陳 萌,郭 浩,楊江濤,趙苗苗,張斌珍,劉 俊,薛晨陽,張文棟,唐 軍
(中北大學(xué)儀器科學(xué)與動(dòng)態(tài)測試教育部重點(diǎn)實(shí)驗(yàn)室,山西太原 030051)
?
面向微流控封裝應(yīng)用的PDMS表面無裂紋改性
陳 萌,郭 浩,楊江濤,趙苗苗,張斌珍,劉 俊,薛晨陽,張文棟,唐 軍
(中北大學(xué)儀器科學(xué)與動(dòng)態(tài)測試教育部重點(diǎn)實(shí)驗(yàn)室,山西太原 030051)
基于PDMS的微流控系統(tǒng)的鍵合封裝技術(shù)需要PDMS表面具有良好的粘合力和親水性,作為PDMS表面改性技術(shù),等離子體處理工藝(Plasma)具有高效、快捷、操作簡單等特點(diǎn),但它存在“回復(fù)”和裂紋問題。文中介紹了一種結(jié)合Plasma和表面活性劑十二烷基硫酸鈉(SDS)的二次處理工藝。先利用Plasma技術(shù)對PDMS表面進(jìn)行無裂紋親水處理,再利用十二烷基硫酸鈉溶液對其表面進(jìn)行二次處理。既可以避免PDMS表面出現(xiàn)裂紋,又可以使PDMS表面親水性長久的保持。通過實(shí)驗(yàn)驗(yàn)證,兩次處理后接觸角減小為21°,表面粗糙度達(dá)到1.71 nm,且表面無裂紋,并經(jīng)過鍵合測試后,經(jīng)過二次處理的PDMS與玻璃和PDMS實(shí)現(xiàn)了長久的鍵合,驗(yàn)證了該工藝技術(shù)可行,為微流控系統(tǒng)的鍵合封裝提供了技術(shù)基礎(chǔ)。
微流控封裝;PDMS;氧等離子體;十二烷基硫酸鈉;表面改性
微流體系統(tǒng)被廣泛地應(yīng)用于核酸檢測、蛋白質(zhì)分析、藥物分析與篩選以及單分子檢測等方面,成為生物、醫(yī)藥等領(lǐng)域的主要技術(shù)之一[1-2]?;诠饪毯蛙浌饪碳夹g(shù)制備的PDMS基微流體芯片工藝兼容性好、可重復(fù)性高、成本低[3-4]。同時(shí),結(jié)合封裝技術(shù),微流體芯片與玻璃、硅片、聚二甲基硅氧烷(PDMS)等材料集成,使微流體系統(tǒng)向著成品化、集成化、多樣化發(fā)展[5]。
然而,PDMS是一種表面疏水、低粘性的材料,需要進(jìn)行表面改性處理,提高親水性[6-7]。等離子體工藝(Plasma)是PDMS表面改性的主要技術(shù)之一,相比其他技術(shù),其工藝簡單、易操作、環(huán)境要求低、處理效果好[8-12]。但Plasma處理后,PDMS的親水性會(huì)發(fā)生“回復(fù)”現(xiàn)象[13],且長時(shí)間處理會(huì)有裂紋,裂紋大小為300 nm左右,與微流體通道在一個(gè)數(shù)量級,直接影響著微流體器件的性能。
十二烷基硫酸鈉(SDS)屬于陰離子型表面活性劑,其分子由非極性的憎水基與極性的親水基組成,在無催化劑、常溫條件下,分子的一端易與Si-O鍵發(fā)生縮合反應(yīng),形成Si-O-Si-SDS鏈,而另一端為親水端[14],因此,結(jié)合SDS與Si-O鍵反應(yīng)活性高,將Plasma處理過的PDMS進(jìn)行二次改性處理,實(shí)現(xiàn)PDMS表面無裂的永久親水改性。
文中通過控制Plasma工藝參數(shù),在保證PDMS表面無裂紋的情況下,聯(lián)合十二烷基硫酸鈉(SDS)二次處理PDMS表面,使PDMS表面親水性長久的保持。通過PDMS與玻璃、PDMS鍵合測試,實(shí)現(xiàn)了PDMS與玻璃、PDMS等材料的永久性鍵合。
1.1 PDMS制備
將Sylgard 184型PDMS按前聚物和固化劑按10∶1的質(zhì)量比混合于燒杯中,攪拌10~15 min后倒入培養(yǎng)皿,置于真空干燥箱中,在真空狀態(tài)下常溫靜置1 h,進(jìn)行第一次脫泡;脫泡完成后將其平鋪在玻璃板上,再次置于真空干燥箱中,在真空狀態(tài)下常溫靜置1~2 h進(jìn)行第二次脫泡;最后放入加熱箱在65 ℃下固化3 h后取出,切割成3 cm×1 cm的長塊,經(jīng)去離子水、丙酮、無水乙醇、去離子水分別超生10 min后,用氮?dú)獯蹈?,放入真空干燥箱中保存待用?/p>
