劉廣山
廈門大學環(huán)境與生態(tài)學院,福建廈門 361102
日本福島核電站事故后的海洋放射化學
劉廣山
廈門大學環(huán)境與生態(tài)學院,福建廈門 361102
由于對環(huán)境影響的關(guān)注,日本福島核電站事故后,人們進行了大氣、陸地和海洋環(huán)境人工放射性核素變化監(jiān)測與研究,研究的主要核素是131I、137Cs、134Cs和129I。除了關(guān)注濃度水平的變化外,還進行了通過大氣和海流對事故釋放的放射性核素運行路徑的模擬研究。研究表明,受氣候條件的控制,事故釋放進入大氣的放射性核素先經(jīng)過太平洋到達北美,然后越過大西洋到達歐洲,最后繞北半球一周后到達中國。除事故核電站周邊外,全球大氣中131I活度濃度在mBq/m3量級,137Cs活度濃度在0.1~1 mBq/m3量級。事故釋放進入海洋的放射性核素將隨海流向東輸運,然后在北太平洋隨環(huán)流輸運。研究也發(fā)現(xiàn)在離開源地不遠的海區(qū),由于混合進入200 m水深以下的次表層水,在遠離事故核電站海區(qū)水體的137Cs活度濃度可達100 Bq/m3,但大部分水體137Cs活度濃度在Bq/m3量級,僅稍高于本底水平。
日本福島;核電站事故;海洋環(huán)境;放射化學
Key words:Fukushima;nuclear power plant accident;marine environment;radiochemistry
2011年3月11日,日本東部近海發(fā)生9.0級大地震。地震及其引發(fā)的海嘯導致東京電力公司福島第一核電站(FDNPP,38.3°N,142.4°E)發(fā)生事故,向大氣和海洋排放大量放射性物質(zhì)。這些進入大氣和海洋的放射性物質(zhì)將向何處去,對海洋生態(tài)環(huán)境的影響如何,成為人們極為關(guān)注的問題。
福島核電站事故后,全球從事放射性監(jiān)測,核安全,應用放射性核素進行地球化學、海洋學、大氣科學、環(huán)境科學、生態(tài)學研究的機構(gòu)和科學家總動員,進行了大量監(jiān)測與研究工作,發(fā)表的研究文章與評述文章數(shù)以萬計,四年來經(jīng)久不衰。
人們對事故的放射性核素釋放量進行了估算[1-16],對大氣放射性水平的變化進行了監(jiān)測[17-54],并對大氣放射性物質(zhì)的輸運途徑進行了模擬[55-64]。事故后很長一段時間內(nèi),人們對事故排放的放射性物質(zhì)造成的陸地[65-81]和海洋放射性水平的變化[82-120]與放射性核素在海洋中的輸運途徑[119-128]進行了研究。
日本福島核電站事故已經(jīng)過去四年,在人們心中的陰影也逐漸消淡。核事故釋放的進入大氣的放射性物質(zhì)或沉積在陸地或沉積在海洋中,除了對核電站周邊陸地環(huán)境造成嚴重影響外,即除日本外,對其它國家的環(huán)境影響在無關(guān)緊要的水平。事故排放入海的放射性物質(zhì),基本都在太平洋,量很大;在事故核電站周邊海域,短時間的放射性水平也相當高,但顯然對具有龐大水體的海洋來說,總體講也不會產(chǎn)生宏觀的影響,而且事故釋放的放射性物質(zhì)也遠低于核實驗的大氣沉降,甚至低于前蘇聯(lián)切爾諾貝利核電站事故和一些后處理廠的排放量[129]。人們對進入海洋的放射性物質(zhì)的研究除關(guān)注海洋中放射性水平的提高外,主要集中在放射性物質(zhì)在海洋中的輸運途徑上。也有研究認為該事故對海洋學研究有正效應,例如,事故釋放入海的放射性物質(zhì)可用于示蹤北太平洋的環(huán)流等[130]。
日本核電站事故后,中國很多單位進行了陸地和大氣放射性水平監(jiān)測[131-153],對放射性物質(zhì)通過大氣和海洋的輸運進行了模型預測[126-128],但關(guān)于海洋環(huán)境放射性研究的報道甚少[95,110,140]。本文對福島核電站釋放的放射性物質(zhì)、事故后全球各地大氣與海水中放射性水平的變化、大氣和海洋對放射性核素的輸運過程研究進行綜述。
核反應堆長期運行會產(chǎn)生很多種放射性核素,當發(fā)生事故時會釋放出來。但是這些核素大部分半衰期很短,所以進入環(huán)境并被探測到的核素種數(shù)較少。表1列出一些研究者報道的日本核電站事故釋放的放射性核素,為敘述方便,列出衰變數(shù)據(jù)[154]。這其中一些核素研究的文章多,而大部分核素的研究文章很少,可以從以下幾方面討論。(1)大部分被測定的裂變產(chǎn)物衰變發(fā)出高能量和高豐度的γ射線,例如131I、134Cs、137Cs,測定這些核素利用了γ譜方法測量核素制樣簡單、識別直觀的優(yōu)點,所以研究的文章很多。(2)表1中的大部分核素半衰期在天到幾十天時間尺度,只能在事故發(fā)生的短時間內(nèi)探測到,從時間上限制了研究的可能性和可操作性。由于這種原因,大多數(shù)的海洋放射性水平變化研究的核素是較長壽命的137Cs、134Cs和90Sr。(3)隨著質(zhì)譜技術(shù)(包括加速器質(zhì)譜)的發(fā)展,對長壽命的放射性核素,包括14C、129I和超鈾元素Pu、Am和Cm的同位素探測靈敏度極大提高,所以日本福島核電站事故后出現(xiàn)了這些核素的研究。但除129I[3,68,78,81,84-85,141]和Pu同位素[7,30,98,102,117]外,其
它核素的研究較少[98,102]。有兩方面的原因,一是質(zhì)譜技術(shù)在環(huán)境放射性監(jiān)測中應用不普及;二是這些長壽命核素的環(huán)境水平研究的不夠,測量結(jié)果是否明顯高出本底水平的判斷存在或然性。
2.1 事故放射性物質(zhì)釋放量
日本福島核電站多個機組在2011年3月12日至23日之間發(fā)生多次事故,在空間上是點源,在時間上以脈沖形式往環(huán)境中多次釋放放射性物質(zhì),包括氣體釋放和廢水排放,使得釋放量(以放射性活度計,A)的估算很困難,但還是有研究者進行了釋放量的估算。表2列出事故131I、133Xe、137Cs、239+240Pu和241Pu的釋放量,但沒有列出網(wǎng)上數(shù)據(jù)。由表2可知,不同研究者給出的釋放量不同,有些核素的差異還較大,從數(shù)值上看也有可能是重復引用,但還是能看出福島核事故以下核素的釋放量:239+240Pu在GBq量級,241Pu在100 GBq量級,137Cs在10 PBq量級,131I在100 PBq量級,133Xe最高,在10 EBq量級。
