• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      應(yīng)用15N研究氮肥運籌對棉花氮素吸收利用及產(chǎn)量的影響

      2015-06-15 19:19:00李鵬程董合林劉愛忠劉敬然李如義李亞兵毛樹春
      關(guān)鍵詞:中棉棉株籽棉

      李鵬程, 董合林, 劉愛忠, 劉敬然, 李如義, 孫 淼, 李亞兵, 毛樹春

      (中國農(nóng)業(yè)科學(xué)院棉花研究所,棉花生物學(xué)國家重點實驗室,河南安陽 455000)

      應(yīng)用15N研究氮肥運籌對棉花氮素吸收利用及產(chǎn)量的影響

      李鵬程, 董合林*, 劉愛忠, 劉敬然, 李如義, 孫 淼, 李亞兵, 毛樹春*

      (中國農(nóng)業(yè)科學(xué)院棉花研究所,棉花生物學(xué)國家重點實驗室,河南安陽 455000)

      15N示蹤技術(shù); 氮肥運籌; 棉花; 氮吸收利用; 產(chǎn)量

      氮是作物生長必需的大量元素之一,作物吸收的氮一部分來源于土壤,一部分來源于施入的氮肥。氮同位素示蹤技術(shù)能區(qū)分作物吸收利用的肥料氮及土壤氮,運用此技術(shù)測定的作物氮素利用率能真實地反映作物實際利用肥料的狀態(tài)[1],并能深入細(xì)致研究施入氮肥的去向及在作物體內(nèi)的分配[2-7],為作物氮肥運籌管理提供理論依據(jù)。

      有關(guān)棉花適宜的施氮時期存在爭議,國外有學(xué)者推薦最佳施氮時期為出苗后和現(xiàn)蕾期[8],也有研究認(rèn)為播前和初花期各施一半較好[9]。國內(nèi)有研究認(rèn)為棉株中的氮素主要來自土壤,占棉株總氮量的53%以上;棉株生育前期對土壤氮的依賴性較高,而后期對肥料氮的依賴性較高[10],這一結(jié)果為棉花底氮后移提供了理論依據(jù)。滴灌條件下增加施氮次數(shù)[11]、滴灌時先滴一半肥液再滴一半清水[12-13]有利于提高棉花的氮肥利用率。棉花氮肥施氮時期、施氮次數(shù)、底施與追施比例對氮素吸收、產(chǎn)量及氮肥利用率的影響值得深入研究。黃河流域棉區(qū)氮肥施用習(xí)慣為底肥與初花期追肥各施一半,這種施氮方式是不是兼顧產(chǎn)量與氮肥利用率的最佳方式尚不明確。 本文擬采用盆栽試驗,使用氮同位素示蹤技術(shù),設(shè)計氮肥底施與初花期追施比例為1 ∶2和0 ∶1,底施氮與蕾期追氮比例為0 ∶1,以底氮與初花期追氮比例1 ∶1為對照,研究底氮后移以及一次性施氮對棉花生物量及氮素積累、籽棉產(chǎn)量及氮肥利用率的影響,以期為黃河流域棉區(qū)氮肥合理運籌提供理論依據(jù)。

      1 材料與方法

      盆栽試驗于2013年在河南省安陽市中國農(nóng)業(yè)科學(xué)院棉花研究所試驗農(nóng)場進行。以轉(zhuǎn)Bt+CpTI基因中熟常規(guī)品種中棉所79(CCRI79)和中棉所60(CCRI79)為材料,設(shè)氮肥底施與初花期追施比例1 ∶1(N1)、1 ∶2 (N2)、0 ∶1(N3)、氮肥底施與蕾期追施比例0 ∶1(N4)4個處理(表1),每處理重復(fù)10次,隨機區(qū)組設(shè)計。試驗用盆為塑料花盆,上部內(nèi)直徑35 cm,底部內(nèi)直徑30 cm,高39 cm。每盆裝土35 kg,供試土壤有機質(zhì)含量10.5 g/kg,全氮0.73 g/kg,堿解氮68.2 mg/kg,速效磷10.6 mg/kg,速效鉀99.4 mg/kg。

