舒羚,安毅,王曉晗,秦衛(wèi)普,楊琳,劉向東
(1.浙江理工大學材料與紡織學院,杭州310018;2.哈爾濱卷煙廠,哈爾濱150001)
選擇吸附性活性炭顆粒的制備及性能
舒羚1?,安毅2?,王曉晗2,秦衛(wèi)普2,楊琳2,劉向東1*
(1.浙江理工大學材料與紡織學院,杭州310018;2.哈爾濱卷煙廠,哈爾濱150001)
根據(jù)非溶劑致相分離的原理,使用醋酸纖維素(cellulose acetate,CA)/丙酮/水3組分溶液于活性炭顆粒表面被覆多孔CA膜,并對改性后活性炭顆粒的吸附性能進行了研究.結(jié)果表明,這種多孔CA改性活性炭顆粒對氣化狀態(tài)和氣溶膠狀態(tài)的芘、肉桂腈、苯酚等有害物質(zhì)的吸附量均高于活性炭原樣,而對苯甲酸、麝香草酚等香味成分的吸附量均低于活性炭原樣,表現(xiàn)出較好的選擇吸附性.其中,對氣化狀態(tài)苯酚的吸附量相對于活性炭原樣提高了17%,對苯甲酸的吸附量降低了60%;而對氣溶膠狀態(tài)苯酚的吸附量相對于活性炭原樣提高了78%,對麝香草酚的吸附量降低了88%.
活性炭;醋酸纖維素;非溶劑致相分離;吸附
SummaryActivated carbons(AC)are effective adsorbents for removal of a wide variety of organic pollutants in aqueous media or gaseous environments.Their high adsorption capacity largely depends on the well-developed internal pore structure,surface area and special surface reactivity.However,general AC have not selective adsorption ability,which are often required in many practical uses such as reducing certain harmful chemicals from mainstream cigarette smoke. Therefore,modification to endow AC with selective adsorptivity is important and attractive.
Based on the findings of nonsolvent induced phase separation from a cellulose acetate(CA)ternary solution in a mixed solvent of acetone and water,we successfully covered a CA porous film on the surface of AC particles. Scanning electron microscopy(SEM)was used to observe the surface morphology of the CA films,and Brunner-Emmett-Teller(BET)measurement was used to characterize the surface area of the modified AC particles.The experimental results showed that the coverage rate of the porous CA film with an average pore size about 426 nm on the AC particles was over 80%,and the surface area of the modified AC particles(672 m2/g)was lower than that of the original AC(834 m2/g)used.
To investigate the selective adsorption property,pyrene,cinnamonitrile,benzene,phenol,benzoic acid,thymol and vanillin,which are the typical chemicals in the mainstream cigarette smoke,were selected as the model compounds in the simulating adsorption tests.For the gas adsorption experiments,the chemicals(each 0.1 g)were dissolved in chloroform(1.5 m L).Sixty millilitres of the mixed solution was dropped to a ball of cotton fiber(0.1 g),and put in a closed container after the chloroform had been volatilized.The control sample of the original AC and the modified one(each 0.2 g)were put in the closed container with the same distance(10 cm)to the cotton ball for 24 hours.For the aerosol adsorption experiments,the chemicals(each 0.1 g)were dissolved in acetone(15 m L).One point five millilitres of the mixed solution was uniformly sprayed to the tobacco(0.55 g)taken from a cigarette product,and burned in the closed container.Similar AC adsorption tests were carried out for 12 hours. These two tests were all repeated five times and the obtained samples were put together respectively.All adsorption quantities of the AC samples were analyzed by high performance liquid chromatography(HPLC)method.
The adsorption results,both in gas and aerosol conditions,indicated that the modified AC particles could absorb more harmful substances,i.e.,pyrene,cinnamonitrile,phenol,but much fewer aroma components,i.e.,benzoic acid,thymol,than the original AC.Contrasted with the original AC in gas adsorption test,the adsorption capacity of the modified AC increased about 17%for phenol but reduced about 60%for benzoic acid.In aerosol condition,it increased about 78%for phenol but decreased 88%for thymol.
