• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      實系數(shù)二次方程實根分布問題中參數(shù)范圍的求法

      2015-07-06 08:32:55陳群
      中學生數(shù)理化·高三版 2015年7期
      關鍵詞:實根一元二次方程實數(shù)

      陳群

      確定實系數(shù)二次方程實根分布問題中參數(shù)的取值范圍是高中數(shù)學的重點和難點,也是歷年高考考查的熱點,它涉及的數(shù)學思想方法較多,綜合性較強。解決此類問題的主要思路是:從對應函數(shù)的開口方向、特殊點的函數(shù)值的正負、對稱軸的位置、判別式與0的關系等幾個角度綜合考慮后構建充要條件,從而求出參數(shù)的取值范圍。現(xiàn)結合實例介紹幾種題型及其求解策略,供大家參考。

      為敘述方便,現(xiàn)約定:當實系數(shù)二次方程ax?+bx+c=0(a≠O)有兩個實根時,這兩個實根分別為x1、x2。

      類型一:方程的兩個實根均小于常數(shù)k

      此種類型的求解策略是:令f(X)=ax?+bx+

      例1 已知關于x的方程(1+a)X?-3ax+4a=O的所有根均小于1,求實數(shù)a的取值范圍。

      解:若l+a=O,即a=-l,則方程(l+a)x?-3ar+4a=0即為3x-4 =0,其根為,不滿足題意,所以a≠-1。

      由題意可知:

      解得。

      因此實數(shù)a的取值范圍為。

      變式:已知|a|=1,且方程ax?-2x-b+5=0有兩個負實數(shù)根,求實數(shù)b的取值范圍。

      解:令

      由題意可知:

      解得5評析:上述變式相當于方程的兩個實根均小于0,因此構建充要條件的方式不變。

      類型二:方程的兩個實根均大于常數(shù)k

      此種類型的求解策略是:令c,則

      例2 已知一元二次方程mx?-(m+1)x+3=O的兩個實根都大于-1,求實數(shù)m的取值范圍。

      解:令

      由題意可知:

      解得m<-2或,因此實數(shù)m的取值范圍為。

      變式:已知一元二次方程(m-l)X?+2(m+l)x-m=0有兩個正根,求實數(shù)m的取值范圍。

      解:令

      由題意可知:

      解得O

      評析:例5及其兩個變式實質(zhì)上代表了“解在區(qū)間內(nèi)”與“在區(qū)間內(nèi)有解”這兩類極易混淆的問題,而兩個變式的區(qū)別是前者對稱軸確定,后者對稱軸待定,當然變式1也可以借鑒變式2的解法,在此不作贅述,請讀者自己嘗試。

      類型六:兩根分別在區(qū)間(-∞,k1)與(k2,+∞)(k1此種類型的求解策略是:令c,則切忌把充要條件寫成因為具有兩層含義:一是f(k1)與f(k2)同號,二是f(k1)與f(k2)均與a異號,綜合起來就是區(qū)間(k1,k2)是以兩根為端點的區(qū)間的子區(qū)間,但f(k1)f(k2)>O僅僅說明f(k1)與f(k2)同號。

      例6 已知一元二次方程(m+2)=O的一個根小于0,另一個根大于1,求實數(shù)m的取值范圍。

      解:令

      由題意可知:

      解得m<-2或m>0,因此實數(shù)m的取值范圍為{m|m<-2或m>O}。

      評析:若把條件改為“方程的兩個實根在區(qū)間[O,1]之外”,則解答時應綜合考慮類型一、類型二、類型六這三種情況。

      變式1:已知一元二次方程的一個根在(-l,1)內(nèi),另一個根大于3,求實數(shù)m的取值范圍。

      解:令

      由題意可知:

      解得

      因此實數(shù)m的取值范圍為。

      變式2:已知方程有一個根小于2,其余三個根大于-l,求實數(shù)a的取值范圍。

      解:令

      若x=0是原方程的一個根,則可推得a=0,顯然不合題意,所以原方程有四個非零解,同時使得一元二次方程f(t)=0必有兩個正根,由此進一步得知原方程的四個根是兩對相反數(shù)。又原方程有一個根小于2,則其必有一根大于2,故方程,f(t)=O必有一根大于4。

      由于原方程的另外兩根均大于-l,且這兩個根互為相反數(shù),所以這兩根分別在(-1,O)與(O,1)內(nèi),故方程f(t)=0的另外一根在區(qū)間(O,1)內(nèi)。

      因此可列出相應的充要條件

      解得

      因此實數(shù)“的取值范圍為。

      評析:對于一元二次方程,令,若該方程的一個根在區(qū)間內(nèi),另一個根大于,結合類型三與類型四,可列出充要條件若該方程的一個根小于k1,另一個根在區(qū)間內(nèi),結合類型三與類型四,可列出充要條件若該方程的一個根在區(qū)間(k1,k2)內(nèi),另一個根大于k2,結合類型四,可列出充要條件若該方程的一個根小于k1另一個根在區(qū)間(k1,k2)內(nèi),結合類型四,可列出充要條件若該方程的一個根在區(qū)間內(nèi),另一個根在區(qū)間(k3,k4)內(nèi)(k2

      猜你喜歡
      實根一元二次方程實數(shù)
      “實數(shù)”實戰(zhàn)操練
      攻克“一元二次方程”易錯點
      “一元二次方程”易錯題
      解一元二次方程中的誤點例析
      認識實數(shù)
      2.2 一元二次方程
      1.1 實數(shù)
      分分鐘,幫你梳理一元二次方程
      比較實數(shù)的大小
      二次函數(shù)迭代的一個問題的探究
      锡林浩特市| 毕节市| 襄垣县| 宁蒗| 岫岩| 申扎县| 泰和县| 古田县| 汉沽区| 赤峰市| 禹城市| 瓦房店市| 遵化市| 广丰县| 精河县| 金乡县| 巨鹿县| 屯昌县| 临猗县| 保靖县| 赞皇县| 汕尾市| 社会| 新民市| 乌恰县| 同江市| 长垣县| 左贡县| 临洮县| 融水| 论坛| 合肥市| 阳朔县| 明水县| 分宜县| 樟树市| 嘉黎县| 长岭县| 富阳市| 昌邑市| 静安区|