      所有處理磷、鉀肥用量相同,并全部作底肥。磷肥用過磷酸鈣(P2O5含量42%),每盆施8.33 g,鉀肥用硫酸鉀(含K2O 51%),每盆用量6.86 g。氮肥為硫酸銨 (含N 21%,上?;ぱ芯吭荷a(chǎn)),15N豐度10.08,每盆純氮總用量均為3.5 g。 于2013年4月8日裝土并施入底肥,花盆按行距0.8 m、株距0.7 m擺放,并埋入土壤中。4月25日播種,5月2日出苗,6月10日現(xiàn)蕾,7月8日開花,9月5日吐絮。6月12日追施蕾期氮肥,7月10日追初花期氮肥。

      表1 盆栽試驗棉花施氮量及施氮時期

      1.2 采樣及測定

      于初花期(7月10日)、收獲期(9月20日)每處理取4株,初花期分根(子葉節(jié)以下)、莖、葉、花蕾,成熟期分根、莖、葉、鈴殼、籽棉,于電熱恒溫干燥箱內(nèi)105℃殺青30 min后80℃烘干至恒重,用萬分之一天平稱量生物量,粉碎待用。成熟期取0—30 cm土壤混合樣,每處理取4個重復(fù),自然風(fēng)干后磨碎,過0.25 mm篩備用。植物不同部位和土壤全氮含量用半微量凱氏定氮法測定,15N豐度用ZHT-03(北京化工儀器廠)質(zhì)譜計測定。

      棉株不同部位氮吸收量、棉株吸收的氮素來自氮肥(Ndff %)、氮肥回收率的計算參照王富林等[14]的方法,公式如下:

      棉株不同部位氮吸收量(g) =棉株不同部位生物量(g)×全氮含量;

      作為一種非常重要的中樞神經(jīng)系統(tǒng)興奮性神經(jīng)遞質(zhì)受體,NMDA受體是一種谷氨酸離子型的受體,可以對突觸傳導(dǎo)、突觸可塑性與神經(jīng)細(xì)胞變形調(diào)節(jié),并增強長時程。包含3個亞基編碼基因?qū)τ贜MDA受體來說,分別為NR1、NR2、NR3。其中,功能性NMDA受體必不可少的就是NRI8種不同剪切受體;NR2具備的基因編碼亞型有4種,且都是不同的;NR3由兩個亞型組成,分別為NR3A、3B。當(dāng)神經(jīng)纖維發(fā)生病理變化時,比如缺血缺氧與神經(jīng)損傷,會出現(xiàn)相反作用對于過度活化的NMDA來說??傮w來說,需要遵循一個鐘型曲線對于NMDA受體神經(jīng)元對興奮性谷氨酸遞質(zhì)反應(yīng)來說,無論是輕微還是高強度的激活受體,都是不健康的。

      Ndff(%) =(棉株不同器官中15N豐度-0.3663)/(肥料中15N豐度-0.3663)×100;

      棉株不同器官15N累積量(mg)=棉株不同器官全氮吸收量(g)×Ndff %×1000;

      棉株15N回收率(%)=棉株體內(nèi)15N含量/15N施入量×100;

      土壤15N回收率(%)=土壤中15N含量/15N施入量×100。

      1.3 數(shù)據(jù)處理

      所有數(shù)據(jù)采用Excel 2007和DPS 11.0軟件進行統(tǒng)計與分析。

      2 結(jié)果與分析

      2.1 氮肥運籌對棉花不同器官生物量及籽棉產(chǎn)量的影響

      由表2可以看出,初花期2個棉花品種不同施氮處理間棉株的根、花蕾部分生物量差異不顯著,2個品種N4處理根、花蕾部分生物量在4個施氮處理中最高,說明蕾期施氮對棉花地下部的生長及花蕾的發(fā)育有促進作用。中棉所79的 N1處理單株生物量在4個處理中最高,而中棉所60 的N3處理的單株生物量在4個處理中最高,但各處理間的單株生物量差異不顯著,說明了底施氮肥對初花期的棉花單株生物量影響較小。