Hou等[3]通過測定福島核電站周邊近海海水中的129I分布,估算得到核電站事故直接釋放入海的129I為2.35 GBq,大氣沉降入海的為1.09 GBq,核事故總的129I釋放量為8.06 GBq(1.2 kg)。Steinhauser等[9]將福島核電站事故的放射性釋放量與切爾諾貝利核電站事故進行了比較發(fā)現(xiàn):易揮發(fā)核素,包括惰性氣體、碘、銫和碲,切爾諾貝利事故的釋放量比福島事故高一個量級;而錒系核素,福島核事故比切爾諾貝利事故低4個量級;除惰性氣體外,切爾諾貝利事故總放射性釋放量為5 300 PBq,福島事故為340~800 PBq。
表1 已探測的源于福島核電站事故的放射性核素衰變數(shù)據(jù)Table 1 Decay data of radionuclides detected from FDNPP accident
表2 估算的福島核事故放射性釋放量Table 2 Estimated discharges from FDNPP accident
2.2 不同核事件釋放的放射性核素入海量比較
至今,核試驗落下灰仍然是全球環(huán)境中最主要的人工放射性貢獻者,其次依次是切爾諾貝利核事故、放射性廢物處置、后處理廠排放和福島核事故。在進入海洋的源項中,也是以核試驗落下灰為主,其次是海洋放射性廢物處置、后處理廠排放和核事故排放,福島核事故和切爾諾貝利核事故釋放入海的放射性物質(zhì)在同一水平。不同核事件137Cs釋放量(A0(137Cs))與入海量估算值(A(137Cs))列入表3。切爾諾貝利事故向環(huán)境排放的放射性物質(zhì)遠高于福島核事故,但由于切爾諾貝利遠離海洋,可以預見,事故釋放的放射性物質(zhì)大都沉積在陸地上,事實是事故后東、北歐,特別是波羅地海周邊地區(qū)陸地沉積了大量放射性物質(zhì)。福島核電站位于東海邊,加上事故發(fā)生時盛行西風,所以,事故釋放的氣載放射性物質(zhì)約70%~80%沉降在西太平洋[116]。而液體的排放也都進入海洋。
表3 不同核事件137Cs釋放量與入海量估算值Table 3 Discharges and the amount into sea for137Cs from nuclear events
3.1 福島核電站鄰水體放射性濃度變化
事故后先是氣載放射性物質(zhì)的沉降,接著是放射性廢液排放入海,使核電站周邊海域水體放射性水平明顯提高。3月24日前在距核電站10 km遠的兩個采樣點,海水中的137Cs濃度分別為9~13 Bq/L和20~100 Bq/L。在3月26日至4月8日,由于放射性廢液的排放,使核電站鄰近海域水體平均137Cs活度濃度水平達1.57× 104Bq/L,最高水平達6.8×104Bq/L,海水中的137Cs濃度升高三個量級。由于海洋巨大的稀釋能力,在一個月之后,核電站鄰近2 km以內(nèi),水體中的137Cs活度濃度降低至102Bq/L水平,2個月后降至10 Bq/L量級水平[1]。
3.2 遠離福島核電站海域水體中放射性核素濃度變化
3.2.1134Cs和137Cs 開闊海域,包括日本沿岸,水體中的137Cs活度濃度本底水平為1~4 Bq/ m3[157]。由于半衰期僅2.06 a,除核設施周邊海域外,全球大部分海域探測不到134Cs,太平洋探測到的134Cs來自福島核事故。事故發(fā)生至今,人們對北太平洋海水的134Cs和137Cs進行了廣泛研究[86,92-94,104-108,113-116]。在一些研究中給出了比本底高得多的137Cs水平。Povinec等[89]給出在距事故核電站30~600 km海域水體中的137Cs活度濃度為1.8~3 500 Bq/m3,134Cs/137Cs活度比接近1。Men等[110]給出西北太平洋、包括臺灣海峽和巴士海峽水體中的134Cs和137C活度濃度分別為ND(未探測到)~9.68 Bq/m3和0.41~18.1 Bq/m3。Kaeriyama等[93]給出的北太平洋134Cs和137Cs活度濃度為10~153 Bq/m3。從空間和時間分布上看,每個研究者或不同研究者給出的結(jié)果離散較大,這是由于放射性液體隨時間呈脈沖式排放,并隨水團在海洋中運移,受污染的水體放射性濃度較高,未受污染水體放射性濃度則較低。Povinec等[89]和Men等[110]的研究均發(fā)現(xiàn)在約200 m水深,存在137Cs濃度極大值。
3.2.2129I 日本福島核電站事故后,人們對海洋中的129I進行了研究,這是以往核事故中很少見的。Tumey等[85]于事故后的2013年5月在北太平洋采樣,測定了海水中的129I,給出2013年5—6月海水中的129I/127I原子比為(2.16~5.16)×10―11。天然豐度129I/127I原子比為10―12,由于核工業(yè)的發(fā)展,使海洋上層水129I/127I原子比水平提高,所以,從數(shù)值分布并不能看出核電站事故對太平洋129I水平的影響,可能是大氣沉降量有限,而液體排放的放射性物質(zhì)還未運移到研究海區(qū)。Hou等[3]2011年6月3—17日從福島核電站向東40~530 km遠的太平洋采樣,給出海水中無機129I/127I原子比為(0.26~21.95)×10―10,稍高于中太平洋約一個量級。Suzuki等[84]對核電站事故發(fā)生前后鄰近海域129I水平進行了調(diào)查,給出事故前表層水129I/127I原子比為(3.13~6.38)×10―11;事故后為(4.47~362)×10―11。平均看事故后的129I濃度比事故前升高近8倍。
3.3 放射性物質(zhì)在海洋中的輸運
福島核事故發(fā)生后一段時間,釋放進入海洋的放射性物質(zhì)存在于距離核電站很近的海域。有一些研究者依據(jù)大洋環(huán)流格局,用數(shù)值模擬的方法估算了福島核事故釋放入海的放射性物質(zhì)在海洋中可能的運移路徑和預期到達某海域的時間[126-127]。在福島核電站鄰近的北太平洋,黑潮與親潮流交匯后形成向東的北太平洋暖流,所以可以大致估算得核事故釋放的進入海洋的放射性物質(zhì)將隨北太平洋暖流輸運。
Aoyama等[119]在太平洋38°N—42°N、121°E—120°W海域,于2011年3月至2012年3月,采樣研究水體中的134Cs和137Cs,發(fā)現(xiàn)放射性水團主體沿40°N緯度線輸運。在2012年3月到達國際日期變更線,并推算出北太平洋暖流流速達8 cm/s,低于黑潮流流速20 cm/s。
3.4 事故液體排放使北太平洋放射性水平的提高
設北太平洋的面積占整個太平洋面積的1/3,福島核事故輸入的放射性在北太平洋混合層(設為100 m)均勻分布,可以計算得福島核事故將使北太平洋137Cs活度濃度提高4.5 Bq/m3。當然Pevinec等[89]的綜述認為福島核事故輸入到太平洋的放射性可能比27 PBq要低一個量級,這樣算下來,福島核事故使北太平洋137Cs活度濃度提高0.45 Bq/m3。但是,可以預期的是核事故排放的放射性實際使開闊海域放射性水平的提高非常有限,原因是銫是親巖元素,極易吸附在粘土礦物上沉積進入沉積物,這個過程在近岸海域特別重要。實際上大氣層核試驗造成的海洋放射性水平的提高也遠低于估算的輸入總量在全球海洋的平均值。
