試驗(yàn)時(shí),通過測(cè)量氣泡脈動(dòng)周期T,便可得到試驗(yàn)炸藥的氣泡脈動(dòng)固有常數(shù)kx。方法是,按式(10)對(duì)被試炸藥通過小當(dāng)量標(biāo)定試驗(yàn)獲取脈動(dòng)周期固有常數(shù)。試驗(yàn)前必須測(cè)量試驗(yàn)水面大氣壓及試驗(yàn)水域密度,進(jìn)行大氣壓力折算。
采用熔鑄法制備TNT爆源,均為球形。制備TNT藥球,質(zhì)量分別為0.11,0.11,0.10,0.99 kg。
采用熔鑄法制備特定比例的梯黑鋁爆源,均為球形。制備Al/RDX/TNT藥球質(zhì)量分別0.10,0.11,0.10,1.01 kg,為被評(píng)估炸藥。所有藥球都帶有7.2 mm×60 mm的雷管孔。用尼龍網(wǎng)兜包裹爆源,用軟細(xì)繩將爆源連接于爆源支架上,爆源固定可靠后,在爆源下部用線繩懸掛1 kg的重力錨。
試驗(yàn)前,根據(jù)式(11)計(jì)算不同藥量的最大氣泡脈動(dòng)半徑。對(duì)于被評(píng)估的梯黑鋁炸藥,采用放大為2倍TNT當(dāng)量的苛刻條件計(jì)算氣泡脈動(dòng)最大半徑。爆源距水面及水底的距離應(yīng)不小于兩倍氣泡最大半徑。
(11)
式中,W為TNT當(dāng)量, kg;h為炸藥布放深度, m。
試驗(yàn)在海上進(jìn)行,海平面上為標(biāo)準(zhǔn)大氣壓。標(biāo)準(zhǔn)大氣壓為1.013×105Pa,海水密度為1,032 g·cm-3,g為9.8 m·s-2。按式(8)算得海平面氣壓折算海深h0為10.01 m。式(10)在海中無限水域氣泡脈動(dòng)計(jì)算公式則表示為:
(12)
式中各量意義同式(10)。
試驗(yàn)海區(qū)海底底質(zhì)均為平坦泥沙底質(zhì),水深約6~9 m,海水流速小于1節(jié),海面無風(fēng)浪、無波浪; 試驗(yàn)爆源采用兩種炸藥分別為TNT熔鑄炸藥和特定比例的的梯黑鋁熔鑄炸藥。試驗(yàn)的測(cè)量設(shè)備為水中爆炸威力測(cè)量系統(tǒng),設(shè)備采樣頻率1 MHz,采樣時(shí)間約為4 s; 試驗(yàn)時(shí)測(cè)量設(shè)備布放在岸基; 壓力傳感器通過支架或浮標(biāo)布放到水中,至爆源的距離大于氣泡最大半徑; 傳感器為PCB138系列。試驗(yàn)布設(shè)如圖1所示,試驗(yàn)工況列于表1。
圖1試驗(yàn)布設(shè)示意圖
Fig.1Schematic diagram of the experimental arrangement
表1試驗(yàn)工況
Table1Experimental condition
numberexplosiveexplosivemass/kgdepthsofexplosion/mdepthsofsea/m1TNT0.112.0062TNT0.113.0063TNT0.103.0064TNT0.994.0095Al/RDX/TNT0.102.3096Al/RDX/TNT0.112.3097Al/RDX/TNT0.102.5098Al/RDX/TNT1.014.009
試驗(yàn)采用了多路壓力傳感器采集爆炸壓力信號(hào),沖擊波起始點(diǎn)到二次脈動(dòng)最大值兩點(diǎn)之間的時(shí)間差為氣泡二次脈動(dòng)的周期。圖2為工況4于水中爆炸水面照片,相應(yīng)的水中爆炸時(shí)程曲線如圖3所示,各工況條件下試驗(yàn)氣泡脈動(dòng)周期測(cè)量值、估算值、固有常數(shù)及估算誤差列于表2。
圖2TNT炸藥水中爆炸圖片(No.4)
Fig.2Underwater explosion photo of TNT explosive (No.4)
圖3TNT炸藥水中爆炸壓力曲線(No.4)
Fig.3Explosion pressure curve of TNT explosive(No.4)
表2氣泡脈動(dòng)情況統(tǒng)計(jì)分析
Table2Statistic analysis of bubble oscillation situation
numbermeasuredperiod/sintrinsicconstantsaverageofintrinsicconstantsestimatedperiod/serrorofestimatedperiod/%10.1181.962.000.1212.5420.1152.032.000.113-1.7430.1102.012.000.110040.2242.032.000.221-1.3450.1462.542.520.144-1.3760.1462.472.520.1492.0570.1442.552.520.142-1.3980.2762.482.520.2801.45
