李雨繁, 賈 可, 王金艷, 馮國忠, 焉 莉, 鄧 超, 李 輝, 高 強(qiáng)*
(1吉林農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,吉林長春 130118; 2 中國-阿拉伯化肥有限公司農(nóng)化中心,秦皇島 066000;3吉林省梨樹縣榆臺鎮(zhèn)農(nóng)業(yè)技術(shù)推廣站,吉林梨樹 136506)
不同類型高氮復(fù)混(合)肥氨揮發(fā)特性及其對氮素平衡的影響
李雨繁1, 賈 可2, 王金艷3, 馮國忠1, 焉 莉1, 鄧 超1, 李 輝1, 高 強(qiáng)1*
(1吉林農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,吉林長春 130118; 2 中國-阿拉伯化肥有限公司農(nóng)化中心,秦皇島 066000;3吉林省梨樹縣榆臺鎮(zhèn)農(nóng)業(yè)技術(shù)推廣站,吉林梨樹 136506)
玉米; 一次性施肥; 新型肥料; 氨揮發(fā); 氮素平衡
一次性施肥方式采用的肥料類型主要為含氮量較高的復(fù)混(合)肥,如高塔肥料、摻混肥料等。隨著新型肥料生產(chǎn)的快速發(fā)展,控釋肥料、脲甲醛肥料和穩(wěn)定性肥料在一次性施肥中的比例不斷增加。目前在玉米上應(yīng)用新型肥料的研究主要集中在單一新型肥料增產(chǎn)效果和氮素殘留方面[5-7],只有少數(shù)研究者針對控釋肥料、脲甲醛肥料、穩(wěn)定性肥料中的其中一種進(jìn)行了氨揮發(fā)狀況的研究[8-9],就相同養(yǎng)分條件下,對不同類型新型肥料在玉米上的增產(chǎn)效果及氨揮發(fā)特性尚不明確,而這方面的研究,對指導(dǎo)東北地區(qū)玉米合理施用氮肥具有重要的科學(xué)意義。
1.1 試驗(yàn)區(qū)概況
圖1 2013年試驗(yàn)區(qū)降雨量及氮肥施用后氨揮發(fā)測定期間的溫度和濕度Fig.1 Air temperature, relative humidity and precipitation after the basal application of the nitrogen fertilizers in 2013
1.2 試驗(yàn)設(shè)計(jì)
試驗(yàn)共7個處理:1)對照(N0),不施氮肥; 2)常規(guī)施肥(Con), 用氮磷鉀比例15-15-15的復(fù)合肥+尿素; 3)高塔肥料(HT); 4)摻混肥(BB),尿素+二銨+氯化鉀; 5)控釋肥(CRF),硫包衣復(fù)合肥; 6)脲甲醛肥(UF),脲甲醛樹脂包衣復(fù)合肥; 7)穩(wěn)定性肥料(SF), 同時添加脲酶抑制劑和硝化抑制劑的復(fù)合肥。 除對照外,各處理氮磷鉀比例為28-11-11。各處理施肥量相同,均為N 224 kg/hm2、P2O588 kg/hm2、K2O 88 kg/hm2,每個處理3次重復(fù)。小區(qū)面積40 m2,6壟一個小區(qū),各小區(qū)間隔2 m,作為保護(hù)行,以避免各小區(qū)間相互污染。各小區(qū)排列原則為:施氮量較高的處理位于下風(fēng)向,施氮量較低的處理位于上風(fēng)向。施肥方式為: 常規(guī)施肥處理的氮肥分為基肥和追肥,基追肥比例為1 ∶2,分別以條施和溝施的方式施入,追肥日期為6月24日(拔節(jié)期),施肥深度為5—8 cm;其他施氮處理均采用一次性條施的方式,施肥深度為10—12 cm。
1.3 測定項(xiàng)目和方法
圖2 氮肥施入后土壤的氨揮發(fā)速率 Fig.2 Ammonia volatilization rates from soil after the basal application of nitrogen fertilizers
土壤氨揮發(fā)速率的計(jì)算公式為:
1.3.3 產(chǎn)量的測定及植株樣品的采集 在玉米成熟期,將試驗(yàn)小區(qū)兩側(cè)邊行各1壟及小區(qū)兩端各0.8 m去掉,其余部分作為收獲區(qū),面積為22.8 m2。記錄測產(chǎn)面積內(nèi)實(shí)際株數(shù)、穗數(shù)、果穗總鮮重,按平均單穗重取有代表性的10穗(10穗的平均單穗重應(yīng)與收獲區(qū)的平均單穗重相同),稱取鮮重帶回實(shí)驗(yàn)室,考種后烘干測干重,計(jì)算含水量,折算測產(chǎn)區(qū)產(chǎn)量,最后得出每公頃產(chǎn)量(14%)。
