王婷婷,黃 菲,吳 輝,張蓓蓓,張信誠(chéng),吳曉俊,胡之璧
(上海市復(fù)方中藥重點(diǎn)實(shí)驗(yàn)室暨上海中醫(yī)藥大學(xué)中藥研究所,上海 201203)
雙側(cè)嗅球切除對(duì)小鼠行為、海馬神經(jīng)遞質(zhì)及抑郁相關(guān)基因表達(dá)的影響
王婷婷,黃 菲,吳 輝,張蓓蓓,張信誠(chéng),吳曉俊,胡之璧
(上海市復(fù)方中藥重點(diǎn)實(shí)驗(yàn)室暨上海中醫(yī)藥大學(xué)中藥研究所,上海 201203)
目的 研究雙側(cè)嗅球切除對(duì)C57BL/6小鼠行為和海馬神經(jīng)遞質(zhì)及抑郁相關(guān)基因表達(dá)的影響。方法 用探針搗毀并用負(fù)壓吸出小鼠嗅球建立嗅球切除模型,術(shù)后18 d開始分別進(jìn)行強(qiáng)迫游泳、懸尾、曠場(chǎng)、高架迷宮行為學(xué)測(cè)試,同時(shí)應(yīng)用LC-MS/MS液質(zhì)聯(lián)用法檢測(cè)海馬內(nèi)7種神經(jīng)遞質(zhì)的變化,實(shí)時(shí)定量PCR法檢測(cè)海馬抑郁相關(guān)基因的表達(dá)。結(jié)果 嗅球切除后小鼠在曠場(chǎng)中的水平運(yùn)動(dòng)明顯增加(P<0.05),進(jìn)入高架迷宮開臂的時(shí)間明顯延長(zhǎng)(P<0.01),海馬組織中的5-HIAA/5-HT明顯降低(P<0.01),Glu/GABA明顯增高(P<0.01)。同時(shí)海馬組織中的BDNF、Trkb、GDNF、CD11b、TNF-α基因表達(dá)明顯升高(P<0.05),而TPH2基因表達(dá)下調(diào)(P<0.05)。結(jié)論 嗅球切除導(dǎo)致小鼠多種行為學(xué)改變,是多種神經(jīng)傳遞以及神經(jīng)營(yíng)養(yǎng)因子、炎癥因子和合成蛋白基因綜合作用的結(jié)果,提示將該模型作為抗抑郁藥物的研發(fā)及篩選工具時(shí)需要綜合考慮多方面因素的影響,從而對(duì)實(shí)驗(yàn)結(jié)果作出科學(xué)合理解釋。
抑郁;嗅球;神經(jīng)遞質(zhì);海馬;神經(jīng)營(yíng)養(yǎng)因子;炎癥因子;抗抑郁藥
隨著生活節(jié)奏的加快,社會(huì)壓力的增加,抑郁癥的發(fā)病率逐年升高,嚴(yán)重危害著人類的身心健康??挂钟羲幬锏难邪l(fā)及篩選對(duì)于臨床抑郁癥的治療有及其重要的意義,而穩(wěn)定可靠的抑郁動(dòng)物模型對(duì)抗抑郁藥物的研發(fā)及篩選有非常重要的價(jià)值。嗅球切除是一種常用的抑郁研究模型,通過手術(shù)摘除或者破壞嗅球,直接導(dǎo)致動(dòng)物嗅覺喪失和多個(gè)腦區(qū)神經(jīng)元的退化。目前對(duì)于嗅球切除抑郁動(dòng)物模型已有一定的研究,包括嗅球切除后動(dòng)物的多種行為,如活動(dòng)增強(qiáng),被動(dòng)逃避能力下降,學(xué)習(xí)記憶能力衰減,應(yīng)激反應(yīng)增強(qiáng),同時(shí)進(jìn)食和性行為發(fā)生改變等,這些癥狀與激越性抑郁癥相類似[1]。從這些行為改變中恢復(fù)正常需要長(zhǎng)期服用抗抑郁類藥物,這與臨床抗抑郁治療的時(shí)程相似。盡管嗅球切除模型已經(jīng)廣為應(yīng)用,并且對(duì)術(shù)后動(dòng)物海馬、前額葉、中腦、腦干等多個(gè)腦區(qū)神經(jīng)遞質(zhì)及相關(guān)蛋白表達(dá)影響也有研究報(bào)道[2-4],但研究并不全面和系統(tǒng),且很多報(bào)道結(jié)果不一,甚至存在相反的結(jié)論。本實(shí)驗(yàn)系統(tǒng)研究了嗅球切除對(duì)動(dòng)物海馬多種神經(jīng)遞質(zhì),包括5-羥色胺(5-hydroxytryptamine, 5-HT)、5-羥吲哚乙酸(5-hydroxyindoleacetic acid, 5-HIAA)、去甲腎上腺素(noradrenaline, NE)、多巴胺(dopamine, DA)、腎上腺素(epinephrine, Epi)、谷氨酸(glutamate, Glu)和γ氨基丁酸(γ-aminobutyric acid, GABA)等,以及相關(guān)受體、轉(zhuǎn)運(yùn)蛋白、神經(jīng)再生和炎癥相關(guān)蛋白基因表達(dá)的影響,同時(shí)研究了嗅球切除對(duì)C57BL/6小鼠抑郁及焦慮行為的作用,為該模型更好地應(yīng)用于科研和抗抑郁藥物的研發(fā)提供了參考。