從圖3可見,0.99 kg TNT炸藥爆炸形成了氣泡脈動(dòng)。工況1、2為相同當(dāng)量不同深度的試驗(yàn),但工況2的氣泡脈動(dòng)周期小于工況1的氣泡脈動(dòng)周期,說明爆炸深度對(duì)氣泡脈動(dòng)周期產(chǎn)生影響。這是因?yàn)樗斜馀菽芤欢?隨著深度的增加,氣泡脈動(dòng)克服靜水壓力增大,勢(shì)必導(dǎo)致膨脹體積減小,進(jìn)而導(dǎo)致氣泡脈動(dòng)周期減小。
炸藥質(zhì)量同樣會(huì)對(duì)氣泡脈動(dòng)周期產(chǎn)生影響。工況1、2、3與工況4比較發(fā)現(xiàn),工況4雖然深度大于工況1、2、3,但因其炸藥質(zhì)量大于工況1、2、3的炸藥質(zhì)量,工況4的氣泡脈動(dòng)周期明顯大于工況1、2、3的各個(gè)脈動(dòng)周期。按工況1、2、3試驗(yàn)標(biāo)定的氣泡脈動(dòng)周期固有常數(shù)平均值估算工況4的脈動(dòng)周期準(zhǔn)確度非常高,只產(chǎn)生-1.34%的誤差; 用被估算梯黑鋁炸藥工況5、6、7標(biāo)定的氣泡脈動(dòng)周期固有常數(shù)平均值估算工況8的脈動(dòng)周期,試驗(yàn)誤差為1.45%。
炸藥種類不同,氣泡脈動(dòng)周期固有常數(shù)差別較大。工況4與工況8相同,但工況8的氣泡脈動(dòng)周期是工況4的1.23倍,這說明鋁粉及黑索金的加入大大提高了炸藥的氣泡能。其中,由于鋁粉在爆炸中具有典型的后燃效應(yīng),可有效提高含鋁炸藥的水中爆炸能力,尤其能夠提高炸藥的氣泡能[31-32],能量的區(qū)別直接導(dǎo)致氣泡脈動(dòng)周期的不同。由于復(fù)合炸藥中,組分的不同會(huì)對(duì)炸藥的脈動(dòng)周期固有常數(shù)產(chǎn)生更大的影響,若想實(shí)現(xiàn)準(zhǔn)確預(yù)估某種炸藥的氣泡脈動(dòng)周期,必須對(duì)預(yù)估炸藥進(jìn)行小當(dāng)量標(biāo)定,以得到氣泡脈動(dòng)周期固有常數(shù)。8種工況爆炸實(shí)測(cè)脈動(dòng)周期與根據(jù)式(12)估算脈動(dòng)周期近似一致,最大誤差只有2.54%,說明水中氣泡脈動(dòng)周期符合相似律,預(yù)估式(12)可用于不同種類炸藥的海中爆炸試驗(yàn)脈動(dòng)周期估算。
通過3次Al/RDX/TNT海中爆炸標(biāo)定試驗(yàn),得到Al/RDX/TNT炸藥氣泡脈動(dòng)周期預(yù)估公式。將試驗(yàn)標(biāo)定的Al/RDX/TNT炸藥氣泡脈動(dòng)周期固有常數(shù)帶入式(12),計(jì)算Al/RDX/TNT水中爆炸氣泡脈動(dòng)周期與實(shí)測(cè)值誤差為1.45%。通過對(duì)不同爆炸當(dāng)量、工況的TNT炸藥及特定比例Al/RDX/TNT炸藥的海上爆炸試驗(yàn)發(fā)現(xiàn),采用試驗(yàn)標(biāo)定的方法實(shí)現(xiàn)了TNT炸藥及Al/RDX/TNT炸藥海中爆炸氣泡脈動(dòng)周期的準(zhǔn)確預(yù)估,最大誤差只有2.54%。
(1)水中爆炸氣泡脈動(dòng)周期受炸藥當(dāng)量、爆炸深度影響。氣泡脈動(dòng)周期與炸藥當(dāng)量1/3次方成正比,與大氣壓力折算深度及爆炸深度之和的5/6次方成反比。
(2)炸藥水中爆炸氣泡脈動(dòng)周期受炸藥的固有化學(xué)性質(zhì)影響較大。采用本研究給出的炸藥水中爆炸氣泡脈動(dòng)周期計(jì)算方法,可實(shí)現(xiàn)氣泡脈動(dòng)周期的預(yù)估。
參考文獻(xiàn):
[1] Wang Gaohui, Zhang Sherong, Yu Mao. AporInvestigation of the shock wave propagation characteristicsand cavitation effects of underwater explosion near boundaries[J].AppliedOceanResearch, 2014,46: 40-53.