1.2 實(shí)驗(yàn)儀器及測試
實(shí)驗(yàn)中采用ION40型等離子體系統(tǒng)對PDMS表面進(jìn)行第一次無裂紋處理。用DATAPHYSICS-OCA15EC型接觸角測試儀測量水在PDMS樣品表面的靜態(tài)接觸角,滴在PDMS表面的水滴體積為1 μL,為了減小測量誤差,取同一樣品表面5個(gè)不同位置的點(diǎn),最后計(jì)算這些點(diǎn)的平均值。利用CSPM5500系列掃描探針顯微鏡(AFM)觀察處理前后PDMS表面形貌。AFM工作模式為輕敲式,掃描頻率為2 Hz,掃描范圍設(shè)為19 μm×19 μm.
2.1 Plasma工藝
等離子體處理技術(shù)改善活化性質(zhì)不活潑的聚合物表面,增強(qiáng)界面的交互作用,以使單層分子更容易擴(kuò)散到其表面[15]。通過該方法使PDMS表面疏水的Si-O鍵轉(zhuǎn)變?yōu)橛H水的Si-OH基團(tuán),形成SiO/SiO2,改善了PDMS表面親水性。
(a)隨處理時(shí)間變化
(b)隨處理功率變化
(c)隨氧氣流量變化
(d)隨放置時(shí)間的變化
(e)裂紋圖
圖1(a)為不同處理時(shí)間后靜態(tài)接觸角變化圖,從圖中可知,隨處理時(shí)間的增大,靜態(tài)接觸角從108°減小到0°,變成超親水特性,但是當(dāng)時(shí)間超過20 s后,表面出現(xiàn)大量裂紋,如圖1(e)所示。同理,圖1(b)、圖1(c)為不同功率和氣流量變化下,PDMS表面親水性的變化規(guī)律,當(dāng)超過一定閾值后,PDMS表面同樣出現(xiàn)大量裂紋。
圖1(d)為Plasma工藝處理后靜態(tài)接觸角的“回復(fù)”現(xiàn)象,該現(xiàn)象使得鍵合封裝的時(shí)間大為減少,因此,在短時(shí)間、低功率等工藝參數(shù)條件下,Plasma工藝能快速、簡潔的改善PDMS表面親水性,且無裂紋。
2.2 二次處理工藝
實(shí)驗(yàn)中采用SDS對Plasma處理后表面無裂紋的PDMS進(jìn)行了二次處理[14],圖2為處理前后PDMS的表面形貌和靜態(tài)接觸角。從圖中可知,PDMS未處理時(shí),接觸角為108°(圖2 (a)),Plasma無裂紋處理后,接觸角減小為72°(圖2 (b)),經(jīng)過二次處理后,接觸角減小到21°(圖2(c)),且放置48 h后PDMS表面接觸角無變化,改善了PDMS表面親水性的“回復(fù)”現(xiàn)象,同時(shí),PDMS未處理時(shí),表面粗糙度為1.24 nm(圖2(d)),Plasma無裂紋處理后,表面粗糙度增加為1.48 nm(圖2(e)),經(jīng)過二次處理后,表面粗糙度增加到1.71 nm(圖2(f)),經(jīng)過二次處理后,PDMS表面粗糙度由1.24 nm增大到1.71 nm,PDMS的表面活性增大,可鍵合能力提高。
(a)PDMS未處理靜態(tài)接觸角
(b)PDMS無裂紋處理靜態(tài)接觸角
(c)PDMS經(jīng)過二次處理靜態(tài)接觸角
(d)PDMS未處理表面形貌
(e)PDMS無裂紋處理表面形貌
(f)PDMS經(jīng)過二次處理表面形貌
[HJ78x〗2.3 鍵合測試
實(shí)驗(yàn)中通過鍵合測試[16-19],進(jìn)一步研究了不同工藝處理后PDMS的表面改性結(jié)果。將PDMS黏貼在表面清潔的載玻片和另一片處理過的PDMS上,放入空氣壓力0.1不從心MPa的真空干燥箱中進(jìn)行真空鍵合。圖3為不同修飾條件下PDMS與載玻片、PDMS鍵合48 h后的結(jié)果圖。從圖中可知,經(jīng)Plasma單獨(dú)處理的PDMS由于“回復(fù)”問題,沒有與載玻片鍵合成功,而經(jīng)過二次處理后的PDMS實(shí)現(xiàn)了與載玻片和另一片PDMS的永久性鍵合。
(a)只有Plasma處理后的PDMS與玻璃的鍵合(b)二次處理過的PDMS與玻璃的鍵合(c)二次處理過的PDMS與PDMS的鍵合
圖3 PDMS與玻璃、PDMS鍵合效果圖