      收獲期相同品種不同施氮處理間棉株根、莖、葉、鈴殼的生物量差異不顯著,單株籽棉產(chǎn)量均以N2處理最高(表3)。中棉所79各處理間單株籽棉產(chǎn)量、單株生物量無顯著差異,N2處理單株籽棉產(chǎn)量比N1高5.5%。中棉所60 的N2處理的單株籽棉產(chǎn)量、生物量顯著高于N4處理,但與N1、N3處理間的差異不顯著,N2處理單株籽棉產(chǎn)量比N1高4.4%。結(jié)果表明,底氮與初花期追氮比例為1 ∶2時可促進棉花生物量的積累,相比常規(guī)施氮(底追比為1 ∶1)有一定增產(chǎn)作用。

      表2 初花期棉株不同器官生物量(g/plant)

      注(Note): 同列數(shù)據(jù)后不同字母表示處理間差異達(dá)5%顯著水平 Values followed by different letters in a column are significant among treatments at the 5% level.

      表3 收獲期棉株不同器官生物量(g/plant)

      注(Note): 同列數(shù)據(jù)后不同字母表示處理間差異達(dá)5%顯著水平 Values followed by different letters in a column are significant among treatments at the 5% level.

      2.2 氮肥運籌對15N豐度及15N積累量的影響

      表4顯示,初花期2個品種N1處理的主莖15N豐度大于花蕾、葉,根15N豐度最低。2個品種N4處理花蕾15N豐度大于根、莖,葉15N豐度最低,N2處理棉花初花期根、莖、葉、花蕾之間的15N豐度較接近。2個品種N1處理的根、莖、葉、花蕾的15N豐度均顯著高于N2和N4,N4花蕾的15N豐度顯著高于N2。

      初花期各處理棉花的葉15N積累量最高,其次是主莖、花蕾,根部最少(表5)。N4處理花蕾的15N積累量高于N2,與15N豐度結(jié)果一致,說明蕾期施氮促進了花蕾的發(fā)育及其對氮肥的吸收利用。中棉所79的 N1處理的全株15N積累量顯著高于N2、N4處理,中棉所60 的N1、N2處理的全株15N積累量顯著高于N4。

      表6結(jié)果表明,收獲期棉花除了中棉所79的N3處理、中棉所60 的N1處理外,其他處理的籽棉15N豐度均比其他部位高。中棉所79 的N3處理的根、莖、葉、鈴殼的15N豐度高于N1、N2、N4處理,N4處理的籽棉15N豐度顯著高于N1、N2,與N3處理差異不顯著。中棉所60 的N4處理的根、莖、葉、鈴殼的15N豐度高于N1、N2、N3處理,N3處理籽棉的15N豐度在4個處理中最高,與中棉所79的結(jié)果一致。說明初花期施氮可促進生殖器官對肥料氮的吸收。 除了中棉所60的 N1處理外,其他處理的籽棉15N積累量均高于根、莖、葉、鈴殼(表7)。中棉所79 的N4處理籽棉15N積累量最高,其次是N3、N1,N2最低。中棉所60 的N3處理籽棉15N積累量最高,其次是N4、N2,N1最低。2個品種N3、N4處理的全株15N積累量均顯著高于N2和N1處理,說明蕾期或初花期一次性施氮有利于棉花的生殖生長,增加了生殖器官對肥料氮的吸收量。

      表4 初花期棉花不同器官15N豐度(%)

      注(Note): 同列數(shù)據(jù)后不同字母表示處理間差異達(dá)5%顯著水平 Values followed by different letters in a column are significant among treatments at the 5% level.

      表5 初花期棉花不同器官15N積累量(mg/plant)

      注(Note): 同列數(shù)據(jù)后不同字母表示處理間差異達(dá)5%顯著水平 Values followed by different letters in a column are significant among treatments at the 5% level.

      表6 收獲期棉花不同器官15N豐度(%)

      注(Note): 同列數(shù)據(jù)后不同字母表示處理間差異達(dá)5%顯著水平 Values followed by different letters in a column are significant among treatments at the 5% level.