大部分研究者報道大氣氣溶膠樣品中探測到131I、134Cs和137Cs;一些研究者報道還探測到132Te。一些實驗室報道探測了133Xe(表1)。除氣體核素將在大氣中衰變掉外,其余核素最終歸宿或是在大氣中衰變掉,或是沉降到陸地和海洋。
4.1 事故后大氣中放射性核素的濃度
事故發(fā)生后,全球大氣中測量的131I、134Cs、137Cs和133Xe水平列入表4。由表4可知:日本本土大氣中的放射性濃度最高,131I、134Cs和137Cs活度濃度在Bq/m3量級,比其它地區(qū)高2~3個量級;美國的131I最大活度濃度為103.6 mBq/m3,加拿大的最大活度濃度為9.76 mBq/m3;歐洲探測到的131I最大活度濃度為6.0 mBq/m3;中國大氣中131I活度濃度小于7.9 mBq/m3;美國探測到大氣中134Cs和137Cs的最大活度濃度分別為3.44、3.40 mBq/m3;加拿大和歐洲探測到這兩個核素的最大活度濃度均低于1 mBq/m3;大氣氡活度濃度約在10 Bq/m3量級,所以福島核電站事故對遠離日本的公眾增加的輻射劑量極為有限。
未受污染大氣中人工放射性核素濃度很低,所以大部分研究并未考慮非事故情況下大氣本底的影響。研究表明:這種影響是存在的,樊元慶等[135]研究了2006年11月—2010年6月北京地區(qū)大氣氣溶膠137Cs的活度濃度為0.77~25.42μBq/m3,而同時期131I活度濃度為1.17~1 704μBq/m3。兩個核素的濃度與研究者報道的核事故影響條件下大氣氣溶膠中兩個核素的濃度(表4)在可比較的水平。
4.2 放射性物質(zhì)通過大氣的輸運
東亞,從日本到東海,再到南海,屬季風氣候,冬季盛行東北風,風由日本吹向中國的東海,經(jīng)臺灣海峽吹向南海北部;夏季盛行東南風,風由南海經(jīng)臺灣海峽吹向東海,再吹向日本。日本福島核電站事故發(fā)生在早春,本來的東北風提前轉(zhuǎn)向為西南風。整體看,在事故發(fā)生后一段時間內(nèi),受當時氣象條件的控制,福島核事故釋放的氣載放射性核素會穿過太平洋,到達北美洲大陸后,再穿過大西洋到達歐洲,然后經(jīng)西亞到達東亞。漂移過程中一路沉降,輸運距離越遠,放射性濃度越低。
表4 福島核電站事故后世界各地大氣中放射性核素的活度濃度Table 4 Activity concentration of radionuclides in the atmosphere over the world following FDNPP accident
福島核電站事故多次釋放放射性物質(zhì)到環(huán)境中。第一次發(fā)生在2011年3月12日,3月14日污染氣團到達俄羅斯東部。向東的放射性氣團漂過太平洋17日到達美國西海岸,之后穿過北美洲和北大西洋,3月19日和20日冰島一個站點探測到放射性物質(zhì),并且污染氣團到達斯堪的納維亞北部,23日歐洲很多國家探測到福島核電站事故釋放的放射性;中國27日報道探測到來自福島核電站事故的放射性[136]。從事故發(fā)生的15天,福島核事故釋放的放射性物質(zhì)彌散遍及整個北半球,而且以赤道為界,事故發(fā)生的四周內(nèi)放射性物質(zhì)局限于北半球。到4月13日,在南半球的亞洲太平洋地區(qū),澳大利亞、裴濟、馬來西亞和巴布亞新幾內(nèi)亞探測到福島核電站事故的放射性,但短壽命的核素131I和133Xe水平已很低[26]。
4.3 釋放進入大氣的放射性核素的入海量
研究認為福島核電站事故的氣載放射性物質(zhì)19%沉積在日本,僅2%沉積在亞洲和北美洲,其余主要部分沉積在太平洋[25]。根據(jù)表4的數(shù)據(jù),假設大氣中的137Cs活度濃度為10 mBq/m3,按受污染大氣厚度為1 000 m計算,如果這些放射性全部沉積在地表或海洋表面,在混合層混合均勻,可以計算得海洋中137Cs活度濃度水平提高為0.05 Bq/m3,比目前海洋中的137Cs本底水平低2個量級。
(1)核事故會使大范圍環(huán)境放射性水平提高,但遠離事故核電站或核設施地區(qū)的放射性水平變化極為有限。福島核電站事故后全球的環(huán)境監(jiān)測結(jié)果也說明這一點,除日本本土外,其它國家報道的大氣中131I的活度濃度大都低于10 mBq/m3量級,而134Cs和137Cs活度濃度大都低于mBq/m3量級。以后的研究工作可能要集中在日本周邊海域,包括放射性水平、生物效應和核素化學形態(tài)變化等。
(2)日本核電站事故是一次研究北太平洋環(huán)流的很好機會,也是研究北半球大氣環(huán)流的難得機會。海洋放射化學未來最重要的研究方向是人工放射性核素的海洋生物地球化學。這是人們迫切想知道福島核電站事故對環(huán)境影響應當選擇的研究方向。
(3)核反應堆事故排放最多的放射性核素是3H和14C,但卻很少有測量3H和14C的報道。原因是采用計數(shù)方法測量這兩個核素的采樣量大,樣品預處理方法困難,將加速器質(zhì)譜方法應用于環(huán)境樣品測量可解決該問題。另外,由于對131I劑量影響的關(guān)注,人們迫切想了解事故造成的某地131I的沉降量,但由于131I半衰期僅8 d,事故后很快衰變殆盡,為此人們提出用長壽命的129I作為替代物[88,158],而環(huán)境中的129I測量也需要加速器質(zhì)譜方法。
(4)放射性監(jiān)測的重要性在于通過監(jiān)測避免事故的發(fā)生,也就是說常規(guī)監(jiān)測比應急監(jiān)測更重要,即低水平——環(huán)境水平的放射性測量更重要。目前的問題是要解決環(huán)境監(jiān)測中存在的困難。對于事故后環(huán)境放射性水平和對環(huán)境影響的研究,應開展長壽命核素,如14C、129I等的研究。由于加速器質(zhì)譜方法日臻成熟,開展這方面的工作已具備了條件。
[1] du Bois P B,Laguionie P,Boust D,et al.Estimation of marine source-term following Fukushima Dai-ichi accident[J].J Environ Radioact,2012,114:2-9.
[2] Chino M,Nakayama H,Nagai H,et al.Preliminary estimation of release amounts of131I and137Cs accidentally discharged from the Fukushima Daiichi Nuclear Power Plant into the atmosphere[J].J Nucl Sci Technol,2011,48(7):1129-1134.