1.1 藥品與試劑異氟烷購(gòu)自河北九派制藥股份有限公司(批號(hào):130601),注射用青霉素鈉購(gòu)自華北制藥股份有限公司(批號(hào):H13020657),戊巴比妥鈉(批號(hào):WS20120912),色譜甲酸、色譜甲醇、乙腈購(gòu)自賽默飛世爾科技(中國(guó))有限公司。
1.2 實(shí)驗(yàn)動(dòng)物♂5周齡C57BL/6小鼠購(gòu)自上海斯萊克實(shí)驗(yàn)動(dòng)物有限責(zé)任公司,并在上海中醫(yī)醫(yī)藥大學(xué)動(dòng)物實(shí)驗(yàn)中心(25±1)℃,40%~60%相對(duì)濕度,晝夜各12 h SPF動(dòng)物房自由進(jìn)食飼養(yǎng),實(shí)驗(yàn)動(dòng)物使用許可證號(hào):SCXK(滬)2012-002
1.3 儀器液相質(zhì)譜聯(lián)用儀購(gòu)自安捷倫(型號(hào)DEBAF01206),高架迷宮、曠場(chǎng)、懸尾及強(qiáng)迫游泳測(cè)試儀購(gòu)自上海玉研,RMA-13-SSV小鼠麻醉機(jī)購(gòu)自Medical Supplies & Services Int Ltd,高通量研磨儀由上海凈信科技提供(批號(hào)TL48E),C18色譜柱(2.1×100 mm, 1.7 μm)購(gòu)自Waters。
2.1 動(dòng)物分組及手術(shù)建模C57BL/6小鼠自購(gòu)買后,適應(yīng)性飼養(yǎng)1周,隨機(jī)分為假手術(shù)組(sham)和嗅球切除模型組(OB),每組12只動(dòng)物。異氟烷麻醉小鼠后,在兩耳連線中點(diǎn)處切開皮膚,暴露顱骨,電動(dòng)磨鉆于嗅球處中線兩側(cè)將顱骨各鉆1個(gè)小孔,探針攪動(dòng)破壞嗅球后,真空泵將破壞的嗅球組織吸出,吸收性明膠海綿填孔止血。假手術(shù)小鼠采用相同的手術(shù)方法,但在手術(shù)定位點(diǎn)上鉆孔后不損傷嗅球。青霉素溶液(20萬U·mL-1)沖洗手術(shù)切口,縫合皮膚,并肌注青霉素鈉每只4萬U,連續(xù)給藥3 d,以防術(shù)后感染。
2.2 行為學(xué)檢測(cè)小鼠手術(shù)后恢復(fù)18 d,分別進(jìn)行如下行為學(xué)測(cè)定: ① 強(qiáng)迫游泳測(cè)試(FST),將小鼠置于預(yù)先注有20 cm深清水,溫度(25±1) ℃的圓柱型透明器皿內(nèi)(高30 cm,直徑20 cm),分別記錄每只小鼠在6 min內(nèi)的累計(jì)不動(dòng)時(shí)間,比較后4 min內(nèi)的不動(dòng)時(shí)間;② 懸尾測(cè)試(TST),用膠帶將小鼠尾部(距尾端2 cm)固定于一根水平木棍上,使動(dòng)物呈倒掛狀態(tài),其頭部離水平面5~6 cm,分別記錄每只動(dòng)物在6 min內(nèi)后4 min的累計(jì)不動(dòng)時(shí)間;③ 曠場(chǎng)測(cè)試(OFT),將小鼠放入開場(chǎng)試驗(yàn)箱正中間,軟件記錄5 min內(nèi)小鼠總活動(dòng)路程;④ 高架迷宮測(cè)試(EPMT) 將高架迷宮放在光線均勻的實(shí)驗(yàn)區(qū)域內(nèi),分別將小鼠放入迷宮中央部位,實(shí)驗(yàn)室開始時(shí)使頭部面向開臂,記錄5 min內(nèi)小鼠進(jìn)入開臂的時(shí)間和次數(shù)。