文中詳細(xì)研究了Plasma工藝參數(shù)對PDMS表面親水性和裂紋的影響,結(jié)合SDS對Si-OH基團(tuán)的高活性,優(yōu)化Plasma工藝參數(shù),對PDMS表面進(jìn)行了聯(lián)合親水性處理,實(shí)現(xiàn)了PDMS表面無裂紋親水性改善,通過與玻璃、PDMS的鍵合,實(shí)現(xiàn)了對PDMS表面的永久性改善,為基于PDMS的微流體系統(tǒng)的封裝工藝提供了良好的改性技術(shù)。
[1] ZHOU J W,ELLIS A V,VOELCKER N H.Recent developments in PDMS surface modification for microfluidic devices.Electrophoresis,2010,31(1):2-16
[2] ZHOU J W,KHODAKOV D A,ELLIS A V,et al.Voelcker.Surface modification for PDMS-based microfluidic devices.Electrophoresis,2012,33(1):89-104.
[3] BOSQ N,GUIGO N,PERSELLO J,et al.Melt and glass crystallization of PDMS and PDMS silica nanocomposites.Phys Chem Chem Phys,2014,16(17):7830-7840.
[4] DESTGEER G,LEE K H,JUNG J H,et al.Continuous separation of particles in a PDMS microfluidic channel via travelling surface acoustic waves (TSAW).Lab On a Chip,2013,13(21):4210-4216.
[5] SILVA M N,DESAIR,ODDE D J.Micro-Patterning of Animal Cells on PDMS Substrates in the Presence of Serum without Use of Adhesion Inhibitors.Biomedical Microdevices,2004,6(3):219-222.
[6] TESTA G,PERSICHETTI G,SARRO P M,et al.A hybrid silicon-PDMS optofluidic platform for sensing applications.Biomedical Optics Express,2014,5(2):417-426.
[7] JO M C,GULDIKEN R.Effects of polydimethylsiloxane (PDMS)microchannels on surface acoustic wave-based microfluidic devices.Microelectronic Engineering,2014,113:98-104.
[8] LYCANS R M,HIGGINS C B,TANNER M S,et al.Plasma treatment of PDMS for applications of in vitro motility assays.Colloids Surf B Biointerfaces,2014,116:687-694.
[9] LI H Z,LEE J,SEN P N.Long-term retention of hydrophilic behavior of plasma treated polydimethylsiloxane (PDMS)surfaces stored under water and Luria-Bertani broth.Sensors and Actuators A:Physical,2012,181:33-42.
[10] KIM H I,and JEONG O C.PDMS surface modification using atmospheric pressure plasma.Microelectronic Engineering,2011,88(8):2281-2285.
