楊世民,楊志遠(yuǎn),孫永健,馬均
(四川農(nóng)業(yè)大學(xué)水稻研究所/農(nóng)業(yè)部西南作物生理生態(tài)與耕作重點(diǎn)實(shí)驗(yàn)室,成都611130)
氮肥運(yùn)籌對(duì)2個(gè)不同穗重型雜交稻產(chǎn)量及氮肥利用的影響
楊世民/,楊志遠(yuǎn)/,孫永健,馬均*
(四川農(nóng)業(yè)大學(xué)水稻研究所/農(nóng)業(yè)部西南作物生理生態(tài)與耕作重點(diǎn)實(shí)驗(yàn)室,成都611130)
以2個(gè)單穗質(zhì)量差異較大的雜交稻品種川農(nóng)優(yōu)498(單穗質(zhì)量大于5g)和川優(yōu)6203(單穗質(zhì)量4g左右)為試驗(yàn)材料,通過(guò)不同氮肥運(yùn)籌措施研究?jī)烧咴谌照丈佟夭钚『蜐穸却蟮纳鷳B(tài)條件下產(chǎn)量形成規(guī)律,并結(jié)合15N示蹤技術(shù)研究?jī)烧叩牡匚绽锰攸c(diǎn).結(jié)果表明:大穗型和中穗型雜交稻每穗粒數(shù)無(wú)顯著差異,中穗型雜交稻在有效穗數(shù)及總穎花量上具有顯著優(yōu)勢(shì),大穗型雜交稻則通過(guò)更高的千粒質(zhì)量來(lái)實(shí)現(xiàn)更高的產(chǎn)量;大穗型和中穗型雜交稻成熟期干物質(zhì)積累量差異不顯著,前者花前干物質(zhì)積累量大,且其向穗部轉(zhuǎn)運(yùn)能力更強(qiáng),彌補(bǔ)了花后光合生產(chǎn)能力較弱的劣勢(shì);就氮肥運(yùn)籌處理而言,大穗型和中穗型雜交稻產(chǎn)量最高處理的穗肥施用比例分別為40%和25%,依據(jù)穗肥比例與產(chǎn)量關(guān)系曲線(xiàn),大穗型和中穗型雜交稻最佳的穗肥比例分別為33%和27%.大穗型和中穗型雜交稻不同生育階段對(duì)氮素需求的差異是造成兩者最佳穗肥比例不同的重要原因,兩者對(duì)基肥吸收量無(wú)顯著差異,但前者對(duì)穗肥吸收量更大,而后者對(duì)蘗肥積累更多;在最適穗肥比例的基礎(chǔ)上繼續(xù)前氮后移雖然能夠提高氮肥回收率,但會(huì)引起氮肥生理利用率的迅速降低,使氮肥增產(chǎn)效果變差.
雜交稻;大穗型;中穗型;產(chǎn)量;氮肥運(yùn)籌
Journal of Zhejiang University(Agric.&Life Sci.),2015,41(6):685-694
SummaryIn Sichuan Basin with low solar radiation,the grain yield of hybrid rice was restricted by the high humidity and small diurnal temperature.The breeding and application of large panicle hybrid varieties solved the problem to a certain extent.However,the high-yielding performance of large panicle hybrid rice was not stable.
In order to explore the measures of maintaining the high-yielding performance of large panicle hybrid rice,it isnecessary to investigate the characters of its grain yield formation.Two hybrid varieties with different panicle masses(Chuannongyou 498,about 5g per panicle;Chuanyou 6203,about 4g per panicle)were studied on the differences of dry matter accumulation and yield components,and five different nitrogen(N)managements(the N application proportion of base-tillering and panicle fertilizers was 90∶10,75∶25,60∶40,45∶55,30∶70,respectively)integrated with15N tracing were applied to investigate the traits of N uptake across the whole growth stage.