在每個小區(qū)選擇3株有代表性的玉米植株,裝入網(wǎng)袋帶回實(shí)驗(yàn)室,分為秸稈和籽粒,烘干后全部粉碎,采用常規(guī)方法測定植株中的氮含量[12]。
1.4 數(shù)據(jù)處理
氮肥利用率及氮平衡的計(jì)算方法[13-14]:
氮肥利用率(%)=(施氮區(qū)吸氮量-無氮區(qū)吸氮量)/施氮量×100
土壤氮素凈礦化量(kg/km2)=不施氮肥區(qū)地上部分氮積累量+不施氮肥區(qū)土壤殘留無機(jī)氮量-不施氮肥起始無機(jī)氮量
氮表觀損失量(kg/km2)=氮輸入量-氮輸出量
氮肥表觀損失率(%)=氮表觀損失/施氮量×100
氮肥土壤殘留率(%)=100-氮肥利用率-表觀損失率
試驗(yàn)數(shù)據(jù)采用SAS進(jìn)行統(tǒng)計(jì)分析。
2.1 氮肥施入后土壤的氨揮發(fā)
圖3 氮肥施入后土壤的氨揮發(fā)累積量 Fig.3 Cumulative ammonia volatilization amount from soil after the basal application of nitrogen fertilizers
2.2 不同類型高氮復(fù)混(合)肥對玉米產(chǎn)量及氮素利用的影響
表1 不同氮肥處理的產(chǎn)量及氮肥利用率
注(Note): 同列數(shù)據(jù)后不同字母表示處理間差異達(dá)5%顯著水平 Values followed by different letters in a column are significant among treatments at the 5% level.
差異。CRF、UF、SF 3個處理的氮肥當(dāng)季利用率分別為27.9%、37.7%和28.8%;植株吸氮量分別為277.5、299.3和279.3 kg/hm2,均高于其他處理,主要原因在于CRF、UF和SF 3個處理的玉米植株含氮量明顯較高(表1),原因可能是,在本試驗(yàn)條件下以上3種新型肥料可明顯促進(jìn)玉米植株對氮素的吸收。
2.3 收獲后各處理不同土層無機(jī)氮的分布
圖4 玉米收獲后銨態(tài)氮、硝態(tài)氮和無機(jī)氮在0—100 cm土層的分布 Fig.4 The distribution of -N, -N and Nmin in the 0-100 cm soil profile after the harvest of maize
2.4 不同肥料對土壤-作物體系中氮素平衡的影響
3.1 不同氮肥的氨揮發(fā)
影響氨揮發(fā)的主要因素包括土壤條件、環(huán)境因子及施肥狀況[15]。在本試驗(yàn)條件下,肥料類型和施肥方式是影響氨揮發(fā)的2個顯著因素。常規(guī)施肥處理的基肥施用量僅為74 kg/hm2,僅占玉米生育期氮肥總施用量的1/3,但其氨揮發(fā)速率和氨揮發(fā)累積量均明顯高于其他處理,且峰值出現(xiàn)時間較早,但拔節(jié)期追施尿素后土壤的氨揮發(fā)速率并沒有明顯升高。這與王東、紀(jì)玉剛等[16-17]提出的氨揮發(fā)速率和氨揮發(fā)累積量隨施氮量增加而增加,且玉米追肥后的氨揮發(fā)速率和氨揮發(fā)累積量均高于基肥期的結(jié)論不符。這是由于常規(guī)施肥處理的施肥深度與一次性施肥方式相比明顯較淺,肥料施入土壤后迅速溶解并在脲酶的作用下水解,使土體中的氨濃度升高,很容易在短時間內(nèi)造成氨揮發(fā)損失。但在玉米追肥后出現(xiàn)連續(xù)降雨,且降雨量達(dá)41.73 mm,將施入土壤中的氮素直接淋洗到土壤深層中,表層土壤中的尿素減少,使氨揮發(fā)損失降低??蒯尫屎碗寮兹┓适┤胪寥篮螅げ牧虾途徣苄晕镔|(zhì)阻隔肥料與土壤脲酶的直接接觸及減少氨揮發(fā)底物尿素態(tài)氮的溶出,從而達(dá)到降低和延緩?fù)寥腊睋]發(fā)的效果[18-19]。穩(wěn)定性肥料中的脲酶抑制劑可有效降低脲酶活性,這是其氨揮發(fā)較低的重要原因。
表2 施氮量為224 kg/hm2條件下玉米全生育期的氮素平衡
注(Note): 同列數(shù)據(jù)后不同字母表示處理間差異達(dá)5%顯著水平 Values followed by different letters in a column are significant among treatments at the 5% level.