2.3 標(biāo)本采集完成所有的行為學(xué)測(cè)試后,1%戊巴比妥鈉麻醉小鼠,于冰上分離小鼠腦組織,取出海馬后置EP管中,迅速放入液氮冷凍,并隨后保存在-80℃冰箱備用。
2.4 神經(jīng)遞質(zhì)檢測(cè)海馬組織稱重后,每份加入700 μL的甲酸-甲醇(1 ∶1 000) 和10 μL (10 μg·L-1,3, 4-dihydroxybenzylamine)內(nèi)標(biāo),勻漿,23 000 r·min-1離心15 min(4℃)。取上清,氮?dú)獯蹈桑糠菰偌?00 μL流動(dòng)相溶解,23 000 r·min-1離心15 min(4℃)后,取上清用于進(jìn)一步分析。 LC-MS/MS色譜條件參考本實(shí)驗(yàn)室已發(fā)表文獻(xiàn)[5],液相條件如下:以甲酸-水(1 ∶1 000,A相),乙腈(B相)為流動(dòng)相進(jìn)行梯度洗脫,0~4 min, 0.02 B;6 min, 0.8 B;8~10 min, 0.9 B;流速為0.1 mL·min-1。
2.5 實(shí)時(shí)定量PCR分析取海馬組織,TRIzol法提取總RNA,經(jīng)DNaseI處理去除DNA污染后,試劑盒(Revert Aid First Strand Synthesis kit, Fermentas)反轉(zhuǎn)錄為cDNA,按照Taqman SYBR kit (Life Technologies)試劑盒說明方法進(jìn)行實(shí)時(shí)定量PCR。PCR使用引物序列參見Tab 1,樣品的基因表達(dá)均以各自的甘油醛-3-磷酸脫氫酶(glyceraldehyde-3-phosphate dehydrogenase,GAPDH)作為內(nèi)參。
Tab 1 Primer sequences for realtime PCR
3.1 嗅球切除對(duì)小鼠行為的影響如Fig 1A所示,切除嗅球之后,和假手術(shù)小鼠對(duì)比,模型組小鼠活動(dòng)量明顯增加,在曠場(chǎng)中的水平運(yùn)動(dòng)距離明顯延長(zhǎng),差異有顯著性(P<0.05)。與此相對(duì)應(yīng),在高架迷宮中(Fig 1B),模型組小鼠進(jìn)入開臂時(shí)間長(zhǎng)于空白組,差異有顯著性(P<0.01)。但在強(qiáng)迫游泳和懸尾測(cè)試中(Fig 1C、1D),模型組小鼠的游泳不動(dòng)時(shí)間與對(duì)照組比較,有上升的趨勢(shì),但差異無統(tǒng)計(jì)學(xué)意義。
3.2 嗅球切除對(duì)海馬神經(jīng)遞質(zhì)的影響如Tab 2所示,嗅球切除改變了小鼠海馬神經(jīng)遞質(zhì)表達(dá)。結(jié)果顯示,模型組小鼠海馬5-HT含量明顯上升,和假手術(shù)組比較差異具有顯著性(P<0.01)。而5-HIAA含量在模型組中則明顯下降(P<0.05)。與此相對(duì)應(yīng),5-HIAA與5-HT含量的比值也明顯降低,差異有顯著性(P<0.01)。盡管DA、Epi、NE及GABA的含量在嗅球切除組小鼠的海馬中沒有變化,但Glu含量明顯升高(P<0.05),而Glu與GABA的比值也有明顯上升(P<0.01)。
Fig 1 Effect of olfactory bulbectomy on mouse ±s,n=12)
A: Total distance in open-field test (OFT); B: Time spent in open arm of elevated plus maze test (EPMT); C: Immobility time in forced swimming test (FST); D: Immobility time in tail-suspension test (TST).*P<0.05,**P<0.01vsSham
Tab 2 Contents of neurotransmitters in hippocampus of olfactory bulbectomized mice ±s,n=12)