In conclusion,this study provides a novel surface modification method for AC by covering CA porous film on the surface of AC following the nonsolvent induced phase separation mechanism.It demonstrates that the modified AC have improved the selective adsorption property.One of the potential applications of the modified AC particles is the use as a cigarette filter additive to remove harmful chemicals with little loss on the flavor of the cigarette products.
活性炭具有特殊的微晶結(jié)構(gòu),孔隙豐富,比表面積大,吸附能力強、速度快,飽和后可再生,能夠吸附氣體、膠態(tài)物質(zhì)以及有機色素等[1-3].作為一種優(yōu)良吸附劑,活性炭已廣泛應用于制糖、醫(yī)藥、食品、化工、國防、農(nóng)業(yè)以及人們的衣食住行中[4-8].
活性炭的吸附性能取決于其表面的物理化學性質(zhì).物理性質(zhì)包括比表面積和孔隙結(jié)構(gòu),主要影響活性炭的吸附容量;化學性質(zhì)即活性炭表面負載的官能團種類,主要影響活性炭與極性或非極性吸附質(zhì)之間的相互作用.活性炭的物理化學性質(zhì)與原材料、生產(chǎn)工藝、后處理技術(shù)等密切相關(guān).市售活性炭的吸附性能受到原料和生產(chǎn)工藝的制約[9-10],在實際應用中具有一定的局限性.因此,對活性炭的改性尤為重要.
目前,活性炭的改性技術(shù)主要有物理改性和化學改性2類方法.物理改性主要是通過高溫加熱,改變活性炭的比表面積、孔徑、孔容等物理特性,從而提高其吸附效率.Attia等[11]對活性炭分別進行400℃和600℃高溫處理,改性后的活性炭比表面積增加,總孔容增加,但活性炭表面化學特性沒有顯著變化.Rangel-Mendez等[12]采用蒸汽或蒸汽與甲烷混合氣體高溫(1 000℃)改性處理活性炭,活性炭微孔孔容增加50%~70%,中孔孔容增加65%~ 90%.Dawson等[13]以椰殼為原料,用氫氧化鈉水溶液預處理,使木質(zhì)素部分溶解,然后再經(jīng)炭化、活化后制得具有一定比例的微孔和中孔的活性炭.在單支卷煙中加入60 mg該活性炭,主流煙中揮發(fā)性有機物質(zhì)的平均去除率相對普通活性炭提高了44%.左宋林等[14]以固-固混合的方式,用氫氧化鉀活化石油焦制備了比表面積達3 000 m2/g、孔容達1.8 cm3/g、中孔孔容占31%的高比表面積和高孔容活性炭,其吸附性能是普通活性炭的2~3倍.田生友等[15]采用微波輻射改性活性炭研究其對CS2吸附性能的影響,結(jié)果表明,在微波輻射功率400 W、輻射時間3 min的條件下,改性活性炭產(chǎn)品對CS2的靜、動態(tài)吸附量分別達到0.564 g/g和0.542 g/g,并發(fā)現(xiàn)改性后的活性炭發(fā)生縮孔,微孔數(shù)量增加,微孔孔容增加了28%,且活性炭表面堿性基團數(shù)量增多,酸性基團數(shù)量減少.
化學改性主要是通過酸改性、堿改性、負載改性、等離子體改性等方法來改變活性炭表面的化學結(jié)構(gòu),使其對某種物質(zhì)的吸附性能得到提高,從而達到選擇吸附效果[16].Girgis等[17]采用磷酸對活性炭進行改性,使活性炭表面形成含氧官能團,改性后的活性炭對Pb2+的吸附量可達299 mg/g,約為改性前的2倍.Shafeeyan等[18]采用氧化預處理、800℃高溫氨改性的方式對活性炭進行改性,改性后活性炭微孔結(jié)構(gòu)增加、表面酸性含氧官能團減少、表面堿性增強,對二氧化碳的吸附量高達73.5 mg/g,約為改性前的1.5倍.Agarwal等[19]對活性炭進行氯化鐵負載改性,研究其對廢水中苯酚和氰化物的去除效果,結(jié)果表明,負載處理后的活性炭對苯酚的去除率從73%增加到92%,對氰化物的去除率從76%增加到96%.Adhoum等[20]采用Ag和Ni負載改性活性炭去除水溶液中的氰化物,結(jié)果表明,Ag負載改性的活性炭對氰化物的去除量達到27 mg/g,Ni負載改性的活性炭對氰化物的去除量達到16.5 mg/g,分別為改性前的4倍和2倍.Qu等[21]采用介電阻擋放電等離子體改性處理活性炭,比較不同載氣(O2、N2)等離子體改性活性炭的表面特性及其對五氯苯酚吸附能力的差異,結(jié)果表明,等離子體的作用可去除活性炭表面微粒,使其表面變得光滑. O2等離子體改性后的活性炭比表面積增加了6.2%,對五氯苯酚的吸附率提高了約10%;N2等離子體改性后的活性炭比表面積降低了6.6%,對五氯苯酚的吸附率減少了約15%.