3.2 玉米收獲后土壤無機(jī)氮累積與分布
3.3 不同氮肥施用后土壤-作物體系的氮素平衡
在本試驗(yàn)中,氮肥表觀損失率在氮肥輸出項(xiàng)中占主要地位,各施氮處理的氮肥表觀損失率均大于高強(qiáng)[26]等在黑鈣土上的研究結(jié)果,其主要原因在于該試驗(yàn)地塊土壤自身供氮量已達(dá)275 kg/hm2(土壤氮素礦化量與播前無機(jī)氮數(shù)量的總和),基本滿足玉米全生育期的氮素需求。由此可以看出,在供試土壤肥力較高的條件下,春玉米一次性施肥方式的氮肥施用量可適當(dāng)降低,降低幅度有待進(jìn)一步研究。
[1] 中華人民共和國農(nóng)業(yè)部.中國農(nóng)業(yè)年鑒[M]. 北京: 中國農(nóng)業(yè)出版社, 2012. Ministry of Agriculture of China. China agriculture yearbook[M]. Beijing: China Agriculture Press, 2012.
[2] 安景文, 汪仁, 包紅靜, 等. 不同肥料配方一次性施肥對玉米產(chǎn)量和養(yǎng)分吸收的影響[J]. 土壤通報(bào). 2008, 39(4): 874-877. An J W, Wang R, Bao H Jetal. Effects of basal dressing total fertilizers once with different fertilizer formulas on product and nutrient uptake of maize[J].China Journal Soil Science. 2008, 39(4): 874-877.
[3] 高強(qiáng), 李德忠, 汪娟娟, 等. 春玉米一次性施肥效果研究[J]. 玉米科學(xué), 2007, 15(4): 125-128. Gao Q, Li D Z, Wang J Jetal. Effects of Single fertilization for spring maize[J]. Journal of Maize Sciences. 2007, 15(4): 125-128.
[4] 高強(qiáng), 馮國忠, 王志剛. 東北地區(qū)春玉米施肥現(xiàn)狀調(diào)查[J]. 中國農(nóng)學(xué)通報(bào), 2010, 26(14): 229-231. Gao Q, Feng G Z, Wang Z G. Present situation of fertilizer application on spring maize in northeast China[J]. China Agricultural Science Bullet, 2010, 26(14): 229-231.
[5] 朱紅英, 董樹亭, 胡昌浩. 不同控釋肥料對玉米產(chǎn)量及產(chǎn)量性狀影響的研究[J]. 玉米科學(xué), 2003,11(4): 86-89. Zhu H Y, Dong S T, Hu C H. Research on yield and characters of maize in different controlled release fertilizer[J]. Journal of Maize Sciences. 2003, 11(4): 86-89.
[6] Diez J A, Roman R, Cartagena M Cetal. Controlling nitrate pollution of aquifers by using different nitrogenous controlled release fertilizers in maize crop[J]. Agericulture Ecosystems & Environment, 1994, 48(1): 49-56.
[7] 王小明, 謝迎新, 張亞楠, 等. 新型肥料施用對玉米季土壤硝態(tài)氮累積的影響[J]. 水土保持學(xué)報(bào), 2009, 23(5): 232-236. Wang X M, Xie Y X, Zhang Y N. Effect of new type fertilizers application on accumulation of soil nitrate nitrogen in the maize season[J]. Journal of soil and water conservation, 2009, 23(5): 232-236.
[8] 盧艷艷, 宋付朋. 不同包膜控釋尿素對農(nóng)田土壤氨揮發(fā)的影響[J]. 生態(tài)學(xué)報(bào), 2011, 31(23): 7133-7140. Lu Y Y, Song F P. Effects of different coated controlled-release urea on soil ammonia volatilization in farmland[J]. Acta Ecologica Sinica, 2011, 31(23): 7133-7140.