[2] 俞統(tǒng)昌,王曉峰,王建靈. 炸藥的水下爆炸沖擊波性能[J]. 含能材料,2003,11(4):182- 185.
YU Tong-chang, WANG Xiao-feng, WANG Jian-ling.Under water shock wave performance of explosives[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2003,11(4):182-185.
[3] 常艷, 張奇. 含鋁炸藥爆炸能量預(yù)估[J]. 含能材料, 2012, 20(6):770-774.
CHANG Yan, ZHANG Qi. Explosion energy prediction of aluminized explosive[J].ChineseJournalofEnergeticMaterials(HannengCailiao) 2012, 20(6):770-774.
[4] WANG Hao, ZHU Xi, CHENG Yuan-sheng, et al. Experimental and numerical investigation of ship structure subjected to close-in underwater shock wave and following gas bubble pulse[J].MarineStructures,2014,39:90-117.
[5] LI Jian, RONG Ji-li. Experimental and numerical investigation of the dynamic response of structures subjected to underwater explosion[J].EuropeenJournalofMechanics-B/Fluids,2012, 32: 59-69.
[6] 王曉峰, 陳魯英. 炸藥的水下爆炸威力[J].兵工學(xué)報(bào), 1995(1): 30-34.
WANG Xiao-feng, CHEN Lu-ying. The power of underwater explosion over explosive[J].ActaArmamentarii, 1995 (1): 30-34.
[7] 張阿漫,汪玉,聞雪友, 等. 水下爆炸氣泡動(dòng)態(tài)特性研究綜述[J]船舶力學(xué),2009, 13(5):828-836.
ZHANG A-man, WANG Yu, WEN Xue-you, et al. Review of the dynamics of the underwater explosion bubble[J].JournalofShipMechanics, 2009, 13(5):828-836.
[8] 王建靈, 趙東奎, 郭煒,等. 水下爆炸能量測(cè)試中炸藥入水深度的確定[J]. 火炸藥學(xué)報(bào),2002,(2):30-31.
WANG Jian-ling, ZHAO Dong-kui, GUO Wei, et al. Determination of the reasonable depth of explosives in water to measure underwater explosive energy[J].ChineseJournalofExplosives&Propellants, 2002,(2):30-31.
[9] 汪斌, 王彥平, 張遠(yuǎn)平. 有限水域氣泡脈動(dòng)實(shí)驗(yàn)方法研究[J]火炸藥學(xué)報(bào),2008, 31(3):32-35.
WANG Bin, WANG Yan-ping, ZHANG Yuan-ping. A method of studying bubble pulses in a confined water area[J].ChineseJournalofEexplosives&propellants, 2008, 31(3):32-35.
[10] Brujan E A, Pearson A, Blake J R. Pulsating, buoyant bubbles close to a rigid boundary and near the null final Kelvin impulse state[J].InternationalJournalofMultiphaseFlow,2005, 31: 302-317.
[11] Suresh Menon , Mihir Lal. On the dynamics and instability of bubbles formed during underwater explosions[J].ExperimentalThermalandFluidScience,1998,16: 305-321.
[12] LI Yu-jie, PAN Jian-qiang, LI Guo-hua, et al. Experimental study of ship whipping induced by underwater explosive bubble[J]JournalofShipMechanics, 2001, 5(6):75-81.
[13] Kamran K, Rossi R, Oňate E, et al. A compressible Lagrangian framework for the simulation of the underwater implosion of large air bubbles[J].ComputMethodsApplMechEngrg,2013, 255: 210-225.
[14] Miller S T, Jasak H, Boger D A. A pressure-based, compressible, two-phase flow finite volume method for underwater explosions[J].Computers&Fluids, 2013,87:132-143.
[15] HSU Ching-yu, LIANG Cho-chung, NGUYEN Anh-tu, et al. A numerical study on the underwater explosion bubble pulsation and the collapse process[J].OceanEngineering, 2014,81(1):29-38.
[16] Yang Yuan Xiang, Wang Qian Xi , Keat T S. Dynamic features of a laser-induced cavitation bubble near a solid boundary[J].UltrasonicsSonochemistry, 2013, 20:1098-1103.
[17] 張志江,徐更光, 王廷增. 炸藥水中爆炸氣泡脈動(dòng)分析計(jì)算[J]. 爆破,2007,24(1):17-20.
ZHANG Zhi-jiang, XU Geng-guang, WANG Ting-zeng. Analysis and Calculation on Bubble-oscillation by Underwater Explosion[J].Blasting, 2007,24(1):17-20.
[18] 宗智, 何亮, 孫龍泉. 水下 爆炸氣泡對(duì)水面船舶載荷的數(shù)值研究[J]. 船舶力學(xué),2008, 12(5):733-738.