吸煙固然有害健康,但加強宣傳并推動眾多煙民戒煙是一項長期工作,短時間內(nèi)不可能產(chǎn)生顯著效果.香煙作為一種嗜好商品,在我國仍具有深厚市場基礎(chǔ).為了減輕吸煙對現(xiàn)有吸煙嗜好者身體的危害,研究和推廣香煙產(chǎn)品的降焦減害技術(shù)具有重大的健康和衛(wèi)生意義.
本研究提出一種新的活性炭改性方法,該方法采用非溶劑致相分離法,使用醋酸纖維素(cellulose acetate,CA)/丙酮/水3組分溶液,制備了CA多孔薄膜[22],并將這種CA多孔膜成功被覆在活性炭表面,得到一種表面具有多孔CA覆蓋膜的新型活性炭多孔顆粒.以苯、芘、肉桂腈、苯酚等有害物質(zhì)和香草醛、苯甲酸、麝香草酚等香味成分對這種多孔顆粒的吸附性能進行模擬測試,結(jié)果表明,這種多孔顆粒對有害物質(zhì)的吸附量高于活性炭顆粒,而對香味成分的吸附量則小于活性炭顆粒.這種新型多孔顆??梢詰玫骄頍煘V嘴中,能夠在較小影響卷煙吸煙口感的前提下去除主流煙氣中的有害物質(zhì).
1.1 材料
醋酸纖維素(摩爾質(zhì)量30 000 g/mol,乙酰含量39.8%)購自上海晶純化學品有限公司.丙酮(純度99%)購自上?;瘜W試劑有限公司,用作溶劑.去離子水用作非溶劑.活性炭由廠家提供(椰殼炭,80目,松密度0.431 g/cm3,比表面積833.82 m2/g).苯、芘、肉桂腈、苯酚、香草醛、苯甲酸、麝香草酚等均為分析純,購自上海晶純化學品有限公司.煙絲來自利群牌卷煙.其他化學試劑均購自杭州米克化學試劑有限公司,規(guī)格均為分析純.
1.2 性能表征
活性炭顆粒樣品表面形貌通過場發(fā)射掃描電鏡觀察(FE-SEM,ULTRA-55,牛津,英國),加速電壓2 k V,樣品鍍金處理.平均氣孔尺寸通過統(tǒng)計掃描電子顯微鏡(scanning electron microscopy,SEM)照片上不特定區(qū)域超過100個孔的尺寸得到.樣品顆粒的比表面積通過Brunner-Emmett-Teller(BET)比表面積測試儀測試(3H-2000PSI,貝士德儀器科技有限公司,北京).以氮氣為吸附質(zhì),吸附溫度-196℃,樣品質(zhì)量700 g,脫氣溫度200℃,脫氣時間120 min.松密度通過測量50 m L樣品獲得,取3次測量的平均值.
1.3 高效液相色譜法測試
活性炭顆粒樣品對各種物質(zhì)的吸附量通過高效液相色譜法(high performance liquid chromatograph,HPLC)測定(HP1100,美國安捷倫科技公司,美國),色譜柱型號為ZORBAXSB-C18,粒徑5μm,規(guī)格4.6 mm×150 mm.HPLC測試時根據(jù)標樣的出峰位置來判斷樣品的位置.標樣的配制按不同測試方法分為4組:苯酚、苯甲酸、麝香草酚為一組(Ⅰ),均為100 mg/L;芘(10 mg/L)為一組(Ⅱ);香草醛(100 mg/L)為一組(Ⅲ);苯(600 mg/L)和肉桂腈(100 mg/L)為一組(Ⅳ).