[9] 張文學(xué), 孫剛, 何萍, 等. 脲酶抑制劑與硝化抑制劑對稻田氨揮發(fā)的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2013, 19(6): 1411-1419. Zhang X W, Sun G, He Petal. Effects of urease and nitrification inhibitors on ammonia volatilization from paddy fields[J]. Plant Nutrition and Fertilizer Science, 2013, 19(6): 1411-1419.
[10] 王朝輝, 劉學(xué)軍, 巨曉棠, 等. 田間土壤氨揮發(fā)的原位測定—通氣法[J]. 植物營養(yǎng)與肥料學(xué)報(bào), .2002, 8(2): 205-209. Wang Z H, Liu X J, Ju X Tetal. Field in situ determination of ammonia volatilization from soil: Venting method[J]. Plant Nutrition and Fertilizer Science, 2002, 8(2): 205-209.
[11] 楊憲龍, 路永莉, 同延安, 等. 長期施氮和秸稈還田對小麥-玉米輪作體系土壤氮素平衡的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2013, 19(1): 65-73. Yang X L, Lu Y L, Tong Y Aetal. Effects of long-term N application and straw returning on N budget under wheat-maize rotation system[J]. Plant Nutrition and Fertilizer Science, 2013, 19(1): 65-73.
[12] 鮑士旦. 土壤農(nóng)化分析(第三版) [M]. 北京: 中國農(nóng)業(yè)出版社, 2000. 34-109. Bao S D. Soil agricultural chemistry analysis [M]. Beijing: China Agriculture Press, 2000. 34-109.
[13] 巨曉棠, 劉學(xué)軍, 張福鎖. 冬小麥與夏玉米輪作體系中氮肥效應(yīng)及氮素平衡研究[J]. 中國農(nóng)業(yè)科學(xué), 2002, 35(11): 1361-1368. Ju X T, Liu X J, Zhang F S. Study on effect of nitrogen fertilizer and nitrogen balance in winter wheat and summer maize rotation system[J]. Scientia Agricultural Sinica, 2002, 35(11): 1361-1368.
[14] 劉學(xué)軍, 趙紫娟, 巨曉棠, 等. 基施氮肥對冬小麥產(chǎn)量、氮肥利用率及氮平衡的影響[J]. 生態(tài)學(xué)報(bào), 2002, 22(7): 1122-1128. Liu X J, Zhao Z J, Ju X Tetal. Effect of N application as basal fertilizer on grain yield of winter wheat, fertilizer N recovery and N balance[J]. Acta Ecologica Sinica, 2002, 22(7): 1122-1128.
[15] Olesen J E, Rubk G H, Heidmann Tetal. Effect of climate change on greenhouse gas emissions from arable crop rotations[J]. Nutrient Cycling in Agroecosystems, 2004, 70(2): 147-160.
[16] 王東, 于振文, 于文明, 等. 施氮水平對高產(chǎn)麥田土壤硝態(tài)氮時空變化及氨揮發(fā)的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2006,17(9): 1593-1598. Wang D, Yu Z W, Yu W Metal. Effects of nitrogen application level on soil nitrate accumulation and ammonia volatilization in high-yielding wheat field[J]. Chinese Journal of Applied Ecology, 2006,17(9): 1593-1598.
[17] 紀(jì)玉剛, 孫靜文, 周衛(wèi), 等. 東北黑土玉米單作體系氨揮發(fā)特征研究[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2009, 15(5): 1044-1050. Ji Y G, Sun J W, Zhou Wetal. In situ study of ammonia volatilization from black soil with maize monoculture system[J]. Plant Nutrition and Fertilizer Science, 2009, 15(5): 1044-1050.
[18] 陳易飛, 朱永綏, 朱風(fēng)根, 等. 脲甲醛肥在稻麥生產(chǎn)上的應(yīng)用效果初報(bào)[J]. 江蘇農(nóng)業(yè)科學(xué), 2000,(5): 49-51. Chen Y F, Zhu Y S, Zhu F Getal. Effects of urea-formaldehyde fertilizer 0n rice and wheat[J]. Jiangsu Agricultural Sciences, 2000,(5): 49-51.