[11] XIONG L C,CHEN P,ZHOU QS.Adhesion promotion between PDMS and glass by oxygen plasma pre-treatment.Journal of Adhesion Science and Technology,2014,28(11):1046-1054.
[12] BODAS D,KHAN-MALEKC.Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments.Microelectronic Engineering,2006,83(4):1277-1279.
[13] FRITZ J L,OWEN M J.Hydrophobic recovery of plasma-treated polydimethylsiloxane.The Journal of Adhesion,1995,54(1-4):33-45.
[14] ZHANG Q Y,GALVAN MIYOSHI J M,PEZZOTTI F,et al.Synthesis and surface properties of PDMS-containing latexes by emulsion polymerization using AIBN as the initiator.European Polymer Journal,2013,49(8):2327-2333.
[15] TIAN L,WU L,WANG W,et al.Research on the PDMS surface modification technique.Key Engineering Materials,2013,562-565:131-135.
[16] BEH C W,ZHOU W,WANG T H.PDMS-glass bonding using grafted polymeric adhesive -alternative process flow for compatibility with patterned biological molecules.Lab On A Chip,2012,12(20):4120-4127.
[17] HAUBERT K,DRIER T,BEEBE D.PDMS bonding by means of a portable,low-cost corona system.Lab on a chip,2006,6(12):1548-1549.
[18] LIU K,GU P,HAMAKER K,et al.Characterization of bonding between poly(dimethylsiloxane)and cyclic olefin copolymer using corona discharge induced grafting polymerization.Journal of Colloid and Interface Science,2012,365(1):289-295.
[19] ARAN K,SASSO L A,KAMDAR N,et al.Irreversible,direct bonding of nanoporous polymer membranes to PDMS or glass microdevices.Lab on a Chip,2010,10(5):548-552.
Modification Research on Polydimethylsiloxane(PDMS)Surface without Cracks for Applications of Microfluidic Package
CHEN Meng,GUO Hao,YANG Jiang-tao,ZHAO Miao-miao,ZHANG Bin-zhen,LIU Jun,XUE Chen-yang,ZHANG Wen-dong,TANG Jun
(Key Laboratory of Instrumentation Science & Dynamic Measurement,Ministry of Education,North University of China,Taiyuan 030051,China)
The bonding packaging technology based on polydimethylsiloxane (PDMS) microfluidic system needs good adhesion and hydrophilicity in the surface of PDMS. As PDMS surface modification technology, plasma treatment process (Plasma) has many characteristics, such as high efficiency, high speed and easy operation, but this technology has the problems of “reply” and “crack”. A secondary treatment process combined with Plasma technology and SDS was introduced in this paper. First, we made hydrophilic treatment without cracks on the PDMS surface using Plasma technology, then made secondary treatment with sodium dodecyl sulfate(SDS). This can not only avoid the cracks of PDMS surface, but also make the PDMS surface hydrophilic permanently. Through experiments, the contact angle decreases to 21 ° after re-treatment, the roughness of the surface reaches to 1.71 nm, and no crack is on the surface. After bonding test, PDMS after re-treatment can bond with glass permanently, which verifies the feasibility of the technology and lays the technical foundation for the bonding package of microfluidic systems.
microfluidic package;PDMS;plasma;sodium dodecyl sulfate;surface modification
李志明(1987—),碩士研究生,主要研究領(lǐng)域自動(dòng)化測試系統(tǒng)、電子通信。E-mail:ilovethisearth@163.com 李揚(yáng)(1966—),教授,博士,主要研究領(lǐng)域工業(yè)組網(wǎng)與數(shù)據(jù)監(jiān)平臺、智能控制算法、感知車間。E-mail:lyang@gdut.edu.cn
國家自然科學(xué)基金資助項(xiàng)目(91123016,61171056,51105345);國家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃資助項(xiàng)目(2012CB723404);國家杰出青年科學(xué)基金資助項(xiàng)目(51225504);山西省高等學(xué)校優(yōu)秀青年學(xué)術(shù)帶頭人支持計(jì)劃資助項(xiàng)目。
2014-01-10 收修改稿日期:2014-11-09
TP212.1
A
1002-1841(2015)01-0092-03