ZONG Zhi, HE Liang, SUN Long-quan. Numerical study of loading on the surface ship near an underwater explosion bubble[J].JournalofShipMechanics, 2008, 12(5):733-738.
[19] Cole R H. Underwater Explosion[M].1 Princeton, Princeton university press, 1948: pp260-360.
[20] 朱錫,張振華,梅志遠(yuǎn),等. 艦船結(jié)構(gòu)毀傷力學(xué)[M]. 北京: 國(guó)防工業(yè)出版社, 2013: 24-31.
ZHU Xi, ZHANG Zhen-hua, MEI Zhi-yuan, et al. Damage mechanics of warship structure subjected to explosion[M]. Beijing: National Defense Industry Press, 2013:24-31.
[21] 姚熊亮, 汪玉, 張阿漫. 水下爆炸氣泡動(dòng)力學(xué)[M]. 哈爾濱: 哈爾濱工程大學(xué)出版社, 2012: 22-76.
YAO Xiong-liang, WANG Yu, ZHANG A-man. Underwater explosion bubble dynamics [M]. Harbin: Harbin Engineering University Press, 2012: 22-76.
[22] 金輝, 李兵, 權(quán)琳, 等. 不同邊界條件下炸藥水中爆炸的能量輸出結(jié)構(gòu)[J]. 爆炸與沖擊, 2013, 33(3): 325-328.
JIN Hui, LI Bing, QUAN Lin, et al. Configuration of explosive energy output in different underwater boundary conditions[J].ExpolosionandShockWaves,2013,33(3):325-328.
[23] 張姝紅, 周華, 權(quán)琳,等. 水下爆炸氣泡脈動(dòng)試驗(yàn)研究[J].爆破,2014,31(1):106-109.
ZHANG Shu-hong, ZHOU Hua, QUAN Lin, et al. Experimental study for bubble impulsion in underwater explosion[J].Blasting,2014,31(1):106-109.
[24] Barras G, Souli M, Aquelet N, et al. Numerical simulation of underwater explosions using an ALE method. The pulsating bubble phenomena[J].OceanEngineering, 2012, 41: 53-66.
[25] Rajendran R, Narasimhan K. Deformation and fracture behaviour of plate specimens subjected to underwater explosion—a review[J].InternationalJournalofImpactEngineering,2006, 32: 1945-1963.
[26] 李洪濤, 趙琳, 寧永成. 球形裝藥海底裸爆壓力測(cè)試與分析[J].工程爆破,2005, 11(1):16-21.
LI Hong-tao, ZHAO Lin, NING Yong-cheng. Testing and analyzing pressure produced by submarine explosion with spherical charges[J].EngineeringBlasting,2005,11(1):16-21.
[27] Zhang N, Zong Z. The effect of rigid-body motions on the whipping response of a ship hull subjected to an underwater bubble[J].JournalofFluidsandStructures,2011,27:1326-1336.
[28] 李琛.利用第一次和第二次氣泡脈動(dòng)周期估算水下爆炸深度和當(dāng)量[J]. 水雷戰(zhàn)與艦船防護(hù),2011, 19(4): 72-75.
LI Chen. An estimation method of detonation depths and explosion yields by the periods of the first two bubble oscillation[J].MineWarfare&ShipSelf-defence, 2011,19(4):72-75.
[29] 周霖,謝中元,陳勇. 炸藥水下爆炸氣泡脈動(dòng)周期工程計(jì)算方法[J]. 兵工學(xué)報(bào), 2009, 30(9): 1202-1205.
ZHOU Lin, XIE Zhong-yuan, CHEN Yong. An Engineering Calculation Method on the Bubble Pulse Period of Underwater Explosion[J].ActaArmamentarii, 2009,30(9):1202-1205.
[30] 方正,李世海,喬繼延, 等. 水中爆炸氣泡脈動(dòng)周期的試驗(yàn)研究[J]. 工程爆破, 2001, 7(2): 29-33.
FANG Zheng, LI Shi-hai, QIAO Ji-yan. Study on period of bubble impulsion induced by underwater explosion[J].EngineeringBlasting, 2001,7(2): 29-33.
[31] 曹威,何中其, 陳網(wǎng)樺,等. 水下爆炸法測(cè)量含鋁炸藥后燃效應(yīng)[J].含能材料, 2012, 20(2): 229-233.
CAO Wei, HE Zhong-qi, CHEN Wang-hua, et al. Measurement of afterburning effect of aluminized explosives by underwater explosion method[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2012, 20(2): 229-233.
[32] Peaker J M, Krier H, Glumal N, et al. Environment effects on the blast and overpressure enhancement in aluminized explosives[J].ProceedingsoftheCombustionInstitute,2013, 34(2): 2205-2212.