      表7 收獲期棉花不同器官15N積累量(mg/plant)

      注(Note): 同列數(shù)據(jù)后不同字母表示處理間差異達(dá)5%顯著水平 Values followed by different letters in a column are significant among treatments at the 5% level.

      2.3 氮肥運籌對棉株吸收的氮素來自氮肥的比例(Ndff%)及15N回收率的影響

      表8 初花期棉花不同器官吸收的氮素來自氮肥的比例(%)

      注(Note): 同列數(shù)據(jù)后不同字母表示處理間差異達(dá)5%顯著水平 Values followed by different letters in a column are significant among treatments at the 5% level.

      表9 收獲期棉花不同器官吸收的氮素來自氮肥的比例(%)

      注(Note): 同列數(shù)據(jù)后不同字母表示處理間差異達(dá)5%顯著水平 Values followed by different letters in a column are significant among treatments at the 5% level.

      圖1 氮肥運籌對初花期棉花植株15N回收率的影響Fig.1 Effects of nitrogen application strategy on 15N recovery of cotton plants at the initial flowering stage[注(Note): 柱上不同字母表示處理間差異達(dá)5%顯著水平 Different letters above the bars mean significant among treatments at the 5% level.]

      圖2 氮肥運籌對棉花植株收獲期15N回收率的影響Fig.2 Effects of nitrogen application strategy on 15N recovery of cotton plants at the harvest stage[注(Note): 柱上不同字母表示處理間差異達(dá)5%顯著水平 Different letters above the bars mean significant among treatment at the 5% level.]

      圖3 氮肥運籌對棉花收獲后土壤15N回收率的影響Fig.3 15N recovery of soil in the pot experiment of cotton after the harvest with different N application treatments[注(Note): 柱上不同字母表示處理間差異達(dá)5%顯著水平 Different letters above the bars mean significant among treatments at the 5% levels]

      2.4 氮肥運籌對棉花收獲后土壤15N回收率的影響

      3 討論與結(jié)論

      有關(guān)氮肥基追比例對作物產(chǎn)量的影響在小麥、玉米、棉花等作物中均有報道。王曉英等[15]報道,強筋小麥濟麥20號基肥、 拔節(jié)肥比例3 ∶17處理優(yōu)于基肥、 拔節(jié)肥比例1 ∶1處理,能提高小麥產(chǎn)量與品質(zhì);戰(zhàn)秀梅等[16]報道,春玉米氮肥減量后移能獲得較高的產(chǎn)量,同時也能提高氮效率;趙士誠等[17]報道,夏玉米氮肥減量后移能節(jié)省氮肥,產(chǎn)量并不下降。以上研究表明,減少基施氮肥比例增加追施氮肥的比例能提高小麥、玉米等作物的氮肥利用率,達(dá)到增產(chǎn)或穩(wěn)產(chǎn)的效果。氮肥基追比例對棉花產(chǎn)量的影響研究結(jié)果不盡一致,馬宗斌等[18-19]報道,黃河灘區(qū)棉花施用基肥、花鈴肥和蓋頂肥的比例為0.4 ∶0.4 ∶0.2時,籽棉產(chǎn)量高于基肥、花鈴肥和蓋頂肥比例為0 ∶0.4 ∶0.6,0.2 ∶0.4 ∶0.4,0.6 ∶0.4 ∶0的處理,但馬宗斌等[20]報道,在盆栽條件下(每盆裝土20 kg,每盆施尿素12 g),雜交棉“豫雜35”在氮肥基追比為1 ∶2時皮棉產(chǎn)量分別比1 ∶1和2 ∶1處理顯著增加3.66%和7.33%; Yang等[21]盆栽和大田試驗的結(jié)果表明,在施氮總量不變,初花期施總氮量的40%的前提下,不施底氮,盛花期施氮60%棉花的產(chǎn)量顯著高于其他底氮與盛花期追氮處理。本試驗條件下,2個品種底氮、初花期追氮為1 ∶2的處理棉花單株籽棉產(chǎn)量均高于其他3個施氮處理,與馬宗斌等[20]的盆栽試驗結(jié)果相近,但增產(chǎn)效果未達(dá)到顯著水平,可能與馬宗斌等使用的品種為雜交棉以及其盆栽的氮肥用量較大有關(guān)。