*P<0.05,**P<0.01vsSham
3.3 嗅球切除對(duì)海馬基因表達(dá)的影響基于海馬神經(jīng)遞質(zhì)LC-MS/MS檢測(cè)結(jié)果,我們進(jìn)一步對(duì)5-HT、GABA以及Glu代謝、受體相關(guān)基因表達(dá)進(jìn)行分析,同時(shí)對(duì)神經(jīng)營(yíng)養(yǎng)因子和炎癥相關(guān)基因也做了檢測(cè)。結(jié)果如Tab 3所示,嗅球切除影響了海馬中多種基因的表達(dá),TPH2 mRNA表達(dá)下調(diào)(P<0.05),BDNF/Trkb mRNA表達(dá)上調(diào)(P<0.05),TNF-α/CD11b mRNA表達(dá)上調(diào)(P<0.05),而其它基因則無顯著變化。
Tab 3 mRNA expression of proteins related to depression in hippocampus of olfactory bulbectomized ±s,n=5)
*P<0.05vsSham
可靠穩(wěn)定的抑郁動(dòng)物模型對(duì)于抑郁癥發(fā)病機(jī)制、抗抑郁藥物的篩選及其抗抑郁作用機(jī)制研究有重要的意義。目前常用的抑郁動(dòng)物模型有慢性輕度不可預(yù)見性應(yīng)激模型、嗅球切除模型、行為絕望模型、習(xí)得性無助模型和一些藥物誘導(dǎo)模型如:糖皮質(zhì)激素誘導(dǎo)、LPS誘導(dǎo)、利血平逆轉(zhuǎn)、5-羥色胺酸誘導(dǎo)大小鼠甩頭模型等[6-10]。另外,轉(zhuǎn)基因抑郁動(dòng)物模型作為新型抑郁模型也得到了廣泛的應(yīng)用[11-12]。然而,諸多模型都不能完全模擬臨床抑郁病人的癥狀,只能針對(duì)部分病癥研究,所以在現(xiàn)有研究基礎(chǔ)上應(yīng)考慮運(yùn)用多種模型結(jié)合來揚(yáng)長(zhǎng)避短。
嗅球切除抑郁模型是常用模型之一,有研究報(bào)道,嗅球切除后,小鼠表現(xiàn)為曠場(chǎng)試驗(yàn)活動(dòng)量增加,高架迷宮測(cè)試進(jìn)入開臂時(shí)間增加[1],本實(shí)驗(yàn)研究結(jié)果與文獻(xiàn)報(bào)道一致。然而,在強(qiáng)迫游泳和懸尾測(cè)試實(shí)驗(yàn)中,有研究結(jié)果表明嗅球切除后小鼠不動(dòng)時(shí)間增加[13],與典型的抑郁模型結(jié)果一致,而有些研究結(jié)果卻得出相反的結(jié)果,顯示小鼠嗅球切除后游泳不動(dòng)時(shí)間反而減少[2],本實(shí)驗(yàn)采用6周齡成年C57BL/6♂小鼠,手術(shù)18 d后行為學(xué)測(cè)試,盡量減少手術(shù)創(chuàng)傷對(duì)小鼠行為學(xué)的影響。結(jié)果顯示,模型組較假手術(shù)組強(qiáng)迫游泳和懸尾不動(dòng)時(shí)間均有一定程度的增加,但并沒有顯著性差異。分析其結(jié)果不一致的原因,可能與手術(shù)時(shí)小鼠是否成年、手術(shù)恢復(fù)后至行為學(xué)測(cè)試的時(shí)間長(zhǎng)短、小鼠樣本數(shù)以及各實(shí)驗(yàn)室具體的飼養(yǎng)和測(cè)試條件有關(guān)。
抑郁癥與腦內(nèi)神經(jīng)遞質(zhì)5-HT及其代謝產(chǎn)物5-HIAA的含量密切相關(guān)。研究表明小鼠嗅球切除后5-HIAA/5-HT下降[14],表明5-HT的代謝功能下降。本實(shí)驗(yàn)對(duì)海馬神經(jīng)遞質(zhì)檢測(cè),結(jié)果為嗅球切除組小鼠海馬內(nèi)5-HT含量升高,5-HIAA/5-HT明顯降低,海馬內(nèi)5-HT合成限速酶TPH2基因表達(dá)降低,則表明在5-HT合成降低的基礎(chǔ)上5-HIAA與5-HT的比值也降低,可能是由于5-HT的代謝和轉(zhuǎn)運(yùn)功能降低,進(jìn)而造成反饋抑制,影響了TPH2的基因表達(dá)。正常生理狀態(tài)下,神經(jīng)細(xì)胞間隙存在的興奮性氨基酸與抑制性氨基酸維持平衡,當(dāng)兩者之間平衡失調(diào),則會(huì)產(chǎn)生情緒紊亂如抑郁、焦慮[15]。本實(shí)驗(yàn)嗅球切除模型組小鼠海馬內(nèi)興奮性氨基酸Glu與抑制性氨基酸GABA比值增高,表明細(xì)胞膜外堆積大量的興奮性氨基酸,作用于膜受體后導(dǎo)致一系列變化,最終引起神經(jīng)元的損傷,從而導(dǎo)致小鼠抑郁焦慮樣表現(xiàn)。