色譜條件:Ⅰ的流動相為水和甲醇,水與甲醇體積比由4∶1到1∶4的梯度測試時間6 min,檢測波長215 nm.Ⅱ的流動相為水(10%)和甲醇(90%),測試時間6 min,檢測波長220 nm.Ⅲ的流動相為水(70%)和甲醇(30%),測試時間12 min,檢測波長210 nm.Ⅳ的流動相為水(30%)和甲醇(70%),測試時間10 min,檢測波長215 nm.各組流速均為1 m L/min,柱溫均為30℃.
1.4 制備多孔CA膜
CA(0.1 g)溶解于丙酮(1.6 m L)中,50℃超聲波處理、反復攪拌,使其完全溶解得到澄清醋酸纖維素丙酮溶液.繼續(xù)加入去離子水0.14 g,產(chǎn)生白色沉淀,50℃超聲波處理、攪拌均勻使該沉淀溶解直至得到澄清溶液.取適量所得3組分溶液旋涂于玻璃板上(2 000 r/min,30 s),得到均勻的多孔CA膜,面積約為2.3 cm2.
1.2 制備表面被覆多孔CA膜的活性炭顆粒
CA(7 g)溶解于丙酮(109 m L)中,磁力攪拌,使其完全溶解.加入去離子水10 m L作為非溶劑攪拌均勻,得到m(CA)∶m(丙酮)∶m(水)=7∶83∶10這3組分溶液.取活性炭顆粒100 g,加入水20 m L進行濕潤預處理,機械攪拌(200 r/min)至均勻.加入上述3組分溶液70 m L,機械攪拌至均勻,平鋪在托盤上,室溫條件靜置6 h,再于60℃真空烘箱內(nèi)干燥10 h,得到CA多孔膜被覆活性炭顆粒.
1.6 氣體吸附實驗
苯甲酸、苯酚、麝香草酚、芘、肉桂腈、苯、香草醛(圖1)各0.1 g溶解于1.5 m L三氯甲烷中,攪拌至完全溶解.滴少量該溶液(0.06 m L)于棉花團(0.1 g)中心,通風干燥2 h,使三氯甲烷揮發(fā).將棉花團放于密閉容器中心,取活性炭和CA改性活性炭樣品顆粒各0.2 g放入密閉容器中,各樣品與棉花團距離相等(10 cm),靜置24 h.上述實驗重復5次,將全部顆粒樣品混合均勻.各顆粒樣品吸附的物質(zhì)通過索氏萃取器以甲醇為溶劑萃取后定容,使用HPLC定量分析.
圖1 用于吸附實驗的化合物分子結(jié)構(gòu)式Fig.1 Chemical structures of the chemicals used in the adsorption experiment
1.7 氣溶膠吸附實驗
苯甲酸、苯酚、麝香草酚、芘、肉桂腈、苯、香草醛各0.1 g溶解于15 m L丙酮中,攪拌至完全溶解.取1.5 m L該溶液與煙絲(0.55 g)混合,攪拌均勻,通風干燥5 h,使丙酮揮發(fā).將燃燒的煙絲放置于密閉容器中心,取活性炭和CA改性活性炭樣品顆粒各2.0 g放入密閉容器中,各樣品與煙絲距離相等(10 cm),靜置12 h(圖2).上述實驗重復5次,將全部顆粒樣品混合均勻.各顆粒樣品吸附的物質(zhì)通過索氏萃取器以甲醇為溶劑萃取后定容,使用HPLC定量分析.
圖2 吸附試驗裝置示意圖Fig.2 Sketch image of the experimental device used in the adsorption tests
2.1 CA改性活性炭的表面形貌與物理性質(zhì)
圖3A所示為m(CA)∶m(丙酮)∶m(水)= 7∶83∶10三元溶液在玻璃板上制備CA膜的SEM照片.從中可以看出,在CA膜上形成了連續(xù)的多孔網(wǎng)狀結(jié)構(gòu),孔層相互交錯,平均孔徑大小約為280 nm,這與我們先前的研究報告結(jié)果一致[22].