The results showed that there was no significant difference in spikelet per panicle between large and medium panicle hybrid rice.Medium panicle hybrid rice showed significant advantages in effective panicles and total spikelet compared to large panicle hybrid rice;however,the thousand-grain mass of large panicle hybrid rice was larger,and this superiority played a major role in gaining higher grain yield than medium panicle hybrid rice.There was no significant difference in dry matter accumulation at maturity stage between large and medium panicle hybrid rice,but difference of dry matter productivity was observed before and after anthesis.Compared to medium panicle hybrid rice,large panicle hybrid rice accumulated more dry matters before anthesis,and larger percentage of which was exported to the panicle at anthesis,contributing approximately 40%of its grain yield.For medium panicle hybrid rice,dry matter exportation only contributed about 25%of its grain yield.For N management treatments,40%and 25%were the optimal panicle N ratios which could gain the highest grain yields for large and medium panicle hybrid rice respectively.According to the relation formula between panicle N ratio and grain yield,33%was the optimal panicle N ratio which produced the most grains for large panicle hybrid rice,while the optimal panicle N ratio for medium panicle hybrid rice was 27%.The difference for the optimal panicle N ratio between large and medium panicle hybrid rice was caused by varied demands on N at different growth stages.There was no significant difference for N uptake of basal fertilizer between large and medium panicle hybrid rice.Medium panicle hybrid rice showed significant merits in assimilating N at tillering stage than large panicle hybrid rice.In contrast,large panicle hybrid rice assimilated more N at booting stage.A further increase of panicle N based on the optimal panicle N ratio could increase N recovery efficiency,but N physiological efficiency would drop rapidly and the yield-increasing effects of N fertilizer became poor.
In conclusion,33%and 27%are the optimal panicle N ratios for large and medium panicle hybrid rice,respectively,which increase the grain yield and N utilization efficiency simultaneously.
穗部作為水稻整個(gè)生育期大約一半光合產(chǎn)物的最終目的地,其性狀特點(diǎn)直接體現(xiàn)了水稻群體質(zhì)量的優(yōu)劣及產(chǎn)量的高低.在雜交秈稻品種改良及籽粒產(chǎn)量提高過(guò)程中,每穗粒數(shù)增多帶來(lái)的群體總穎花量增加發(fā)揮了關(guān)鍵作用;當(dāng)今水稻高產(chǎn)育種及栽培理論技術(shù)研究亦將增加每穗粒數(shù)、提高單穗質(zhì)量作為實(shí)現(xiàn)水稻產(chǎn)量進(jìn)一步提升的重要突破口[1].周開(kāi)達(dá)等[2]以穗粒數(shù)與粒質(zhì)量的乘積——單穗質(zhì)量作為劃分標(biāo)準(zhǔn),將水稻品種劃分為重穗型、中穗型和輕穗型,并提出了具體的劃分標(biāo)準(zhǔn),即單穗質(zhì)量分別達(dá)到5g以上,2~5g之間以及2g以下.大穗型雜交稻及其高產(chǎn)栽培技術(shù)在四川盆地的推廣應(yīng)用一方面促進(jìn)了該地區(qū)水稻單產(chǎn)的提高,另一方面也因該地區(qū)生態(tài)條件特殊而面臨增產(chǎn)潛力有限、氮肥利用率低等難題[3-5].本試驗(yàn)選用單穗質(zhì)量差異較大的大穗型和中穗型雜交稻作為供試品種(四川盆地幾乎無(wú)小穗型水稻品種種植),運(yùn)用不同氮肥運(yùn)籌措施構(gòu)建產(chǎn)量差異較大的水稻群體,并結(jié)合15N示蹤技術(shù)研究?jī)烧咴谒拇ㄅ璧厣鷳B(tài)條件下的產(chǎn)量形成差異,以探求不同穗型水稻實(shí)現(xiàn)高產(chǎn)的氮素吸收利用特點(diǎn).