TrkB為腦源性神經(jīng)營(yíng)養(yǎng)因子BDNF較高親和力的受體,BDNF通過激活受體TrkB,對(duì)神經(jīng)元的生存及活動(dòng)起重要調(diào)節(jié)作用[16]。文獻(xiàn)對(duì)嗅球切除后動(dòng)物腦內(nèi)BDNF變化的報(bào)道存在不一致,如Hellweg等[14]對(duì)嗅球切除16 d后小鼠海馬及額前葉內(nèi)BDNF檢測(cè)結(jié)果顯示其表達(dá)增高等,而Hendriksen 等[17]研究在SD大鼠嗅球切除10周后檢測(cè)到海馬內(nèi)BDNF mRNA水平明顯降低。也有實(shí)驗(yàn)對(duì)嗅球切除15 d后和20 d大鼠海馬BDNF檢測(cè),發(fā)現(xiàn)其沒有改變[18-19]。本文對(duì)海馬內(nèi)BDNF mRNA及其受體TrkB mRNA的表達(dá)進(jìn)行檢測(cè),發(fā)現(xiàn)二者表達(dá)同樣升高,并且伴隨著膠質(zhì)細(xì)胞源性的神經(jīng)營(yíng)養(yǎng)因子GDNF的增高,但并沒有伴隨腦源性神經(jīng)生長(zhǎng)因子NGF的表達(dá)上調(diào)。對(duì)于嗅球切除后海馬內(nèi)BDNF結(jié)果報(bào)道不一致及本實(shí)驗(yàn)結(jié)果分析,其原因可能為種屬的不同,在小鼠中,嗅球切除后會(huì)有一段適應(yīng)性反應(yīng),在此時(shí)間段內(nèi),小鼠海馬神經(jīng)元反饋性調(diào)節(jié)腦源性神經(jīng)營(yíng)養(yǎng)因子,使其表達(dá)上調(diào),有助于神經(jīng)損傷的修復(fù)。
大量研究表明,抑郁癥與炎癥密切相關(guān),抑郁癥患者存在免疫功能激活[20]。TNF-α屬于前炎癥細(xì)胞因子,是一系列炎癥反應(yīng)中最早產(chǎn)生的細(xì)胞因子,臨床研究表明抑郁患者腦內(nèi)TNF-α處于激活狀態(tài)[21]。CD11b是白細(xì)胞黏附分子β2整合素的a亞單位,與白細(xì)胞和內(nèi)皮細(xì)胞的黏附有關(guān),正常情況下,CD11b在中性粒細(xì)胞表面低水平表達(dá),貯存在細(xì)胞的胞質(zhì)顆粒中,在一系列前炎癥調(diào)節(jié)因子,如LPS、TNF-α、IL-1β等刺激下,迅速易位至細(xì)胞膜,在細(xì)胞表面大量表達(dá)[22]。本實(shí)驗(yàn)發(fā)現(xiàn)小鼠海馬內(nèi)TNF-α和CD11b mRNA表達(dá)上調(diào),則表明嗅球切除后小鼠免疫力下降導(dǎo)致炎癥相關(guān)因子表達(dá)上調(diào)。
綜上所述,本實(shí)驗(yàn)發(fā)現(xiàn)嗅球切除不僅影響了動(dòng)物的行為,還影響了海馬內(nèi)多種神經(jīng)遞質(zhì)及其相關(guān)代謝產(chǎn)物、神經(jīng)營(yíng)養(yǎng)因子、炎癥相關(guān)基因的表達(dá),提示抗抑郁藥物的篩選及機(jī)制研究需綜合應(yīng)用多種動(dòng)物模型并考慮多種因素影響,從而得出科學(xué)合理的結(jié)論。
[1] Song C, Leonard B E. The olfactory bulbectomised rat as a model of depression[J].NeurosciBiobehavRev, 2005, 29(4-5):627-47.