[19] 谷佳林, 邊秀舉, 徐凱, 等. 不同緩控釋肥對高羊茅草坪生長及氮素?fù)]發(fā)的影響[J]. 草業(yè)學(xué)報(bào)2013, 2(22): 235-242. Gu J L, Bian X J, Xu Ketal. Effects of different slow/controlled release nitrogen fertilizer on tall fescue turf growth and nitrogen volatilization[J]. Acta Prataculturae Sinica, 2013, 2(22): 235-242.
[20] 蔡紅光, 米國華, 張秀芝, 等. 不同施肥方式對東北黑土春玉米連作體系土壤氮素平衡的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2012,18(1): 89-97. Cai H G, Mi G H, Zhang X Zetal. Effect of different fertilizing methods on nitrogen balance in the black soil for continuous maize production in Northeast China[J]. Plant Nutrition and Fertilizer Science, 2012, 18(1): 89-97.
[21] 王朝暉, 李生秀, 王西娜, 等. 旱地土壤硝態(tài)氮?dú)埩袅苋芗坝绊懸蛩匮芯縖J]. 土壤, 2006, 38(6): 676-681. Wang Z H, Li S X, Wang X Netal. Nitrate nitrogen residue and leaching in dryland soil and influence factors[J]. Soils, 2006, 38(6): 676-681.
[22] Hofma G, Nutrient management legislation in European countries [R]. NUMALEC Report. Concerted Action, Fair 6-C 98-4215, 1999.
[23] 鐘茜, 巨曉棠, 張福鎖. 華北平原冬小麥/夏玉米輪作體系對氮素環(huán)境承受力分析[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2006, 12(3): 285-293. Zhong Q, Ju X T, Zhang F S. Analysis of environmental endurance of winter wheat/summer maize rotation system to nitrogen in North China Plain[J]. Plant Nutrition and Fertilizer Science, 2006,12(3): 285-293.
[24] 張福鎖, 王激清, 張衛(wèi)峰, 等. 中國主要糧食作物肥料利用率現(xiàn)狀與提高途徑[J]. 土壤學(xué)報(bào), 2008, 45(5): 915-924. Zhang F S, Wang J Q, Zhang W Fetal. Nutrient use efficiencies of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica, 2013, 46(15): 3161-3171.
[25] 楊俊剛, 高強(qiáng), 曹兵, 等. 一次性施肥對春玉米產(chǎn)量和環(huán)境效應(yīng)的影響[J].中國農(nóng)學(xué)通報(bào), 2009, 25(19): 123-128. Yang J G, Gao Q, Chao Betal. Effect of single fertilization on spring maize yield and environment[J]. Chinese Agricultural Science Bulletin, 2009, 25(19): 123-128.
[26] 高強(qiáng), 蔡紅光, 黃立華, 等. 吉林省半干旱地區(qū)春玉米連作體系氮素平衡研究[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2009, 37(8): 127-132. Gao Q, Cai H G, Huang L Hetal. Study on soil nitrogen balance of spring maize continuous cropping in semiarid area of Jilin province[J]. Journal of Northwest A&F University(Natural Science Edition),2009, 37(8): 127-132.
Ammonia volatilization characteristics of different kinds of high-nitrogen compound fertilizers and their effects on nitrogen balance
LI Yu-fan1, JIA Ke2, WANG Jin-yan3, FENG Guo-zhong1, YAN Li1, DENG Chao1, LI Hui1, GAO Qiang1*
(1CollegeofResourcesandEnvironmentalSciences,JilinAgriculturalUniversity,Changchun130118,China;2AgrochemicalCenterofChina-ArabianFertilizerCo.Ltd,Qinhuangdao,Hebei066000,China;3AgriculturalTechnologyExtensionStationofYutaiTown,Jilin,Lishu136500,China)
【Objectives】 With development of single fertilization as a main fertilization practice of maize(ZeamaysL.) in northeast China, proportion of high nitrogen compound fertilizers such as controlled release fertilizer, urea formaldehyde fertilizer, and stability fertilizer in the single fertilization increases. In order to clear effects of the yield increase and ammonia volatilization status of different types of high nitrogen compound fertilizers on maize(ZeamaysL.) in the same nutrient condition, a field experiment was conducted in a chernozem with maize(ZeamaysL.) cropping in the center of Jilin Province, China. 