1.1 試驗(yàn)設(shè)計(jì)
試驗(yàn)于2013年在四川省成都市溫江區(qū)四川農(nóng)業(yè)大學(xué)水稻研究所試驗(yàn)農(nóng)場(chǎng)進(jìn)行,試驗(yàn)地點(diǎn)氣象資料見(jiàn)圖1.試驗(yàn)田耕層土壤質(zhì)地為砂壤土,含有機(jī)質(zhì)21.4g/kg、全氮1.69g/kg、速效氮118.2mg/kg、速效鉀50.4mg/kg、速效磷39.8mg/kg.試驗(yàn)采用旱育秧,4月10日播種,5月6日移栽.采用二因素裂區(qū)設(shè)計(jì):品種為主區(qū),分別為大穗型雜交稻川農(nóng)優(yōu)498(V1)和中穗型雜交稻川優(yōu)6203(V2);氮肥運(yùn)籌為副區(qū),分為5種方式,即w(基蘗肥)∶w(穗肥)=90∶10,75∶25,60∶40,45∶55和30∶70,分別用N1、N2、N3、N4和N5表示;3次重復(fù),共計(jì)30個(gè)小區(qū),另設(shè)不施氮處理作為對(duì)照,用N0表示.移栽行距、株距分別為33.3cm和16.7cm,密度為18.0萬(wàn)穴/hm2.小區(qū)四周筑?。▽?0cm,高30cm),重復(fù)間扎雙埂并包塑料薄膜以防串水串肥.施純氮150kg/hm2,其中,w(基肥)∶w(蘗肥)=5∶5,蘗肥于移栽后7d施用;穗肥按w(促花肥)∶w(?;ǚ剩?∶5分2次于倒4葉和倒2葉抽出時(shí)施用.選擇w(基蘗肥)∶w(穗肥)=75∶25,60∶40,45∶55處理,共計(jì)18個(gè)小區(qū),每小區(qū)選擇均勻分布的40株水稻作為微區(qū),移栽時(shí)相鄰2株外部安放直徑33.3cm、高度30cm的圓柱形無(wú)底塑料桶,微區(qū)分為3部分,用于15N標(biāo)記試驗(yàn).桶內(nèi)水稻植株部分N肥用15N標(biāo)記的尿素進(jìn)行替代,具體施肥方案見(jiàn)表1.每公頃以過(guò)磷酸鈣和氯化鉀的形式基施P2O575 kg和K2O 150kg.其他管理措施統(tǒng)一按常規(guī)栽培要求進(jìn)行.
圖1 試驗(yàn)地點(diǎn)氣象資料Fig.1 Meteorological data in the study site
表115N標(biāo)記及普通尿素施用方案Table 115N-labeled and common urea application scheme
1.2 測(cè)定項(xiàng)目及方法
1.2.1 土壤肥力測(cè)定 土樣于整地前采用五點(diǎn)法采集,并用常規(guī)分析法測(cè)定土壤基礎(chǔ)指標(biāo),包括有機(jī)質(zhì)、堿解氮、速效鉀、速效磷、全氮、全磷和全鉀等.
1.2.2 干物質(zhì)及氮素含量測(cè)定 分別于分蘗肥、促花肥和?;ǚ适┯们?、齊穗期、成熟期每處理取樣3株,分莖、葉、穗各器官烘干,稱(chēng)質(zhì)量,再粉碎,過(guò)篩,用凱氏定氮儀(FOSS-8400)測(cè)定各器官的全氮含量.在大田小區(qū)取樣的同時(shí),在已施用15N標(biāo)記肥料的微區(qū)內(nèi)取樣2株,分莖、葉、穗各器官烘干,稱(chēng)質(zhì)量,再粉碎,過(guò)篩,用凱氏定氮儀(FOSS-8400)測(cè)定各器官的全氮含量,并用同位素比率質(zhì)譜儀(Delta V Advantage)測(cè)定15N豐度.
1.2.3 考種及測(cè)產(chǎn) 成熟期每小區(qū)取樣5株,考察產(chǎn)量結(jié)構(gòu);分小區(qū)收割,按實(shí)收株數(shù)計(jì)產(chǎn).