[2] Mucignat-Caretta C, Bondí M, Caretta A. Time course of alterations after olfactory bulbectomy in mice[J].PhysiolBehav, 2006, 89(5):637-43.
[3] Yuan T F, Slotnick B M. Roles of olfactory system dysfunction in depression[J].ProgNeuropsychopharmacolBiolPsychiatry, 2014, 54:26-30.
[4] Morales-Medina J C, Juarez I, Iannitti T, Flores G. Olfactory bulbectomy induces neuronal rearrangement in the entorhinal cortex in the rat[J].JChemNeuroanat, 2013, 52:80-6.
[5] Huang F, Li J, Shi H L, et al. Simultaneous quantification of seven hippocampal neurotransmitters in depression mice by LC-MS/MS[J].JNeurosciMeth, 2014, 229:8-14.
[6] Ping G, Qian W, Song G, Zhaochun S. Valsartan reverses depressive/anxiety-like behavior and induces hippocampal neurogenesis and expression of BDNF protein in unpredictable chronic mild stress mice[J].PharmacolBiochemBehav, 2014, 124:5-12.
[7] Pignatelli M, Vollmayr B, Richter S H, et al. Enhanced mGlu5-receptor dependent long-term depression at the Schaffer collateral-CA1 synapse of congenitally learned helpless rats[J].Neuropharmacology, 2013, 66:339-47.
[8] Zhao Y, Ma R, Shen J, et al. A mouse model of depression induced by repeated corticosterone injections[J].EurJPharmacol, 2008, 581(1-2):113-20.
[9] Kubera M, Curzytek K, Duda W, et al. A new animal model of (chronic) depression induced by repeated and intermittent lipopolysaccharide administration for 4 months[J].BrainBehavImmun, 2013, 31:96-104.
[10] Tian J, Zhang F, Cheng J, et al. Antidepressant-like activity of adhyperforin, a novel constituent of hypericum perforatum L[J].SciRep, 2014, 4:5632.
[11] Chen Y, Liu X, Jia X, et al. Anxiety-and depressive-like behaviors in olfactory deficient Cnga2 knockout mice[J].BehavBrainRes, 2014, 275:219-24.
[12] Xing B, Liu P, Jiang W H, et al. Effects of immobilization stress on emotional behaviors in dopamine D3 receptor knockout mice[J].BehavBrainRes, 2013, 243:261-6.
[13] Islam MR, Moriguchi S, Tagashira H, Fukunaga K. Rivastigmine improves hippocampal neurogenesis and depression-like behaviors via 5-HT1A receptor stimulation in olfactory bulbectomized mice[J].Neuroscience, 2014, 272:116-30.
[14] Hellweg R, Zueger M, Fink K, et al. Olfactory bulbectomy in mice leads to increased BDNF levels and decreased serotonin turnover in depression-related brain areas[J].NeurobiolDis, 2007, 25(1):1-7.
[15] Sanacora G, Gueorguieva R, Epperson C N, et al. Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression[J].ArchGenPsychiatry, 2004, 61(7):705-13.