【Methods】 The experiment was conducted from May to October 2013 in chernozem soil in the Huangjiawobao village in Lishu County of Jilin Province with 7 treatments, which were the treatment without nitrogen application(N0), conventional fertilizer(Con), the high-tower fertilizer compound fertilizer processed in high tower(HT), bulk blanding fertilizer(BB), controlled-release fertilizer(CRF), urea formaldehyde fertilizer(UF) and stability fertilizer(ST). Each treatment was replicated 3 times. The conventional fertilizer was basal and top-dressed in proportion of 1 ∶2, the other fertilizaters were all basal applicated completely with rate of N, P2O5and K2O in 224, 88, and 88 kg/hm2. The ammonia volatilization was tested by a ventilation methodinsituafter the fertilization. Soil samples in the 0-100 cm soil layer were collected by drilling before sowing and after harvest. The yield of each treatment was weighted, three plants were selected in each plot and divided into straw and grain, the nitrogen uptake was calculated. 【Results】 The nitrogen fertilizer application increases the yields significantly. Compared with N0, the yield increase ranges from 18.9% to 24.1%, there are not significant differences among the different types of fertilizers, and the yield are from 12197 to 12899 kg/hm2. The utilization rates of the controlled release fertilizer(CRF), urea formaldehyde fertilizer(UF), and stability fertilizer(ST) are 27.9%, 37.7% and 28.8%, respectively, and the plant nitrogen uptake amounts are 277.5, 299.3 and 279.3 kg/hm2, respectively, which are higher than those in the other treatments. The ammonia volatilization rates at different periods after the fertilizer application show that the overall rate of ammonia volatilization is firstly increased and then decreased, the differences of ammonia volatilization rates of the treatments mainly concentrate in the 3-13 days after the fertilization, the peak of the ammonia volatilization rate is in oreder: conventional fertilization(Con) > high-tower fertilizer(HT) > mixing fertilizer(BB) > controlled release fertilizer(CRF) > stability fertilizer(ST) > urea formaldehyde fertilizer(UF). The ammonia volatilization amounts of the controlled release fertilizer, urea formaldehyde and stability fertilizer are 10.6, 8.1 and 10.3 kg/km2, respectively, which are equivalent to the amounts of the nitrogen fertilizer in 4.7%, 3.6% and 4.6% and significantly lower than the mixing fertilizer(14.8 kg/hm2) and the high-tower Fertilizer(23.0 kg/hm2). From the nitrogen balance in soil-crop system, it can be seen that the apparent loss amounts of the controlled release fertilizer, urea formaldehyde fertilizer and the stability fertilizer are 103, 79 and 73 kg/hm2, and significantly lower than those of the mixing fertilizer(136 kg/hm2) and high-tower fertilizer(123 kg/hm2). The mixing fertilizer, controlled release fertilizer, urea formaldehyde fertilizer and stability fertilizer improve the nitrogen utilization rate of 7.7%-17.5%, and reduce the nitrogen loss effectively. 【Conclusions】 In chernozem soil and single fertilization mode, the yields of different types of high nitrogen compound fertilizer have no significant differences, which are ranged from 12197 to 12899 kg/hm2. Compared with the mixing fertilizer(BB), the controlled release fertilizer(CRF), urea formaldehyde fertilizer(UF) and stability fertilizer(ST) promote the plant nitrogen uptake, and the utilization rates are improved by 38.1%-86.6%, the ammonia volatilization rates are reduced by 40%-96.5% and the amounts of ammonia volatilization loss are reduced by 39.2%-81.3%. The controlled release fertilizer, urea formaldehyde fertilizer and stability fertilizer effectively keep soil inorganic nitrogen content in corn growth period within an acceptable range and guarantee soil nitrogen supply.
maize; single fertilizer application in one crop season; new type fertilizer; ammonia volatilization; nitrogen balance
2014-01-22 接受日期: 2014-07-07 網(wǎng)絡(luò)出版日期: 2015-02-13
公益性行業(yè)(農(nóng)業(yè))專項(xiàng)-農(nóng)作物最佳養(yǎng)分管理技術(shù)研究與應(yīng)用(201103003);國家玉米產(chǎn)業(yè)技術(shù)體系(CARS)項(xiàng)目資助。
李雨繁(1987—),女,吉林長春人,碩士研究生,主要從事植物營養(yǎng)與肥料方面的研究。E-mail: yufan0511@126.com * 通信作者 E-mail: gyt199962@163.com
S513.062; S153.6+1
A
1008-505X(2015)03-0615-09