      本試驗條件下,2個品種底氮與追氮比例為1 ∶2的處理棉花單株籽棉產(chǎn)量、收獲期全株15N積累量、Ndff%均高于底氮與初花期追氮為1 ∶1的處理,15N回收率略高于底氮與初花期追氮為1 ∶1的處理,而且棉花收獲后肥料氮的土壤殘留量低于底氮與初花期追氮為1 ∶1的處理,這還有待在大田試驗中進一步驗證。本試驗僅嘗試了底氮與追氮1 ∶2、 0 ∶1兩種比例,追氮時期為蕾期、初花期,不同底追比例及不同追氮時期(如苗期、盛花期分次施用)的產(chǎn)量效應(yīng)及氮肥回收率有待進一步研究。

      [1] 王巧蘭, 吳禮樹, 趙竹青.15N示蹤技術(shù)在植物N素營養(yǎng)研究中的應(yīng)用及進展[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報, 2007, 26(1): 127-132. Wang Q L, Wu L S, Zhao Z Q. Advance and application of15N tracer method on research of plant nitrogen nutrition[J]. Journal of Huazhong Agricultural University, 2007, 26(1): 127-132.

      [2] 趙廣才, 張保明, 王崇義. 應(yīng)用15N研究小麥各部位氮素分配利用及施肥效應(yīng)[J]. 作物學(xué)報, 1998, 24(6): 854-858. Zhao G C, Zhang B M, Wang C Y. Studies on the effect of fertilization and distribution utilization of nitrogen in different parts of wheat by using15N tracer technique[J]. Acta Agronomica Sinica, 1998, 24(6): 854-858.

      [3] Ju X T, Liu X J, Pan J Retal. Fate of15N-labeled urea under a winter wheat-summer maize rotation on the North China Plain[J]. Pedosphere, 2007, 17(1): 52-61.

      [4] Wei C Z, Ma T F, Wang X Jetal. The fate of fertilizer N applied to cotton in relation to irrigation methods and N dosage in arid area[J]. Journal of Arid Land, 2012, 4(3): 320-329.

      [5] 孟維偉, 王東, 于振文, 等.15N示蹤法研究不同灌水處理對小麥氮素吸收分配及利用效率的影響[J]. 植物營養(yǎng)與肥料學(xué)報,2011, 17(4): 831-837. Meng W W, Wang D, Yu Z Wetal. Effects of irrigation on nitrogen uptake and distribution of wheat using the15N tracer technique[J]. Plant Nutrition and Fertilizer Science, 2011, 17(4): 831-837.

      [6] 唐年鑫. 應(yīng)用同位素示蹤技術(shù)研究棉花對復(fù)(混)合肥料養(yǎng)分的吸收與分配[J]. 湖北農(nóng)業(yè)科學(xué), 1989,(4): 25-28. Tang N X. Study on nutrient uptake and distribution of cotton from compound(mixed) fertilizer by the15N tracer technique[J]. Hubei Agricultural Sciences, 1989,(4): 25-28.

      [7] 張美良, 吳建富, 劉經(jīng)榮, 等.應(yīng)用15N對棉田生態(tài)系統(tǒng)中氮素的吸收利用和去向的研究[J]. 江西農(nóng)業(yè)大學(xué)學(xué)報,2001,23(1): 57-61. Zhang M L, Wu J F, Liu J Retal. A study on the absorbing utilization and fate of N in the ecosystem of cotton field by using15N[J]. Acta Agriculture Universities Jiangxiensis, 2001, 23(1): 57-61.

      [8] McConnell J S, Mozaffari M. Yield, petiole nitrate, and node development responses of cotton to early season nitrogen fertilization[J]. Journal of Plant Nutrition, 2005, 27(7): 1183-1197.

      [9] McConnell J S, Baker W H, Miller D Metal. Nitrogen fertilization of cotton cultivars of differing maturity. Agronomy Journal,1993, 85: 1151-1156.

