0,b > 0,且a2 + b2 = 1,a3 + b3 + 1 = m(a + b + 1)3,求m的最小值.此"/>
謝莉莎
題目 已知a > 0,b > 0,且a2 + b2 = 1,a3 + b3 + 1 = m(a + b + 1)3,求m的最小值.
此題是前幾天我校高一年級數(shù)學(xué)PK賽壓軸題,所給標(biāo)準(zhǔn)答案如下.
簡證1、簡證2都是仔細分析題目條件與待求式子的特征及其相互關(guān)系,依據(jù)題設(shè)和待求式子的結(jié)構(gòu)特點、內(nèi)在聯(lián)系,通過聯(lián)想,建立已知與未知的橋梁,運用不等式性質(zhì)及一系列適當(dāng)變形推導(dǎo)出所求式子的最值.