• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      不確定時態(tài)跨度的語義處理及其粗糙集近似計算

      2015-06-01 10:57:21左亞堯封朝永
      廣東工業(yè)大學學報 2015年1期
      關鍵詞:精確度粗糙集時態(tài)

      左亞堯,陳 磊,封朝永

      (廣東工業(yè)大學 計算機學院, 廣東 廣州 510006)

      不確定時態(tài)跨度的語義處理及其粗糙集近似計算

      左亞堯,陳 磊,封朝永

      (廣東工業(yè)大學 計算機學院, 廣東 廣州 510006)

      蘊含語義的不確定時態(tài)的表示及處理是不確定時態(tài)信息和自然語言處理領域中的重要問題,不確定時態(tài)跨度是不確定時態(tài)中的重要組成部分,而不確定的語義是造成時態(tài)跨度不確定性的根源.提出對不確定語義進行轉換的思想,將其轉換為鄰域或區(qū)間的形式,成為可計算問題;進而從粒度層面對不確定時態(tài)跨度進行了有效刻畫,給出了元組化的模型,使其可以參與運算;提出了時態(tài)粗糙集將時態(tài)跨度元素在離散狀態(tài)下進行劃分,采用下近似和上近似的思想劃分了不確定時態(tài)跨度中的確定元素和不確定元素;并提出了不確定時態(tài)跨度的近似精確度計算方法.

      不確定時態(tài)跨度; 語義; 時態(tài)粒度; 時態(tài)粗糙集; 近似計算

      近年來,隨著信息技術的飛速發(fā)展,大數據已普遍存在,能源制造業(yè)、服務業(yè)、醫(yī)療衛(wèi)生等領域都積累了TB、PB級乃至EB級的大數據[1].時態(tài)數據是大數據中重要的一類,它大量存在于新聞事件、醫(yī)療信息系統(tǒng)、交通系統(tǒng)等應用領域,而且在時態(tài)數據挖掘、時態(tài)知識以及時空信息處理等眾多研究領域扮演著越來越重要的角色[2].不確定時態(tài)跨度是時態(tài)信息研究領域中重要而又特殊的一個組成部分,常見的不確定時態(tài)跨度,其表征為不確定的時間介詞,如,“大約/左右”、“至少”、“至多”、“之間”;與被參照的確切時態(tài)跨度,如,“2個小時”、“4個到5個小時”、“5天”,相結合所構成的.例如:“小趙步行了2小時左右”、 “臺風離去需要至少3天”.不確定時態(tài)跨度包含了不確定的時間介詞和被參照的具有粒度屬性的時間跨度,它們屬于沒有先驗知識的不精確的概念,如何處理不確定時態(tài)跨度中的不確定語義并對其精確度進行近似度量,是當前不確定時態(tài)信息研究領域的熱點和難點.

      近年來,大數據的研究如火如荼,人們對時態(tài)信息和不確定時態(tài)信息研究也在不斷地深入, 一些學者或從時態(tài)語義的角度出發(fā)探索時態(tài)的建模和表示問題[3-6];或著重以粒度的思想對時態(tài)問題進行刻畫和演算[7-10];或針對特殊的時態(tài)數據采用有針對性的數學模型[11-13].

      如,文獻[3]提出了一個集成到Web搜索引擎中的時態(tài)表達式識別和標準化系統(tǒng),能夠同時考慮用戶查詢和搜索集合中的時間語義,并獨立于其表示;文獻[4]研究了時態(tài)語義數據的編碼問題;文獻[5]提出了基于注釋的時態(tài)概念模型,推廣了傳統(tǒng)的概念模型語義;文獻[6]提出一個概念框架來獨立地描述不確定時態(tài)語義和不完整信息,并且能夠保證不丟失信息及其不確定性;這些學者在一定程度上研究了時態(tài)語義,但未解決時態(tài)語義參與運算的問題且忽視了時態(tài)的粒度屬性.

      粒度是時態(tài)的重要屬性,文獻[7- 8]研究了不確定知識的粒計算模型;文獻[9]研究了確定時態(tài)的粒度刻畫及演算問題;文獻[10]探索了確定時態(tài)粒度層次映射轉換的時態(tài)粒點差運算方法.而如何把時態(tài)粒度和語義相結合,使其參與運算,是時態(tài)信息處理領域中的一個難點.

      針對時態(tài)的近似計算問題,文獻[11]提出了一個框架,通過隨機過程來計算可能出現的物體運動軌跡,可以有效地對不確定時空數據進行建模和查詢;文獻[12]提出一種基于模糊區(qū)間值的模糊區(qū)間關系模型來表示不確定的時態(tài)信息,并且提出了一種基于Allen經典區(qū)間代數[13]新的模糊區(qū)間代數.