[3] Hou X,Povinec P P,Zhang L,et al.Iodine-129 in seawater off shore Fukushima:distribution,inorganic speciation,sources,and budget[J].Environ Sci Technol,2013,47:3091-3098.
[4] Estournel C,Bosc E,Bocquet M,et al.Assessment of the amount of cesium-137 released into the Pacific Ocean after the Fukushima accident and analysis of its dispersion in Japanese coastal waters[J]. J Geophys Res,2012,117,C11014/1-13,doi:10. 1029/2012JC007933.
[5] Stohl A,Seibert P,Wotawa G,et al.Xenon-133and caesium-137 releases into the atmosphere from the Fukushima Daiichi Nuclear Power Plant:determination of the source term,atmospheric dispersion,and deposition[J].Atmos Chem Phys,2012,12:2313-2343.
[6] Stohl A,Seibert P,Wotawa G.The total release of Xenon-133 from the Fukushima Daiichi nuclear power accident[J].J Environ Radioact,2012,112:155-159.
[7] Zheng J,Tagami K,Watanabe Y,et al.Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident[J].Sci Rep,2012,2:304/1-8.doi:10.1038/srep00304.
[8] 程衛(wèi)亞,楊宏偉,陳凌,等.利用航測數(shù)據(jù)反推福島核事故137Cs的釋放量[J].原子能科學技術(shù),2012,46(2):252-256.
[9] Steinhauser G,Brandl A,Johnson T E.Comparison of the chernobyl and Fukushima nuclear accidents:a review of the environmental impacts[J]. Sci Total Environ,2014,470-471:800-817.
[10]Winiarek V,Bocquet M,Saunier O,et al.Estimation of errors in the inverse modeling of accidental release of atmospheric pollutant:application to the reconstruction of the cesium-137 and iodine-131 source terms from the Fukushima Daiichi power plant[J].J Geophys Res,2012,117,D05122/1-16,doi:10.1029/2011JD016932.
[11]Unno Y,Yunoki A,Sato Y,et al.Estimation of immediate fallout after the accident at Fukushima Daiichi Nuclear Power Plant by using HPGe detector and EGS5 code[J].Appl Radiat Isot,2013,81:348-352.
[12]Hirao S,Yamazawa H,Nagae T.Estimation of release rate of iodine-131 and cesium-137 from the Fukushima Daiichi Nuclear Power Plant[J].J Nucl Sci Technol,2013,50(2):139-147.
[13]Sch?ppner M,Plastino W,Povinec P P,et al.Estimation of the time-dependent radioactive sourceterm from the Fukushima Nuclear Power Plant accident using atmospheric transport modeling[J].J Environ Radio,2012,114:10-14.
[14]Miyazawa Y,Masumoto Y,Varlamov S M,et al. Inverse estimation of source parameters of oceanic radioactivity dispersion models associated with the Fukushima accident[J].Biogeosciences,2013,10:2349-2363.
[15]Koo Y H,Yang Y S,Song K W.Radioactivity release from the Fukushima accident and its consequences:a review[J].Prog Nucl Energy,2014,74:61-70.
[16]Charette M A,Breier C F,Henderson P B,et al. Radium-based estimates of cesium isotope transport and total direct ocean discharges from the Fukushima Nuclear Power Plant accident[J].Biogeosciences,2013,10:2159-2167.
[17]Gudelis A,Gorina I,EdveckaitèT,et al.Activity measurement of gamma-ray emitters in aerosol filters exposed in Lithuania,in March-April 2011[J]. Appl Radiat Isot,2013,81:362-365.
[18]Povinec P P,Sykora I,Holy K,et al.Aerosol radioactivity record in Bratislava/Slovakia following the Fukushima accident:a comparison with global fallout and the Chernobyl accident[J].J Environ Radioact,2012,114:81-88.
[19]Loaiza P,Brudanin V,Piquemal F,et al.Air radioactivity levels following the Fukushima reactor accident measured at the Laboratoire Souterrain de Modane,F(xiàn)rance[J].J Environ Radioact,2012,114:66-70.
[20]Paatero J,Vira J,Siitari-Kauppi M,et al.Airborne fission products in the high Arctic after the Fukushima nuclear accident[J].J Environ Radioact,2012,114:41-47.
[21]Bikit I,Mrda D,Todorovic N,et al.Airborne radioiodine in northern Serbia from Fukushima[J].J Environ Radioact,2012,114:89-93.
[22]Doi T,Masumoto K,Toyoda A,et al.Anthropogenic radionuclides in the atmosphere observed at Tsukuba:characteristics of the radionuclides derived from Fukushima[J].J Environ Radioact,2013,122:55-62.
[23]López-Pérez M,Ramos-López R,Perestelo N R,et al. Arrival of radionuclides released by the Fukushima accident to Tenerife(Canary Islands)[J].J Environ Radioact,2013,116:180-186.
[24]Sinclair L E,Seywerd H C J,F(xiàn)ortin R,et al.Aerial measurement of radioxenon concentration off the west coast of Vancouver Island following the Fukushima reactor accident[J].J Environ Radioact,2011,102(11):1018-1023.
[25]Kinoshita N,Sueki K,Sasa K,et al.Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering central-east Japan[J].PNAS,2011,108(49):19526-19529.
[26]Thakur P,Ballard S,Nelson R.Radioactive fallout in the United States due to the Fukushima NuclearPlant accident[J].J Environ Monitor,2012,14:1317-1324.
[27]Lepp?nen A P,Mattila A,Kettunen M,et al.Artificial radionuclides in surface air in Finland following the Fukushima Dai-ichi Nuclear Power Plant accident[J].J Environ Radioact,2013,126:273-283.
[28]Long N Q,Truong Y,Hien P D,et al.Atmospheric radionuclides from the Fukushima Dai-ichi nuclear reactor accident observed in Vietnam[J].J Environ Radioact,2012,111:53-58.
[29]Momoshima N,Sugihara S,Ichikawa R,et al.Atmospheric radionuclides transported to Fukuoka,Japan remote from the Fukushima Dai-ichi nuclear power complex following the nuclear accident[J].J Environ Radioact,2012,111:28-32.
[30]Oh J S,Lee S H,Choi J K,et al.Atmospheric input of137Cs and239,240Pu isotopes in Korea after the Fukushima Nuclear Power Plant accident[J].Appl Radiat Isot,2014,87:53-56.
[31]Masson O,Ott A de V,Bourcier L,et al.Change of radioactive cesium(137Cs and134Cs)content in cloud water at an elevated site in France,before and after the Fukushima nuclear accident:comparison with radioactivity in rainwater and in aerosol particles[J].Atmos Res,2015,151:45-51.
[32]Yang W,Guo L.Depositional fluxes and residence time of atmospheric radioiodine(131I)from the Fukushima accident[J].J Environ Radioact,2012,113:32-36.
[33]Simgen H,Arnold F,Aufmhoff H,et al.Detection of133Xe from the Fukushima Nuclear Power Plant in the upper troposphere above Germany[J].J Environ Radioact,2014,132:94-99.
[34]Pham M K,Eriksson M,Levy I,et al.Detection of Fukushima Daiichi Nuclear Power Plant accident radioactive traces in Monaco[J].J Environ Radioact,2012,114:131-137.