      [10] 王娟, 馬騰飛, 危常州, 等.不同灌溉方式對棉花氮素吸收利用和氮肥利用率的影響[J]. 石河子大學(xué)學(xué)報, 2011, 29(6): 670-673. Wang J, Ma T F, Wei C Zetal. Effect of different irrigation patterns on cotton nitrogen absorption and nitrogen fertilizer use efficiency[J]. Journal of Shihezi University(Natural Science), 2011, 29(6): 670-673.

      [11] 侯振安, 李品芳, 龔江, 等.不同滴灌施肥策略對棉花氮素吸收和氮肥利用率的影響[J]. 土壤學(xué)報, 2007, 44(4): 702-708. Hou Z A, Li P F, Gong Jetal. Effects of fertigation strategy on nitrogen uptake by cotton and use efficiency of N fertilizer[J]. Acta Pedologica Sinica, 2007, 44(4): 702-708.

      [12] Hou Z A, Li P F, Li B Getal. Effects of fertigation scheme on N uptake and N use efficiency in cotton[J]. Plant and Soil, 2007, 290: 115-126.

      [13] Hou Z A, Chen W P, Li Xetal. Effects of salinity and fertigation practice on cotton yield and15N recovery[J]. Agricultural Water Management, 2009, 96: 1483-1489.

      [14] 王富林, 周樂, 李洪娜, 等. 不同氮磷配比對富士蘋果幼樹生長及15N-尿素吸收、分配與利用的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2013, 19(5): 1102-1108. Wang F L, Zhou L, Li H Netal. Effect of N, P ratios on the growth and absorption, distribution and utilization of15N-urea of Fuji Apple Saplings[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(5): 1102-1108.

      [15] 王曉英, 賀明榮. 追氮時期和基追比例對強筋小麥產(chǎn)量和品質(zhì)的調(diào)控效應(yīng)[J]. 麥類作物學(xué)報, 2013, 33(4): 711-715. Wang X Y, He M R. Regulatory effect of topdressing stage and ratio of base and topdressing of nitrogen fertilizer on grain yield and quality of strong gluten winter wheat[J]. Journal of Triticeae Crops, 2013, 33(4): 711-715.

      [16] 戰(zhàn)秀梅, 李亭亭, 韓曉日, 等. 不同施肥對春玉米產(chǎn)量、效益及氮素吸收和利用的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2011, 17(4): 861-868. Zhan X M, Li T T, Han X Retal. Effects of nitrogen fertilization on yield, profit and nitrogen absorption and utilization of spring maize[J]. Plant Nutrition and Fertilizer Science, 2011, 17(4): 861-868.

      [17] 趙士誠, 裴雪霞, 何萍, 等.氮肥減量后移對土壤氮素供應(yīng)和夏玉米氮素吸收利用的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2010, 16(2):492-497. Zhao S C, Pei X X, He Petal. Effects of reducing and postponing nitrogen application on soil N supply, plant N uptake and utilization of summer maize[J]. Plant Nutrition and Fertilizer Science, 2010, 16(2): 492-497.

      [18] 馬宗斌, 劉桂珍, 嚴(yán)根土, 等.施氮方式對轉(zhuǎn)基因棉花Bt 蛋白含量及產(chǎn)量的影響[J].生態(tài)學(xué)報, 2013, 33(23): 7601-7609. Ma Z B, Liu G Z, Yan G Tetal. Effects of nitrogen fertilizer methods on the content of Bacillus thuringiensis insecticidal protein and yield of transgenic cotton[J]. Acta Ecologica Sinica, 2013, 33(23): 7601-7609.

      [19] 馬宗斌, 嚴(yán)根土, 劉桂珍, 等.氮肥分施比例對黃河灘地棉花葉片生理特性、干物質(zhì)積累及產(chǎn)量的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2013, 19(5): 1092-1101. Ma Z B, Yan G T,Liu G Zetal. Effects of split nitrogen fertilization on physiological characteristics of leaves, dry matter accumulation and yield of cotton cultivated in the Yellow River bottomland[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(5): 1092-1101.