在制備表面被覆多孔CA覆蓋膜的活性炭顆粒過程中,我們發(fā)現(xiàn)在加入CA/丙酮/水3組分溶液攪拌前必須先加入一定量的水與活性炭顆粒攪拌均勻進行濕潤預處理,否則不能成孔或成孔效果不好.從圖3B中可以看出,未使用水濕潤預處理的樣品表面形成的是致密的CA膜,無多孔網(wǎng)狀結(jié)構(gòu).這可能是因為活性炭表面本身存在多孔結(jié)構(gòu),與CA/丙酮/水3組分溶液混合時,吸附了體系中的部分水,改變了CA/丙酮/水3組分溶液的組成,使其不能形成多孔結(jié)構(gòu).
圖3C和圖3D所示為被覆多孔CA覆蓋膜的活性炭顆粒表面形態(tài)的SEM照片.這種樣品在制備過程中預先加入20 m L水與活性炭顆粒攪拌均勻進行濕潤預處理.從圖3C中可以看出,覆蓋膜表面形成了連續(xù)的多孔網(wǎng)狀結(jié)構(gòu),平均孔徑大小約為430 nm.圖3D為放大倍數(shù)為200倍時的覆蓋膜照片,從中可以看出,活性炭表面基本被多孔CA膜覆蓋,覆蓋效果很好,覆蓋面積大于80%.其中,凹面的CA膜覆蓋效果最好.
圖3 各種醋酸纖維素多孔薄膜掃描電鏡圖片F(xiàn)ig.3 Scanning electron microscopy images of porous films ofvarious cellulose acetate
表1列出了活性炭原樣和CA改性活性炭樣品的物理性質(zhì).從中可以看出,覆蓋膜的孔徑大于活性炭原樣,BET法測出活性炭原樣平均孔徑為7 nm,而CA改性活性炭樣品平均孔徑為10 nm.此外,由SEM照片統(tǒng)計的CA改性活性炭樣品的平均孔徑為426 nm.被覆多孔CA膜的活性炭顆粒比表面積相對于活性炭原樣有所減少,活性炭原樣比表面積約為834 m2/g,而CA改性活性炭樣品比表面積約為672 m2/g.
表1 改性活性炭的物理性質(zhì)Table 1 Physical properties of the modified AC samples
2.2 氣體吸附性能
表2列出了各活性炭顆粒樣品對部分氣化狀態(tài)下有害物質(zhì)和香味成分的吸附量.從中可以看出,被覆CA多孔覆蓋膜的活性炭顆粒對芘、肉桂腈、苯、苯酚等有害物質(zhì)的吸附量高于活性炭原樣,而對苯甲酸、麝香草酚等香味成分的吸附量低于活性炭原樣,表現(xiàn)出較好的選擇吸附性.此外,這2種顆粒樣品對苯酚、苯甲酸和麝香草酚的吸附量相對于其他化合物都較高,這是由于本實驗是在密閉容器中進行的,樣品吸附的是混合物自然揮發(fā)出的氣體.若化合物易揮發(fā),則分散在密閉容器中的氣體濃度高;反之,則分散在密閉容器中的氣體濃度低.這時,在顆粒的吸附過程中存在吸附競爭,氣體濃度越高越容易被吸附.苯甲酸、苯酚等物質(zhì)沸點相對較低,較易揮發(fā),在密閉容器中氣化的濃度相對較高,因此被吸附的量多;而肉桂腈、芘等物質(zhì)沸點相對較高,不易揮發(fā),在密閉容器中氣化的濃度相對較低,所以被吸附的量相對較少.