[35]Bowyer T W,Biegalski S R,Cooper M,et al.Elevated radioxenon detected remotely following the Fukushima nuclear accident[J].J Environ Radioact,2012,102:681-687.
[36]Barsanti M,Conte F,Delbono I,et al.Environmental radioactivity analyses in Italy following the Fukushima Dai-ichi nuclear accident[J].J Environ Radioact,2012,114:126-130.
[37]Potiriadis C,Kolovou M,Clouvas A,et al.Environmental radioactivity measurements in Greece following the Fukushima Daiichi nuclear accident[J]. Radiat Prot Dosim,2012,150(4):441-447.
[38]Perrot F,Hubert Ph,Marquet Ch,et al.Evidence of131I and134,137Cs activities in Bordeaux,F(xiàn)rance due to the Fukushima nuclear accident[J].J Environ Radioact,2012,114:61-65.
[39]Evrard O,Beek P V,Gateuille D,et al.Evidence of the radioactive fallout in France due to the Fukushima nuclear accident[J].J Environ Radioact,2012,114:54-60.
[40]Ogata Y.Fallout by the disaster of Fukushima Daiichi Nuclear Plant at Nagoya[J].Radiat Meas,2013,55:96-98.
[41]Ott A de V,Gurriaran R,Cagnat X,et al.Fission product activity ratios measured at trace level over France during the Fukushima accident[J].J Environ Radioact,2013,125:6-16.
[42]Ioannidou A,Manenti S,Gini L,et al.Fukushima fallout at Milano,Italy[J].J Environ Radioact,2012,114:119-125.
[43]Huh C A,Hsu S C,Lin C Y.Fukushima-derived fission nuclides monitored around Taiwan:free tropospheric versus boundary layer transport[J]. EPSL,2012,319-320:9-14.
[44]Clemenza M,F(xiàn)iorini E,Previtali E,et al.Measurement of airborne131I,134Cs and137Cs due to the Fukushima reactor incident in Milan(Italy)[J].J Environ Radioact,2012,114:113-118.
[45]Hazama R,Matsushima A.Measurement of fallout with rain in Hiroshima and several sites in Japan from the Fukushima reactor accident[J].J Radioanal Nucl Chem,2013,297:469-475.
[46]Kanai Y.Monitoring of aerosols in Tsukuba after Fukushima Nuclear Power Plant incident in 2011[J].J Environ Radioact,2012,111:33-37.
[47]Beresford N A,Barnett C L,Howard B J,et al.Observations of Fukushima fallout in Great Britain[J].J Environ Radioact,2012,114:48-53.
[48]Morino Y,Ohara T,Nishizawa M.Atmospheric behavior,deposition,and budget of radioactive materials from the Fukushima Daiichi Nuclear Power Plant in March 2011[J].Geophys Res Lett,2011,38,L00G11/1-7,doi:10.1029/2011GL048689.
[49]Lozano R L,Hernández-Ceballos M A,Adame J A,et al.Radioactive impact of Fukushima accident on the Iberian Peninsula:evolution and plume previous pathway[J].Environ Int,2011,37:1259-1264.
[50]Manolopoulou M,Stoulos S,Ioannidou A,et al.Radioecological indexes of fallout measurements from the Fukushima nuclear accident[J].Ecol Indic,2013,25:197-199.
[51]Rizzo S,Tomarchio E.Radionuclide concentrations in air particulate at Palermo(Italy)following Fukushima accident[J].Radiat Prot Dosim,2013,153:534-540.
[52]Huh C A,Lin C Y,Hsu S C.Regional dispersal of Fukushima-derived fission nuclides by East-Asian Monsoon:a synthesis and review[J].Aerosol Air Qual Res,2013,13:537-544.
[53]Becker A,Ceranna L,Ross O,et al.Towards a new daily in-situ precipitation data set supporting parameterization of wet-deposition of CTBT relevant radionuclides[J].Geophy Res Abs,2012,14:EGU2012-11479.
[54]Matsumoto T,Maruoka T,Shimoda G,et al.Tritium in Japanese precipitation following the March 2011 Fukushima Dai-ichi Nuclear Plant accident[J]. Sci Total Environ,2013,445-446:365-370.
[55]Biegalski S R,Bowyer T W,Eslinger P W,et al. Analysis of data from sensitive U.S.monitoring stations for the Fukushima Daiichi nuclear reactor accident[J].J Environ Radioact,2012,114:15-21.
[56]Korsakissok I,Mathieu A,Didier D.Atmospheric dispersion and ground deposition induced by the Fukushima Nuclear Power Plant accident:a localscale simulation and sensitivity study[J].Atmos Environ,2013,70:267-279.
[57]Woo T H.Atmospheric modeling of radioactive material dispersion and health risk in Fukushima Daiichi Nuclear Power Plants accident[J].Ann Nucl Energy,2013,53:197-201
[58]Povinec P P,Gera M,Holy K,et al.Dispersion of Fukushima radionuclides in the global atmosphere and the ocean[J].Appl Radiat Isot,2013,81:383-392.
[59]Draxler R,Arnold D,Chino M,et al.World meteorological organization's model simulations of the radionuclide dispersion and deposition from the Fukushima Daiichi Nuclear Power Plant accident[J].J Environ Radioact,2015,139:172-184.
[60]Evangeliou N,Balkanski Y,Anne Cozic A,et al. Global transport and deposition of137Cs following the Fukushima Nuclear Power Plant accident in Japan:emphasis on Europe and Asia using high-resolution model versions and radiological impact assessment of the human population and the environment using interactive tools[J].Environ Sci Technol,2013,47:5803-5812.
[61]Arnold D,Maurer C,Wotawa G,et al.Influence of the meteorological input on the atmospheric transport modelling with FLEXPART of radionuclides from the Fukushima Daiichi nuclear accident[J].J Environ Radioact,2015,139:212-225.
[62]Saito K,Shimbori T,Draxler R.JMA's regional atmospheric transport model calculations for the WMO technical task team on meteorological analyses for Fukushima Daiichi Nuclear Power Plant accident[J].J Environ Radioact,2015,139:185-199.
[63]Christoudias T,Lelieveld J.Modelling the global atmospheric transport and deposition of radionuclides from the Fukushima Dai-ichi nuclear accident[J].Atmos Chem Phys,2013,13:1425-1438.
[64]喬方利,王關(guān)鎖,趙偉,等.2011年3月日本福島核泄漏物質(zhì)輸運擴散路徑的情景模擬和預測[J].科學通報,2011,56(12):887-894.
[65]Parache V,Pourcelot L,Roussel-Debet S,et al. Transfer of131I from Fukushima to the vegetation and milk in France[J].Environ Sci Technol,2011,45:9998-10003.
[66]Park K H,Kang T W,Kim W J,et al.134Cs and137Cs radioactivity in soil and moss samples of Jeju Island after Fukushima nuclear reactor accident[J]. Appl Radiat Isot,2013,81:379-382.
[67]Ohmura Y,Matsukura K,Abe J P,et al.137Cs concentrations in foliose lichens within Tsukuba-city as a reflection of radioactive fallout from the Fukushima Dai-ichi Nuclear Power Plant accident[J].J Environ Radioact,2015,141:38-43.