[16] Numakawa T, Richards M, Nakajima S, et al. The role of brain-derived neurotrophic factor in comorbid depression: possible linkage with steroid hormones, cytokines, and nutrition[J].FrontPsychiatry, 2014, 5:136.
[17] Hendriksen H, Meulendijks D, Douma T N, et al. Environmental enrichment has antidepressant-like action without improving learning and memory deficits in olfactory bulbectomized rats[J].Neuropharmacology, 2012, 62(1):270-7.
[18] Luo K R, Hong C J, Liou Y J, et al. Differential regulation of neurotrophin S100B and BDNF in two rat models of depression[J].ProgNeuropsychopharmacolBiolPsychiatry, 2010, 34(8):1433-9.
[19] Van Hoomissen J D, Chambliss H O, Holmes P V, et al. Effects of chronic exercise and imipramine on mRNA for BDNF after olfactory bulbectomy in rat[J].BrainRes, 2003, 974(1-2):228-35.
[20] Grudet C, Malm J, Westrin A, Brundin L. Suicidal patients are deficient in vitamin D, associated with a pro-inflammatory status in the blood[J].Psychoneuroendocrinology, 2014, 50:210-9.
[21] Shelton R C, Claibome J, Sidoryk-Wegrzynowicz M, et al. Altered expression of genesinvolved in inflammation and apoptosis in frontal cortex in major depression[J].MolPsychiatry, 2011, 16(7):751-62.
[22] Borjesson D L, Simon S I, Hodzic E, et al. Kinetics of CD11b/CD18 up-regulation during infection with the agent of human granulocytic ehrlichiosis in mice[J].LabInvest, 2002, 82(3):303-11.
Influence of olfactory bulbectomy on mouse neurobehaviors, hippocampal neurotransmission and depression relevant gene expressions
WANG Ting-ting, HUANG Fei, WU Hui, ZHANG Bei-bei, ZHANG Xin-cheng, WU Xiao-jun, HU Zhi-bi
(ShanghaiKeyLaboratoryofComplexPrescriptions,InstituteofChineseMateriaMedica,ShanghaiUniversityofTraditionalChineseMedicine,Shanghai201203,China)
Aim To investigate the changes of behaviors, neurotransmitters and depression related gene expressions in hippocampus of C57BL/6 mice after olfactory bulbectomy (OB). Methods Forced swimming test (FST), tail suspension test (TST), open filed test (OFT), and elevated plus maze test (EPMT) were used to evaluate the behavioral changes 18 days after surgery. LC-MS/MS method was employed to measure the hippocampal neurotransmitters. Quantitative PCR approach was established to determine the hippocampal gene expressions associated with depression. Results OB mice were hyperactive in OFT (P<0.05) accompanied with increased time spent in open arm of EPMT (P<0.01). Meanwhile, the sur-gery led to the reduction of the ratio of 5-HIAA/5-HT (P<0.01) but the increase of Glu/GABA (P<0.01) in hippocampus. Moreover, OB elevated the gene expressions of BDNF, Trkb, GDNF, CD11b and TNF-α but down-regulated that of TPH2 in hippocampus (P<0.05). Conclusion Behavioral alternation of OB mice was a result of comprehensive effect of the changes of neurotransmission and depression related genes, which call us special attention in using OB as an animal model for research and development of antidepressants.
depression; olfactory bulb; neurotransmitter; hippocampus; neurotrophic factor; inflammatory factor; antidepressant
時(shí)間:2015-4-15 15:44 網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/34.1086.R.20150415.1545.019.html
2014-12-31,
2015-01-23
教育部高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金優(yōu)先發(fā)展領(lǐng)域項(xiàng)目(No 20123107130002);上海市教委科研創(chuàng)新重點(diǎn)項(xiàng)目(No 13ZZ099);上海高校特聘教授(東方學(xué)者)崗位計(jì)劃資助(No 2013-59)
王婷婷(1988-),女,碩士生,研究方向:中藥神經(jīng)藥理學(xué),E-mail:13816792603@163.com; 吳曉俊(1976-),男,博士,研究員,研究方向:中藥神經(jīng)藥理學(xué),Tel:021-51322578,E-mail:xiaojunwu@126.com
10.3969/j.issn.1001-1978.2015.05.019
A
1001-1978(2015)05-0686-06
R-332;R322.81;R394.2;R338.1;R749.42; R971.43