      本文研究了不確定時態(tài)跨度的語義,對其進行了轉換,結合時態(tài)粒度給出了不確定時態(tài)跨度的形式化描述,使其可以參與運算,根據粗糙集理論[14-15],引入了時態(tài)粗糙集模型,借助時態(tài)粗糙集模型對不確定時態(tài)跨度進行重新劃分,進而在此基礎上對不確定時態(tài)跨度的精確度進行了近似計算.

      1 不確定時態(tài)跨度的語義轉換及粒度化建模

      1.1 不確定時態(tài)跨度的粒度刻畫及語義轉換

      時態(tài)的粒度描述,如時間測度、時態(tài)劃分、時態(tài)粒度、嵌套粒度等定義參見文獻[9-10].

      蘊含不確定時間介詞的不確定時態(tài)跨度,其不確定性源自于不確定的語義,有4種情形,可對其進行語義轉換,使其成為可計算問題.

      圖1 不確定時態(tài)跨度的4種情形Fig.1 4 forms of uncertain temporal span

      對于不確定時態(tài)跨度的表示,須限定在一定的范圍內,例如:“大約3個小時”,時間偏移量Δta、Δtb均為0.5GH時,其可能的取值范圍為[2.5GH,3.5GH],語義可信度較高;如果將取值范圍擴大至[0,1GD]時,語義可信度較低,無實際意義.

      1.2 不確定時態(tài)跨度的粒度模型

      結合不確定時態(tài)跨度語義轉換后的形式并考慮其通用性,建立不確定時態(tài)跨度的模型,不確定時態(tài)跨度的模型是一個六元組:

      其中:

      (1) 不確定時態(tài)跨度的名稱標識tus,是符號化的元組語義;

      (2) 不確定時態(tài)跨度的運算粒度Gj,如“3小時左右”,其一種表示為[2.5GH,3.5GH],即模型tus(3GH,GH,-0.5,+0.5,f)中的運算粒度為GH,即為“小時”;

      (4) 不確定時態(tài)跨度的時態(tài)近似精確度度量函數f,是對不確定時態(tài)跨度的近似確定程度的描述函數.f的計算方法將在下文第3節(jié)進行詳細討論.

      例如:“3小時左右”可表示為tus(3GH,GH,Δtl,Δtr,f),其中的一種情況為tus(3GH,GH,-0.5,+0.5,f),表明tus的取值為區(qū)間[2.5GH,3.5GH]中的一個連續(xù)的時態(tài)跨度.

      “至少3個小時”可表示為tus(3GH,GH,Δtl,Δtr,f),其中的一種情況為tus(3GH,GH,0,+2,f),表明tus的取值為區(qū)間[3GH,5GH]中的一個連續(xù)的時態(tài)跨度.

      2 不確定時態(tài)跨度的粗糙集劃分

      粗糙集[16-17]是對不確定、不精確概念[18]進行定性和定量描述的一種有力的數學工具,基于時態(tài)粒度,對不確定時態(tài)跨度進行語義轉換和粒度建模后,在時態(tài)元素離散化的前提下,論文借助經典粗糙集[19]理論提出了對不確定時態(tài)跨度進行劃分的思想,區(qū)分出不確定時態(tài)跨度中確定的元素和不確定的元素,進而可對不確定時態(tài)跨度的近似精確度進行定量的描述.

      2.1 時態(tài)粗糙集

      時態(tài)粗糙集是一種新的集合.其中的元素均為時態(tài)元素,是一種只有大小而沒有序關系的時態(tài)元素的集合.由于時態(tài)粒點和時態(tài)粒區(qū)存在嚴格的序關系,嚴格對應于時間軸上的點或區(qū)間,所以它并不適用于劃分不確定時態(tài)粒點和不確定時態(tài)粒區(qū),但它適合描述不確定時態(tài)跨度.由于時態(tài)跨度只有數量關系上的大小之分而沒有時間軸上序關系的前后之別,因此,可以將不確定時態(tài)跨度映射到時態(tài)粗糙集之中.

      基于時態(tài)粗糙集,可劃分不確定時態(tài)跨度中確定元素和不確定元素,將離散化的時態(tài)中確定的元素和不確定的元素重組并分成兩個部分,由一對時態(tài)集合表示,即時態(tài)上、下近似,形式上時態(tài)粗糙集有如下定義:

      圖2 時態(tài)粗糙集模型Fig.2 The temporal rough set model

      將不確定時態(tài)跨度離散化,再將確定的元素和不確定的元素分開并重組成兩部分(兩個集合)稱作不確定時態(tài)跨度的粗糙集劃分,此舉使下文不確定時態(tài)跨度的近似精確度度量成為可能.