表2 改性活性炭對氣化狀態(tài)化合物的吸附效果Table 2 Adsorption effects of the modified AC particles for the gasified chemicals
圖4為活性炭原樣和CA改性活性炭顆粒樣品對部分氣化狀態(tài)下有害物質(zhì)和香味成分的吸附對比(以活性炭原樣的吸附量為100%).從中可以看出,被覆CA多孔覆蓋膜的活性炭樣品對有害物質(zhì)的吸附量高于活性炭原樣,尤其是對苯的吸附,CA改性活性炭顆粒樣品對苯的吸附量相對于活性炭原樣增加了25%.而對香味成分的吸附量,CA改性活性炭顆粒樣品低于活性炭原樣,特別是對苯甲酸的吸附,其吸附量不到活性炭原樣的一半.
圖4 改性活性炭和活性炭原樣對氣化狀態(tài)化合物的吸附對比Fig.4 Comparison on the adsorptivity of the modified activated carbon(AC)particles and the original AC ones for the gasified chemicals
一般而言,比表面積越大,樣品對氣體的吸附量越大[23].在本研究中雖然被覆CA多孔覆蓋膜的活性炭樣品比表面積比活性炭原樣?。ū?),但CA改性活性炭吸附的有害物質(zhì)的量比活性炭原樣高.這可能是因為CA多孔覆蓋膜本身也可以吸附有害物質(zhì),并且CA多孔膜的孔徑較大,對氣體的傳輸性能好,可以充當氣體的傳輸孔,有利于對氣體的吸附,因而提高了其對有害成分的吸附量[23].
2.3 氣溶膠吸附性能
煙絲在燃燒時除部分物質(zhì)被氧化成CO2、CO、H2O外,其他物質(zhì)在800~900℃的高溫區(qū)產(chǎn)生氣態(tài)物質(zhì).隨著溫度迅速下降,揮發(fā)性較低的各種成分隨溫度急劇下降而開始冷凝.懸浮在氣流中的因煙草燃燒所形成的很小的炭粒以及有機物微小的碎片、灰分、離子化的分子等組成微粒.揮發(fā)性低的蒸汽便以此為核心凝結(jié),形成由氣、液、固三相共存的煙霧體系,即氣溶膠[24].
在本試驗中,苯甲酸、苯酚、麝香草酚、芘、肉桂腈、苯、香草醛等物質(zhì)均勻地附著在煙絲表面.隨著煙絲的燃燒,這些化合物與煙氣一并形成氣溶膠分散在密閉容器中.表3列出了各活性炭顆粒樣品對部分氣溶膠狀態(tài)下有害物質(zhì)和香味成分的吸附量.從中可以看出,被覆CA多孔覆蓋膜的活性炭顆粒對氣溶膠狀的有害物質(zhì)的吸附量也是基本高于活性炭原樣,只有對苯的吸附量低于活性炭原樣.而對苯甲酸、麝香草酚等香味成分的吸附量也低于活性炭原樣,這與表2的結(jié)果一致,也表現(xiàn)出較好的選擇吸附性.
圖5為活性炭原樣和CA改性活性炭顆粒樣品對部分氣溶膠狀態(tài)下有害物質(zhì)和香味成分的吸附對比(以活性炭原樣的吸附量為100%).從中可以看出,被覆CA多孔覆蓋膜的活性炭樣品對有害物質(zhì)的吸附量高于活性炭原樣,尤其是對苯酚的吸附,CA改性活性炭顆粒樣品對苯酚的吸附量相對于活性炭原樣提高了78%.而對香味成分的吸附量,CA改性活性炭顆粒樣品低于活性炭原樣,特別是對麝香草酚的吸附,其吸附量僅為活性炭原樣的12%.
表3 改性活性炭對氣溶膠狀態(tài)化合物的吸附效果Table 3 Adsorption effects of the modified AC particles for the aerosol chemicals μg/g
圖5 改性活性炭和活性炭原樣對氣溶膠狀態(tài)化合物的吸附對比Fig.5 Comparison on the adsorptivity of the modified activated carbon(AC)particles and the original AC ones for the aerosol chemicals
在氣溶膠混合物中,有害物質(zhì)沸點相對較高,揮發(fā)性較低,較易凝結(jié),分布在顆粒較大的焦油上;而香味成分沸點相對較低,揮發(fā)性較高,分布在較小的顆粒上.當較大的焦油顆粒被CA改性活性炭顆粒吸附時,CA改性活性炭顆粒表面的孔被堵住,從而含有香味成分的小顆粒物質(zhì)不被吸附.因此,被覆CA多孔覆蓋膜的活性炭顆粒吸附的香味成分較活性炭原樣低,而對有害物質(zhì)的吸附量較活性炭原樣高.