      [20] 馬宗斌, 房衛(wèi)平, 謝德意, 等.氮肥基追比對抗蟲雜交棉葉片衰老和產(chǎn)量的影響[J]. 西北植物學(xué)報, 2008, 28(10): 2062-2066. Ma Z B, Fang W P, Xie D Yetal. Effects of different ratios of base and topdressing nitrogen fertilizer on the leaf senescence and yield of insect resistant hybrid cotton[J]. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(10): 2062-2066.

      [21] Yang G Z, Tang H Y, Nie Y Cetal. Responses of cotton growth, yield, and biomass to nitrogen split application ratio[J]. European Journal of Agronomy, 2011, 35: 164-170.

      [22] Tang H Y, Yang G Z, Zhang X Letal. Improvement of fertilizer N recovery by allocating more N for later application in cotton(GossypiumhirsutumL.)[J]. International Journal of Basic & Applied Sciences, 2012, 12(4): 32-37.

      [23] Yang G Z, Chu K Y, Tang H Yetal. Fertilizer15N accumulation, recovery and distribution in cotton plant as affected by N rate and split[J]. Journal of Integrative Agriculture, 2013, 12(6): 999-1007.

      [24] Rochester I J, Constable G A, Macleod D A. Cycling of fertilizer and cotton crop residue nitrogen[J]. Australian Journal of Soil Research, 1993, 31: 597-609.

      [25] 馬麗娟, 侯振安, 閔偉, 等.適宜咸水滴灌提高棉花水氮利用率[J]. 農(nóng)業(yè)工程學(xué)報, 2013, 29(14): 130-138. Ma L J, Hou Z A, Min Wetal. Drip irrigation with suitable saline water improves water use efficiency for cotton[J]. Transaction of the Chinese Society of Agricultural Engineering, 2013, 29(14): 130-138.

      [26] Karlen D L, Hunt P G, Matheny T A. Fertilizer15nitrogen recovery by corn, wheat, and cotton grown with and without pre-plant tillage on Norfolk loamysand[J]. Crop Science, 1996, 36: 975-981.

      Effects of nitrogen fertilizer application strategy on N uptake, utilization and yield of cotton using15N trace technique

      LI Peng-cheng, DONG He-lin*, LIU Ai-zhong, LIU Jing-ran, LI Ru-yi, SUN Miao, LI Ya-bing, MAO Shu-chun*

      (InstituteofCottonResearchofChineseAcademyofAgriculturalSciences/StateKeyLaboratoryofCottonBiology,Anyang,Henan455000,China)