      2.2 不確定時態(tài)跨度的粗糙集劃分

      圖3 不確定時態(tài)跨度的時態(tài)粗糙集劃分Fig.3 The division of uncertain temporal spans with rough set

      3 不確定時態(tài)跨度的近似精確度計算

      根據不確定時態(tài)跨度的粗糙集劃分,可計算其時態(tài)近似精確度大小或討論其時態(tài)近似精確度函數的變化情況.

      3.1 時態(tài)近似精確度

      對于1.3節(jié)定義的不確定時態(tài)模型元組中的近似精確度度量函數f,現給出形式化定義.

      定義3(時態(tài)近似精確度) 對于不確定的時態(tài)元素,包括不確定時態(tài)粒點、不確定時態(tài)粒區(qū)、不確定時態(tài)跨度,其可規(guī)劃的確定的程度稱為時態(tài)近似精確度,記為f∈[0,1],根據時態(tài)粗糙集,定義時態(tài)近似精確度:

      (1)

      3.2 不確定時態(tài)跨度的近似精確度計算

      圖4 的粗糙集劃分及細化等價形式Fig.4 The division of and its detailing

      (2)

      (3)

      圖5 的粗糙集劃分及等價形式Fig.5 The division of and its detailing

      圖6 的粗糙集劃分及細化形式Fig.6 The division of and its detailing

      (4)

      4 結束語

      本文研究了不確定時態(tài)的語義處理及近似計算等問題.不確定時態(tài)跨度是一種特殊的時態(tài)元素,只有數量關系上的大小之分而沒有空間上的前后位置關系之別,論文提出了將不確定語義進行轉換的思想,并對其進行粒度刻畫,使蘊含不確定語義的時態(tài)跨度可以參與運算,提出了時態(tài)粗糙集在不確定時態(tài)跨度離散化的前提下將其中確定的元素和不確定的元素區(qū)分開來,并對其時態(tài)精確度進行了近似計算.文章下一階段的研究方向是將不確定時態(tài)跨度進行相應的綁定操作,賦予其時間軸上具體的涵義.

      [1] 孟小峰,慈祥.大數據管理:概念、技術與挑戰(zhàn)[J].計算機研究與發(fā)展,2013,50(1):146-169.

      Meng X F, Ci X. Big data management: Concepts, Techniques and Challenges[J]. Journal of Computer Research and Development,2013, 50(1):146-169.

      [2] 李建中,劉顯敏.大數據的一個重要方面數據可用性[J].計算機研究與發(fā)展,2013,50(6):1147-1162.

      Li J Z, Liu X M. An important aspect of big data: data usability[J].Journal of Computer Research and Development,2013, 50(6):1147-1162.

      [3] Vicente-Diez M T, Martinez P. Temporal semantics extraction for improving web search[C]∥DEXA’09. 20th International Workshop on Database and Expert Systems Application.Atlanta: IEEE, 2009: 69-73.

      [4] Taylor S E, Bernard M L, Verzi S J, et al. Temporal semantics: An adaptive resonance theory approach[C]∥IJCNN 2009. International Joint Conference on Neural Networks.Atlanta: IEEE, 2009: 3111-3117.

      [5] Khatri V, Ram S, Snodgrass R, et al. Capturing Telic/Atelic temporal data semantics: Generalizing conventional conceptual models[J].IEEE Transactions on Knowledae and Data Engineering,2012, 26(3):528-548.

      [6] Chountas P, Petrounias I. Modelling and representation of uncertain temporal information [J]. Requirements Engineering, 2000, 5(3): 144-156.

      [7] 王國胤,張清華.不同知識粒度下粗糙集的不確定性研究[J].計算機學報,2008,31:1588-1598.

      Wang G Y, Zhang Q H. Uncertainty of rough sets in different knowledge granularities[J]. Chinese Journal of Computers, 2008, 31(9):1588 -1598.

      [8] 王國胤,張清華,馬希驁,等.知識的不確定性問題的粒計算模型[J].軟件學報,2011,22(4):676-694.

      Wang G Y, Zhang Q H, Ma X A, et al. Granular computing models for knowledge uncertainty[J]. Journal of Software, 2011, 22(4): 676-694.

      [9] 左亞堯,湯庸,舒忠梅,等.時態(tài)的粒度刻畫及演算問題研究[J].計算機科學,2010,37(12): 114-119.

      Zuo Y Y, Tang Y, Shu Z M, et al. Research on the characterization and the calculus of temporal granularities[J]. Journal of Computer Science,2010, 37 (12) : 114-119.

      [10] 左亞堯,湯庸,舒忠梅.基于粒度層次映射轉換的時態(tài)粒點差運算方法[J].計算機研究與發(fā)展,2012,49(11): 2320-2327.

      Zuo Y Y, Tang Y, Shu Z M. Subtraction operation between temporal points with granularities based on granularity hierarchy mapping[J].Journal of Computer Research and Development,2012, 49(11): 2320-2327.