本研究采用非溶劑致相分離法,通過配制一定質(zhì)量比的CA/丙酮/水三元溶液,制備得到多孔CA薄膜,并被覆在活性炭顆粒上,制備了表面具有多孔CA覆蓋膜的新型活性炭顆粒.該改性活性炭顆粒的CA覆蓋膜的覆蓋率大于80%,比表面積672 m2/g,平均孔徑約426 nm.模擬氣體吸附試驗結(jié)果表明,CA改性活性炭對氣化狀態(tài)下的芘、肉桂腈、苯、苯酚等有害物質(zhì)的吸附量高于活性炭原樣,對苯甲酸、麝香草酚等香味成分的吸附量低于活性炭原樣.模擬氣溶膠吸附試驗結(jié)果表明,CA改性活性炭對氣溶膠狀態(tài)下的芘、肉桂腈、苯酚等有害物質(zhì)的吸附量高于活性炭原樣,對苯甲酸、麝香草酚的吸附量低于活性炭原樣.這種改性的新型多孔活性炭顆粒可以應用在卷煙濾嘴中,在去除主流煙氣中有害物質(zhì)的同時又不顯著影響卷煙的口感.
(References):
[1] Alslaibi T M,Abustan I,Ahmad M A,et al.A review:Production of activated carbon from agricultural byproducts via conventional and microwave heating.Journal of Chemical Technology and Biotechnology,2013,88(7):1183-1190.
[2] Chingombe P,Saha B,Wakeman R.Surface modification and characterisation of a coal-based activated carbon. Carbon,2005,43(15):3132-3143.
[3] 張樂忠,胡家鵬,趙升云,等.活性炭改性研究新進展.材料導報:納米與新材料專輯,2009,23(14):435-438.
Zhang L Z,Hu J P,Zhao S Y,et al.Recent advances of research on modified activated carbon.Materials Review:Nano and New Materials,2009,23(14):435-438.(in Chinese with English abstract)
[4] Wigmans T.Industrial aspects of production and use of activated carbons.Carbon,1989,27(1):13-22.
[5] Ioannidou O,Zabaniotou A.Agricultural residues as precursors for activated carbon production:A review. Renewable and Sustainable Energy Reviews,2007,11(9):1966-2005.
[6] Kubota M,Hata A,Matsuda H.Preparation of activated carbon from phenolic resin by KOH chemical activation under microwave heating.Carbon,2009,47(12):2805-2811.
[7] Liu Y,Hu Z,Xu K,et al.Surface modification and performance of activated carbon electrode material.Acta Physico-Chimica Sinica,2008,24(7):1143-1148.
[8] Pereira M F R,Soares S F,órf?o J J,et al.Adsorption of dyes on activated carbons:Influence of surface chemical groups.Carbon,2003,41(4):811-821.
[9] 楊四娥,林建清.活性炭的改性技術(shù)及其應用研究進展.安徽農(nóng)業(yè)科學,2014,42(9):2712-2715. Yang S E,Lin J Q.Review of modification technology of activated carbon and its application.Journal of Anhui Agriculture Sciences,2014,42(9):2712-2715.(in Chinese with English abstract)
[10] Ogata F,Iwata Y,Kawasaki N.Lead(Ⅱ)adsorption on chemically modified activated carbon in aqueous solution.e-Journal of Surface Science and Nanotechnology,2013,11:93-98.
[11] Attia A A,Rashwan W E,Khedr S A.Capacity of activated carbon in the removal of acid dyes subsequent to its thermal treatment.Dyes and Pigments,2006,69(3):128-136.
[12] Rangel-Mendez J,Cannon F.Improved activated carbon by thermal treatment in methane and steam:Physicochemical influences on MIB sorption capacity.Carbon,2005,43(3):467-479.