[68]Herod M N,Clark I D,Kieser W E,et al.129I dispersion and sources in Northwest Canada[J].Nucl Instru Meth Phys Res B,2013,294:552-558.
[69]Fujimura S,Muramatsu Y,Ohno T,et al.Accumulation of137Cs by rice grown in four types of soil contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident in 2011 and 2012[J].J Environ Radioact,2015,140:59-64.
[70]Yoshimura K,Onda Y,Sakaguchi A,et al.An extensive study of the concentrations of particulate/ dissolved radiocaesium derived from the Fukushima Dai-ichi Nuclear Power Plant accident in various river systems and their relationship with catchment inventory[J].J Environ Radioact,2015,139:370-378.
[71]Merz S,Shozugawa K,Steinhauser G.Analysis of Japanese radionuclide monitoring data of food before and after the Fukushima nuclear accident[J].Environ Sci Technol,2015,49:2875-2885.
[72]Yasunari T J,Stohl A,Hayano R S,et al.Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident[J].PNAS,2011,108(49):19530-19534.
[73]Matsuda N,Mikami S,Shimoura S,et al.Depth profiles of radioactive cesium in soil using a scraper plate over a wide area surrounding the Fukushima Dai-ichi Nuclear Power Plant,Japan[J].J Environ Radioact,2015,139:427-434.
[74]Lepage H,Evrard O,Onda Y,et al.Environmental mobility of110Agm:lessons learnt from Fukushima accident(Japan)and potential use for tracking the dispersion of contamination within coastal catchments[J].J Environ Radioact,2014,130:44-55.
[75]Bolsunovsky A,Dementyev D.Evidence of the radioactive fallout in the center of Asia(Russia)following the Fukushima nuclear accident[J].J Environ Radioact,2011,102:1062-1064.
[76]Koarashi J,Atarashi-Andoh M,Matsunaga T,et al.Factors affecting vertical distribution of Fukushima accident-derived radiocesium in soil under different land-use conditions[J].Sci Total Environ,2012,431:392-401.
[77]Baeza A,Corbacho J A,Rodríguez A,et al.Influence of the Fukushima Dai-ichi nuclear accident on Spanish environmental radioactivity levels[J].J Environ Radioact,2012,114:138-145.
[78]Daraoui A,Michel R,Gorny M,et al.Iodine-129,iodine-127 and caesium-137 in the environment:soils from Germany and Chile[J].J Environ Radioact,2012,112:8-22.
[79]Niimura N,Kikuchi K,Tuyen N D,et al.Physical properties,structure,and shape of radioactive Cs from the Fukushima Daiichi Nuclear Power Plant accident derived from soil,bamboo and shiitake mushroom measurements[J].J Environ Radioact,2015,139:234-239.
[80]Xu S,Cook G T,Alan J,et al.Radiocarbon concentration in modern tree rings from Fukushima,Japan[J].J Environ Radioact,2015,146:67-72.
[81]Miyake Y,Matsuzaki H,F(xiàn)ujiwara T,et al.Isotopic ratio of radioactive iodine(129I/131I)released from Fukushima Daiichi NPP accident[J].Geochem J,2012,46:327-333.
[82]Buesseler K O,Jayneb S R,F(xiàn)isher N S,et al. Fukushima-derived radionuclides in the ocean and biota off Japan[J].PNAS,2012,109(16):5984-5988.
[83]Casacuberta N,MasquèP,Garcia-Orellana J,et al.90Sr and89Sr in seawater off Japan as a consequence of the Fukushima Dai-ichi nuclear accident[J].Biogeosciences,2013,10:3649-3659.
[84]Suzuki T,Otosaka S,Kuwabara J,et al.Iodine-129 concentration in seawater near Fukushima before and after the accident at the Fukushima Daiichi Nuclear Power Plant[J].Biogeosciences,2013,10:3839-3847.
[85]Tumey S J,Guilderson T P,Brown T A,et al.Input of129I into the Western Pacific Ocean resulting from the Fukushima nuclear event[J].J Radioanal Nucl Chem,2013,296:957-962.
[86]Inoue M,Kofuji H,Hamajima Y,et al.134Cs and137Cs activities in coastal seawater along Northern Sanriku and Tsugaru Strait,northeastern Japan,after Fukushima Dai-ichi Nuclear Power Plant accident[J].J Environ Radioact,2012,111:116-119.
[87]Inoue M,F(xiàn)urusawa Y,F(xiàn)ujimoto K,et al.228Ra/226Ra ratio and7Be concentration in the Sea of Japan as indicators for water transport:comparison with migration pattern of Fukushima Dai-ichi NPP-derived134Cs and137Cs[J].J Environ Radioact,2013,126:176-187.
[88]Yoshida N,Kanda J.Tracking the Fukushima radionuclides[J].Science,2012,336:1115-1116.
[89]Povinec P P,Aoyama M,Biddulph D,et al.Cesium,iodine and tritium in NW Pacific waters:a comparison of the Fukushima impact with global fallout[J].Biogeosciences,2013,10:5481-5496.
[90]Honda M C,Kawakami H,Watanabe S,et al. Concentration and vertical flux of Fukushima-derived radiocesium in sinking particles from two sites in the Northwestern Pacific Ocean[J].Biogeosciences,2013,10:3525-3534.
[91]Thornton B,Ohnishi S,Ura T,et al.Continuous measurement of radionuclide distribution off Fukushima using a towed sea-bed gamma ray spectrometer[J].Deep-Sea Res I,2013,79:10-19.
[92]Inoue M,Kofuji H,F(xiàn)ujimoto K,et al.Delivery mechanism of134Cs and137Cs in seawater off the Sanriku Coast,Japan,following the Fukushima Dai-ichi NPP accident[J].J Environ Radioact,2014,137:113-118.
[93] Kaeriyama H,Ambe D,Shimizu Y,et al.Direct observation of134Cs and137Cs in surface seawater in the western and central North Pacific after the Fukushima Dai-ichi Nuclear Power Plant accident[J]. Biogeosciences,2013,10:4287-4295.
[94] Maderich V,Jung K T,Bezhenar R,et al.Dispersion and fate of90Sr in the Northwestern Pacific and adjacent seas:global fallout and the Fukushima Dai-ichi accident[J].Sci Total Environ,2014,494-495:261-271.
[95] Yu W,He J,Lin W,et al.Distribution and risk assessment of radionuclides released by Fukushima nuclear accident at the Northwest Pacific[J].J Environ Radioact,2015,142:54-61.
[96] Thornton B,Ohnishi S,Ura T,et al.Distribution of local137Cs anomalies on the seafloor near the Fukushima Dai-ichi Nuclear Power Plant[J].Mar Pollut Bull,2013,74:344-350.
[97] Zheng J,Aono T,Uchida S,et al.Distribution of Pu isotopes in marine sediments in the Pacific 30 km off Fukushima after the Fukushima Dai-ichi Nuclear Power Plant accident[J].Geochem J,2012,46:361-369.