      [11] Emrich T, Kriegel H P, Mamoulis N, et al. Querying uncertain spatio-temporal data[C] ∥ 2012 IEEE 28th International Conference on Data Engineering (ICDE).Arlington,Virginia USA: IEEE, 2012: 354-365.

      [12] Huang Z Q. Fuzzy temporal interval relationship based on interval-Valued fuzzy sets[C]∥Proceedings of the Fourth International Conference on Fuzzy Systems and Knowledge Discovery.Haikou:IEEE,2007:169-172.

      [13] Allen J F. Maintaining knowledge about temporal intervals[J]. Communications of the ACM, 1983, 26(11): 832-843.

      [14] Yao Y Y. Interval sets and interval-set algebras[C]∥ICCI’09. 8th IEEE International Conference on Cognitive Informatics.Hong Kong:IEEE, 2009:307-314.

      [15] Li H X, Wang M H, Zhou X Z, et al. An interval set model for learning rules from incomplete information table[J]. International Journal of Approximate Reasoning, 2012,53(1):24-37.

      [16] Pawlak Z. Rough sets[J]. International Journal of Computer & Information Sciences, 1982,11(5): 341-356.

      [17] Pawlak Z. Rough sets:Theoretical aspects of reasoning about data[M].San Francisco:Kluwer Academic Publi shers,1992.

      [18] 李嵐,金朝永.一類多變量不確定非線性系統(tǒng)的自適應模糊監(jiān)督控制[J].廣東工業(yè)大學學報,2012,29(2):79-84.

      Li L,Jin C Y.Adaptive fuzzy control for a class of uncertain nonlinear MIMO systems with supervisory control performance[J]. Journal of Guangdong University of Technology,2012, 29(2):79-84.

      [19] 呂丹,吳孟達, 張學志.可拓集合與粗糙集合[J].廣東工業(yè)大學學報,2005,22(4):120-123.

      Lv D,Wu M D,Zhang X Z.Extension and rough set[J]. Journal of Guangdong University of Technology,2005,22(4):120-123.

      Semantic Processing and Approximation Calculation Based on Rough Set of Uncertain Temporal Span

      Zuo Ya-yao, Chen Lei, Feng Chao-yong

      Presentation and processing of uncertain temporal which contains semantics are important issues in uncertain temporal information processing and natural language processing. Uncertain temporal span is an important part of uncertain temporal, however, the uncertain semantics is the root of uncertainty. This paper proposes the idea of converting the uncertain semantics to the forms existing in neighborhoods or intervals that could be calculated and described on the granularity level. At the same time, a tuple model was given to render uncertain temporal span to join the calculation. Then a temporal rough set is suggested to divide the certain or uncertain elements of temporal span according to lower approximation and upper approximation. Finally, the approximate accuracy calculation of uncertain temporal span is presented.

      uncertain temporal span; semantic; temporal granularity; temporal rough set; approximation calculations

      2014- 04- 16

      國家自然科學基金資助項目(60970044);廣東省自然科學基金資助項目(S2011040004281,S2013010014457)

      左亞堯(1974-),男,副教授,博士,碩士生導師,主要研究方向為時態(tài)信息處理、粒度計算、數據倉庫與數據挖掘.

      10.3969/j.issn.1007- 7162.2015.01.020

      TP301

      A

      1007-7162(2015)01- 0098- 05

      (School of Computers, Guangdong University of Technology, Guangzhou 510006, China)

      猜你喜歡
      精確度粗糙集時態(tài)
      基于Pawlak粗糙集模型的集合運算關系
      超高清的完成時態(tài)即將到來 探討8K超高清系統(tǒng)構建難點
      研究核心素養(yǎng)呈現特征提高復習教學精確度
      “硬核”定位系統(tǒng)入駐兗礦集團,精確度以厘米計算
      過去完成時態(tài)的判定依據
      多?;植诩再|的幾個充分條件
      雙論域粗糙集在故障診斷中的應用
      兩個域上的覆蓋變精度粗糙集模型
      現在進行時
      海外英語(2013年4期)2013-08-27 09:38:00
      近似數1.8和1.80相同嗎
      雷州市| 汾西县| 那曲县| 青州市| 皮山县| 汾阳市| 寿光市| 湖北省| 临高县| 鄯善县| 西青区| 金华市| 雅安市| 治多县| 扎兰屯市| 淮北市| 铜鼓县| 阳山县| 祁门县| 玉环县| 沂源县| 随州市| 江陵县| 偃师市| 景德镇市| 当涂县| 无棣县| 横峰县| 蒙自县| 琼中| 丽江市| 利津县| 铜山县| 买车| 阿鲁科尔沁旗| 柳江县| 灵台县| 玉屏| 通州市| 陇西县| 鹤庆县|