[13] Dawson E A,Parkes G M,Branton P.Synthesis of vegetable-based activated carbons with mixed micro-and mesoporosity for use in cigarette filters.Adsorption Science&Technology,2012,30(10):859-866.
[14] 左宋林,滕勇升.KOH活化石油焦制備工藝對活性炭吸附性能的影響.南京林業(yè)大學學報:自然科學版,2008,32(3):48-52. Zuo S L,Teng Y S.Effects of technological parameters on the adsorption properties of activated carbons from petroleum coke by KOH activation.Journal of Nanjing Forestry University:Natural Sciences Edition,2008,32(3):48-52.(in Chinese with English abstract)
[1 5] 田生友,梅華,吳文艷.微波-浸漬聯(lián)合改性活性炭對CS 2吸附性能的研究.石油化工,2011,40(12):1348-1354. Tian S Y,Mei H,Wu W Y.Adsorbility of CS2on modified activated carbon by impregnation-microwave.Petrochemical Technology,2011,40(12):1348-1354.(in Chinese with English abstract)
[16] Zhao N,Wei N,Li J,et al.Surface properties of chemically modified activated carbons for adsorption rate of Cr(Ⅵ). Chemical Engineering Journal,2005,115(1):133-138.
[17] Girgis B S,Attia A A,F(xiàn)athy N A.Modification in adsorption characteristics of activated carbon produced by H3PO4under flowing gases.Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,299(1):79-87.
[18] Shafeeyan M S,Daud W M A W,Houshmand A,et al. Ammonia modification of activated carbon to enhance carbon dioxide adsorption:Effect of pre-oxidation.Applied Surface Science,2011,257(9):3936-3942.
[19] Agarwal B,Thakur P,Balomajumder C.Use of ironimpregnated granular activated carbon for Co-adsorptive removal of phenol and cyanide:Insight into equilibrium and kinetics.Chemical Engineering Communications,2013,200(9):1278-1292.
[20] Adhoum N,Monser L.Removal of cyanide from aqueous solution using impregnated activated carbon.Chemical Engineering and Processing:Process Intensification,2002,41(1):17-21.
[21] Qu G Z,Li J,Liang D L,et al.Surface modification of a granular activated carbon by dielectric barrier discharge plasma and its effects on pentachlorophenol adsorption. Journal of Electrostatics,2013,71(4):689-694.
[22] Wang C,An Y,Li Q,et al.Nonsolvent effects on morphology of cellulose acetate films prepared by dry-cast process.Journal of Macromolecular Science:Part B,2012,51(11):2266-2275.
[23] Branton P,Lu A H,Schüth F.The effect of carbon pore structure on the adsorption of cigarette smoke vapour phase compounds.Carbon,2009,47(4):1005-1011.
[24] 金聞博,李承忠,戴亞.煙氣膠體化學.合肥:安徽教育出版社,1990:26-38. Jin W B,Li C Z,Dai Y.The Cigarette Smoke Colloid Chemistry.Hefei:Anhui Education Press,1990:26-38.(in Chinese)
Simple preparation method and selective adsorption performance of novel activated carbon particles.
Journal of Zhej iang Universi ty(Agric.&Li fe Sci.),2015,41(1):111-118
Shu Ling1?,An Yi2?,Wang Xiaohan2,Qin Weipu2,Yang Lin2,Liu Xiangdong1*(1.College of Materials and Textile,Zhejiang Sci-Tech University,Hangzhou 310018,China;2.Harbin Cigarette Factory,Harbin 150001, China)
activated carbon;cellulose acetate;nonsolvent induced phase separation;adsorption
TQ 424
A
10.3785/j.issn.1008-9209.2014.07.281
中國煙草實業(yè)發(fā)展中心科技項目(ZYSY-2012-16);浙江省自然科學基金資助項目(LY12E03007).
劉向東,E-mail:liuxd@zstu.edu.cn
聯(lián)系方式:舒羚,E-mail:shuling2029@163.com;安毅,E-mail:easeme1201@163.com.?為共同第一作者
2014 07 28;接受日期(Accepted):2014 09 28;
日期(Published online):2015 01 19 URL:http://www.cnki.net/kcms/detail/33.1247.S.20150119.1708.010.html