[98] Oikawa S,Watabe T,Takata H.Distributions of Pu isotopes in seawater and bottom sediments in the coast of the Japanese archipelago before and soon after the Fukushima Dai-ichi Nuclear Power Station accident[J].J Environ Radioact,2015,142:113-123.
[99] Kumamoto Y,Murata A,Kawano T,et al.Fukushima-derived radiocesium in the Northwestern Pacific Ocean in February 2012[J].Appl Radiat Isot,2013,81:335-339.
[100]Kumamoto Y,Aoyama M,Hamajima Y,et al. Impact of Fukushima-derived radiocesium in the western North Pacific Ocean about ten months after the Fukushima Dai-ichi Nuclear Power Plant accident[J].J Environ Radioact,2015,140:114-122.
[101]Buesseler K,Aoyama M,F(xiàn)ukasawa M.Impacts of the Fukushima Nuclear Power Plants on marine radioactivity[J].Environ Sci Technol,2011,45,9931-9935.
[102]Sakaguchi A,Kadokura A,Steier P,et al.Isotopic determination of U,Pu and Cs in environmental waters following the Fukushima Daiichi Nuclear Power Plant accident[J].Geochem J,2012,46:355-360.
[103]Yamamoto M,Sakaguchi A,Ochiai S,et al.Isotopic Pu,Am and Cm signatures in environmental samples contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident[J].J Environ Radioact,2014,132:31-46.
[104]Inoue M,Kofuji H,Nagao S,et al.Lateral variation of134Cs and137Cs concentrations in surface seawater in and around the Japan Sea after the Fukushima Dai-ichi Nuclear Power Plant accident[J].J Environ Radioact,2012,109:45-51.
[105]Nakano M,Povinec P P.Long-term simulations of the137Cs dispersion from the Fukushima accident in the world ocean[J].J Environ Radioact,2012,111:109-115.
[106]Inoue M,Kofuji H,Nagao S,et al.Low levels of134Cs and137Cs in surface seawaters around the Japanese Archipelago after the Fukushima Dai-ichi Nuclear Power Plant accident in 2011[J].Geochem J,2012,46:311-320.
[107]Min B,Periáňez R,Kim I G,et al.Marine dispersion assessment of137Cs released from the Fukushima nuclear accident[J].Mar Pollut Bull,2013,72:22-33.
[108]Suseno H,Prihatiningsih W R.Monitoring137Cs and134Cs at marine coasts in Indonesia between 2011 and 2013[J].Mar Pollut Bull,2014,88:319-324.
[109]Baumann Z,Casacuberta N,Baumann H,et al. Natural and Fukushima-derived radioactivity in macroalgae and mussels along the Japanese shoreline[J].Biogeosciences,2013,10:3809-3815.
[110]Men W,He J,Wang F,et al.Radioactive status of seawater in the Northwest Pacific more than one year after the Fukushima nuclear accident[J].Scientific Reports,2015,5:7757/1-8.doi:10. 1038/srep 07757.
[111]Sohtome T,Wada T,Mizuno T,et al.Radiological impact of TEPCO's Fukushima Dai-ichi Nuclear Power Plant accident on invertebrates in the coastal benthic food web[J].J Environ Radioact,2014,138:106-115
[112]Povinec P P,Hirose K,Aoyama M.Radiostrontium in the Western North Pacific:characteristics,behavior,and the Fukushima impact[J].Environ Sci Technol,2012,46:10356-10363.
[113]Inoue M,Kofuji H,Oikawa S,et al.Spatial variations of low levels of134Cs and137Cs in seawaters within the sea of Japan after the Fukushima Dai-ichi Nuclear Power Plant accident[J].Appl Radiat Isot,2013,81:340-343.
[114]Watabe T,Oikawa S,Isoyama N,et al.Spatiotemporal distribution of137Cs in the sea surrounding Japanese Islands in the decades before the disaster at the Fukushima Daiichi Nuclear Power Plant in 2011[J].Sci Total Environ,2013,463-464:913-921.
[115]Aoyama M,Tsumune D,Uematsu M,et al. Temporal variation of134Cs and137Cs activities in surface water at stations along the coastline near the Fukushima Dai-ichi Nuclear Power Plant accident site,Japan[J].Geochem J,2012,46:321-325.
[116]Normile D.The Pacific swallows Fukushima's fallout[J].Science,2013,340:547.
[117]Bu W,Zheng J,Guo Q,et al.Ultra-trace plutonium determination in small volume seawater by sector field inductively coupled plasma mass spectrometry with application to Fukushima seawater samples[J].J Chromatogr A,2014,1337:171-178.
[118]Bu W T,Zheng J,Aono T,et al.Vertical distributions of plutonium isotopes in marine sediment cores off the Fukushima coast after the Fukushima Dai-ichi Nuclear Power Plant accident[J].Biogeosciences,2013,10:2497-2511,
[119]Aoyama M,Uematsu M,Tsumune D,et al.Surface pathway of radioactive plume of TEPCO Fukushima NPP1 released134Cs and137Cs[J].Biogeosciences,2013,10:3067-3078.
[120]Keum D K,Jun I,Kim B H,et al.A dynamic model to estimate the activity concentration and whole body dose rate of marine biota as consequences of a nuclear accident[J].J Environ Radioact,2015,140:84-94.
[121]Tsumune D,Tsubono T,Aoyama M,et al.Distribution of oceanic137Cs from the Fukushima Daiichi Nuclear Power Plant simulated numerically by a regional ocean model[J].J Environ Radioact,2012,111:100-108.
[122]Kawamura H,Kobayashi T,F(xiàn)uruno A,et al. Preliminary numerical experiments on oceanic dispersion of131I and137Cs discharged into the ocean because of the Fukushima Dai-ichi Nuclear Power Plant disaster[J].J Nucl Sci Technol,2011,48(11):1349-1356.
[123]Maderich V,Bezhenar R,Heling R,et al.Regional long-term model of radioactivity dispersion and fate in the Northwestern Pacific and adjacent seas:application to the Fukushima Dai-ichi accident[J].J Environ Radioact,2014,131:4-18.
[124]Budyansky M V,Goryachev V A,Kaplunenko D D,et al.Role of mesoscale eddies in transport of Fukushima-derived cesium isotopes in the ocean[J].Deep-Sea Res I,2015,96:15-27.
[125]Wai K M,Yu P K N.Trans-oceanic transport of137Cs from the Fukushima nuclear accident and impact of hypothetical Fukushima-like events of future nuclear plants in Southern China[J].Sci Total Environ,2015,508:128-135.
[126]何晏春,郜永祺,王會軍,等.2011年3月日本福島核電站核泄漏在海洋中的傳輸[J].海洋學報,2012,34(4):12-20.
[127]王輝,王兆毅,朱學明,等.日本福島放射性污染物在北太平洋海水中的輸運模擬與預測[J].科學通報,2012,57(22):2111-2118.
[128]趙昌,喬方利,王關(guān)鎖,等.福島核事故泄漏進入海洋的137Cs對中國近海影響的模擬與預測[J].科學通報,2014,59(34):3416-3423.