      【Objectives】 There is controversy about suitable nitrogen(N) application period in cotton cultivation. Some scholars abroad recommended that the best periods of N application for cotton were the emergence and budding stage, while other researchers concluded that N application before the sowing and initial flowering stage each half was better for cotton. N isotope tracer technique can distinguish N of crop absorption and utilization deprived from fertilizer N or soil N, and can thoroughly investigate direction of N fertilizer and distribution in cotton plant. This work was to study effects of N application ratios of the base fertilizer and topdressing and topdressing period on N absorption and yield of cotton based on N isotope tracer technique in order to provide theoretical basis for N management of cotton in North China Plain. 【Methods】 A pot trial using15N trace technique was conducted with transgenicBt+CpTIcotton(GossypiumhirsutumL.) cultivars, China Cotton Research Institute(CCRI 79 and CCRI 60) at the farm of Institute of Cotton Research of Chinese Academy of Agricultural Sciences in Anyang Henan in 2013. There were 4 treatments in the trial with total N application rate of 3.5 g each pot, and N application ratios of base fertilizer and topdressing at the initial flowering stage were 1 ∶1(N1), 1 ∶2(N2) and 0 ∶1(N3) respectively and as well as N application ratio of base fertilizer and topdressing at the budding stage 0 ∶1(N4). Effects of different N application strategy on15N absorption,15N recovery efficiency, biomass accumulation of cotton at the initial flowering stage as well as the harvest stage and seed cotton yield at the harvest stage were examined. 【Results】 Percentages of N derived from fertilizer(Ndff) of different organs of cotton plants at the initial flowering stage are significantly increased with the increase of fertilizer rate of the basal N, and amplitude of the percentages of Ndff is 25.88-42.45. Percentages of Ndff of cotton plants at the harvest stage are significantly increased with the increase of fertilizer rate of the topdressing N, and amplitude of the percentages of Ndff of cotton plants is 26.92-54.14. Percentages of Ndff of cotton plants at the harvest stage under N3 and N4 are significantly higher than those under N1 and N2. Seed cotton yields of cotton plants of the 2 cultivars with N2 are higher than those of the other 3 treatments, and there is not significant difference between those of N2 and N1. Biomass accumulation amounts of cotton plants of the 2 cultivars with N2 are not significantly different from those of N1 and N3 respectively.15N uptake amounts of cotton plants of the 2 cotton cultivars with N3 and N4 at the harvest stage are significantly higher than those with N1 and N2 respectively.15N recovery rates of cotton plants of the 2 cotton cultivars with N3 and N4 at the harvest stage are significantly higher than those with N1, while15N recovery rates of cotton plants of the 2 cotton cultivars with N2 at the harvest stage are higher than those with N1, and there is not significant difference between N2 and N1.15N recovery rate of soil after the harvest with N2 is less than that with N1, and there is not significant difference between N2 and N1. 【Conclusions】 When N application ratio of the basal fertilizer and topdressing at the initial flowering stage is 1 ∶2 in the pot trial, the seed cotton yield and15N recovery rate of cotton are higher than those of the conventional N application ratio 1 ∶1. When N application ratio of the basal fertilizer and topdressing at the initial flowering stage is 0 ∶1, the15N recovery of cotton is the highest among the 4 treatments, but the seed cotton yield is not improved. The results above in the pot trial should be further tested in field trial.

      15N trace technique; N fertilizer application strategy; cotton(GossypiumhirsutumL.); N uptake and utilization; seed cotton yield

      2014-02-23 接受日期: 2014-05-26 網(wǎng)絡(luò)出版日期: 2015-02-13

      國家棉花產(chǎn)業(yè)體系建設(shè)專項資金(CARS-18-17);轉(zhuǎn)基因生物新品種培育重大專項(2012ZM08013007);棉花生物學(xué)國家重點實驗室開放課題(CB2014A18)資助。

      李鵬程(1972—),男,湖北荊州人,助理研究員,博士研究生,主要從事棉花營養(yǎng)與施肥研究。 E-mail: lipengchengcri@163.com * 通信作者 Tel: 0372-2562225, E-mail: donghl668@sina.com; E-mail: maosc@163.com

      S562.062.01

      A

      1008-505X(2015)03-0590-10

      猜你喜歡
      中棉棉株籽棉
      國內(nèi)外籽棉加濕系統(tǒng)的研究現(xiàn)狀與發(fā)展趨勢
      芒種時節(jié)抓好棉田管理
      新疆南疆不同棉花品種的生長特征及其品質(zhì)分析
      籽棉加濕芻議
      4個中棉所系列棉花品種在九江地區(qū)的比較試驗
      高溫脅迫對中棉所63及其親本葉綠素?zé)晒鈪?shù)的影響
      中國棉花(2018年3期)2018-04-09 03:42:45
      棉花早衰原因及防止措施
      略論民國時期河南美棉的引種與推廣
      干旱脅迫條件下施用保水劑對棉花植株生理生化的影響
      棉花爛鈴的綜合防控
      舟山市| 东明县| 岐山县| 贡嘎县| 凤城市| 深水埗区| 荔浦县| 浪卡子县| 渭南市| 原平市| 奉贤区| 灵璧县| 罗源县| 阜阳市| 黄浦区| 蛟河市| 江都市| 金昌市| 惠东县| 青岛市| 邯郸市| 甘肃省| 福泉市| 阳山县| 高密市| 大洼县| 区。| 宜州市| 东辽县| 习水县| 泰和县| 香港 | 彰化市| 佳木斯市| 苏尼特左旗| 子洲县| 隆安县| 岫岩| 宾阳县| 大冶市| 子长县|