[129]IAEA.Worldwide marine radioactivity studies,radionuclide levels in the oceans and seas:IAEATECDOC-1429[R].Vienna,Austria:IAEA,2005:1-187.
[130]Lighton A.Fukushima has positive fallout for marine science[J].Nature News,30 May 2012,doi:10.1038/nature.2012:10750.
[131]陳文濤,宋海青,李靈娟,等.福島核電站事故后廣東地區(qū)放射性水平監(jiān)測結(jié)果與初步分析[J].輻射防護,2012,32(6):386-391.
[132]劉鴻詩,胡丹,向元益,等.日本福島核事故期間浙江省環(huán)境放射性的監(jiān)測結(jié)果及分析[J].輻射防護,2012,32(6):380-385.
[133]劉龍波,武山,曹軍驥,等.福島核事故泄漏的大氣放射性核素監(jiān)測及其對西安地區(qū)的影響[J].科學通報,2013,58(4):372-378.
[134]馬永忠,婁云,萬玲,等.北京地區(qū)應對日本福島核事故污染的監(jiān)測技術(shù)措施與效果[J].首都公共衛(wèi)生,2012,6(2):60-66.
[135]樊元慶,王世聯(lián),李慧娟,等.北京地區(qū)大氣中7Be、137Cs和131I活度濃度分布規(guī)律初步研究[J].原子能科學技術(shù),2013,47(2):189-192.
[136]萬恩源,鄭向東,萬國江,等.2011年春季日本福島核泄漏污染輸送:貴陽131I和137Cs觀測示蹤分析[J].環(huán)境科學學報,2012,32(9):2182-2188.
[137]殷經(jīng)鵬,申茂泉,楊文靜,等.福島核事故后西北某地放射性核素監(jiān)測[J].核電子學與探測技術(shù),2012,32(3):265-268.
[138]何澤勇.日本福島核電站事故后山西輻射環(huán)境監(jiān)測結(jié)果及分析[J].輻射防護,2012,32(6):392-397.
[139]崔力萌,婁云,陳肖華,等.北京市2011—2013年水中總α、總β放射性測量分析[J].環(huán)境與職業(yè)醫(yī)學,2015,32(1):43-46.
[140]吳俊文,周寬波,戴民漢.從人為放射性核素137Cs看福島核事故對中國海的影響[J].科學通報,2012,57(32):3100-3108.
[141]謝林波,李奇,王世聯(lián),等.大氣顆粒物中129I的加速器質(zhì)譜測量[J].原子能科學技術(shù),2014,48(9):1675-1680.
[142]何海明,張臘根.福島核電站核泄漏事故對廣東省輻射環(huán)境的影響[J].資源節(jié)約與環(huán)保,2014(7):174-175.
[143]王延俊,李秀萍,亢鳳琴,等.福島核事故對蘭州地區(qū)黃河水、自來水中放射性水平的影響[J].中國輻射衛(wèi)生,2013,22(2):196-198.
[144]楊名生,楊遠,廖燕慶,等.福島核事故期間廣西地區(qū)輻射環(huán)境應急監(jiān)測[J].輻射防護通訊,2012,32(2):20-23.
[145]陳彬,胡曉燕,邵亮,等.福島核事故期間杭州地區(qū)雨水中131I監(jiān)測[J].輻射防護通訊,2012,32(2):45-46.
[146]何必勝,陳彬,羊佳,等.福島核事故期間日本至杭州飛機外表面放射性污染監(jiān)測[J].輻射防護通訊,2012,32(2):49-51.
[147]王瑞俊,張艾明,高澤全,等.福島核事故期間山西地區(qū)輻射環(huán)境應急監(jiān)測[J].輻射防護通訊,2012,32(2):12-19.
[148]王曉鋒,孟玲玲,黃瓊中.福島核事故期間西藏地區(qū)輻射環(huán)境應急監(jiān)測[J].輻射防護通訊,2012,32(2):28-29.
[149]王國全,刁春娜,時良辰,等.福島核事故期間新疆地區(qū)輻射環(huán)境應急監(jiān)測[J].輻射防護通訊,2012,32(2):24-27.
[150]胡丹,丁遜,宋建鋒,等.福島核事故期間浙江地區(qū)大氣中氙的監(jiān)測[J].輻射防護通訊,2012,32(2):40-44.
[151]向元益,劉鴻詩,羊佳,等.福島核事故期間浙江地區(qū)空氣中放射性水平應急監(jiān)測[J].輻射防護通訊,2012,32(2):35-39.
[152]向元益,羊佳,胡飛,等.福島核事故期間浙江地區(qū)生物樣品放射性水平監(jiān)測[J].輻射防護通訊,2012,32(2):47-51.
[153]Tuo F,Xu C,Zhang J,et al.Radioactivity analysis following the Fukushima Dai-ichi nuclear accident[J].Appl Radiat Isot,2013,78:77-81.
[154]盧玉楷.簡明放射性同位素應用手冊[M].上海:上??茖W普及出版社,2004.
[155]NEA Committee Protection and Public Health. Chernobyl ten years on:radiological and health impact[R].Paris:OECD Nuclear Energy Agency,1995.
[156]Aarkrog A.Input of anthropogenic radionuclides into the world ocean[J].Deep-Sea ResⅡ,2003,50:2597-2606.
[157]Hong G H,Baskaran M,Povinec P P.Artificial radionuclides in the Western North Pacific:an review[M]∥Shiyomi M,Kawahata H,Koizumi H,et al. Global environmental change in the ocean and land.Tokyo:Terrapub,2004:147-172.
[158]Endo S,Tomita J,Tanaka K,et al.Iodine-129 measurements in soil samples from Dolon village near the Semipalatinsk nuclear test site[J].Radiat Environ Biophys,2008,47:359-365.
Maryne Radyochemystry Progress After Fukushyma Dayychy NucIear Power PIant Accydent
LIU Guang-shan
College of the Environment and Ecology,Xiamen University,Xiamen 361102,China
Because being paid close attention to environment impact from the Fukushima Daiichi Nuclear Power Plant(FDNPP)accident,artificial radionuclides in the atmosphere,land and ocean were studied and monitored.The main nuclides detected are131I,137Cs,134Cs and129I.When the concentration levels are measured,the transport path of radionuclides in the atmosphere and ocean were simulated.The results showed that controlling by climate condition,the airborne radionuclides released by FDNPP accident reached America via the Pacific,and then arrived to Europe over Atlantic,and finally transported to China.Over the globe the activity concentration of131I from FDNPP accident is in the order of magnitude of mBq/m3,and 0.1-1 mBq/m3for137Cs.The nuclides released to the sea headed eastward with the ocean current and then would circulate in the North Pacific.With mixing,the radionuclides went down to 200 m depth,where not very far from FDNPP.In the open ocean far from FDNPP,the137Cs activity concentration may be in the order of magnitude of 100 Bq/m3,but most of waters is in the Bq/m3level,only slightly higher than background.
O615;P734;P736.4
A
0253-9950(2015)05-0341-14
2015-06-19;
2015-08-19
劉廣山(1959—),男,山西靈丘人,教授,從事環(huán)境變化與年代學研究
doy:10.7538/hhx.2015.37.05.0341