1.3 統(tǒng)計(jì)分析及參數(shù)計(jì)算
用DPS 6.55和SPSS 20進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析,用Excel 2010和Origin 9.0進(jìn)行圖表繪制,用最小顯著性差異法檢驗(yàn)處理間差異顯著性.
15N原子百分超=樣品或15N標(biāo)記肥料的15N豐度-15N天然豐度(0.366%).
來(lái)自15N標(biāo)記肥料的植株體內(nèi)的氮素百分比/%=樣品的15N原子百分超/標(biāo)記肥料的15N原子百分超×100.
2.1 氮肥運(yùn)籌對(duì)2個(gè)不同穗重型雜交稻產(chǎn)量及其構(gòu)成的影響
表2 氮肥運(yùn)籌對(duì)2個(gè)不同穗重型雜交稻產(chǎn)量及其構(gòu)成的影響Table 2 Effects of nitrogen management on grain yield and its components of two rice varieties with different panicle masses
如表2所示,水稻產(chǎn)量在不同穗重型品種間及氮肥運(yùn)籌方式間存在顯著差異.在相同氮肥運(yùn)籌模式下,大穗型雜交稻川農(nóng)優(yōu)498產(chǎn)量均高于或顯著高于中穗型雜交稻川優(yōu)6203.隨著穗肥比例升高,2個(gè)穗重型水稻產(chǎn)量都呈先升高后降低的趨勢(shì),當(dāng)大穗型雜交稻穗肥比例達(dá)到40%、中穗型雜交稻達(dá)到25%時(shí),各自產(chǎn)量達(dá)到最高值,分別較其余施氮處理提高4.21%~16.42%和2.17%~13.99%,比對(duì)照處理分別提高41.23%和32.38%.大穗型雜交稻收獲指數(shù)平均值顯著高于中穗型雜交稻,但在不同氮肥運(yùn)籌模式下,大穗型雜交稻收獲指數(shù)間在統(tǒng)計(jì)學(xué)上無(wú)顯著差異,中穗型雜交稻則隨穗肥比例升高逐漸降低,55%和70%穗肥比例處理的收獲指數(shù)顯著低于其余3種運(yùn)籌方式.對(duì)產(chǎn)量構(gòu)成因素而言,結(jié)實(shí)率在不同穗重型雜交稻間及各氮肥運(yùn)籌方式間在統(tǒng)計(jì)學(xué)上均無(wú)顯著差異;每穗粒數(shù)僅受氮肥運(yùn)籌方式的顯著影響,在本試驗(yàn)中大穗型和中穗型雜交稻在穗粒數(shù)上未表現(xiàn)出差異;中穗型雜交稻有效穗數(shù)顯著高于大穗型雜交稻,使其總穎花量亦顯著高于后者,然而大穗型雜交稻由于千粒質(zhì)量較大,最終產(chǎn)量仍高于中穗型雜交稻.
大穗型和中穗型雜交稻產(chǎn)量與穗肥比例關(guān)系如圖2所示.大穗型和中穗型雜交稻穗肥比例與產(chǎn)量關(guān)系擬合方程的決定系數(shù)均達(dá)到極顯著水平,可信度較高.依據(jù)穗肥比例與產(chǎn)量關(guān)系,大穗型雜交稻產(chǎn)量最高的穗肥比例為33%,而中穗型雜交稻最佳穗肥比例為27%,表明大穗型雜交稻對(duì)穗肥的需求量更大.
圖2 大穗型和中穗型雜交稻產(chǎn)量與穗肥比例關(guān)系Fig.2 Relationship of grain yields of large and medium panicle hybrid rice with different panicle fertilizer ratios
2.2 氮肥運(yùn)籌對(duì)2個(gè)不同穗重型雜交稻物質(zhì)積累和轉(zhuǎn)運(yùn)的影響
在不同氮肥運(yùn)籌模式下,大穗型和中穗型雜交稻干物質(zhì)積累和轉(zhuǎn)運(yùn)存在較大差異(表3).大穗型雜交稻花前干物質(zhì)積累量較中穗型雜交稻平均高8.37%,達(dá)到顯著水平,花后干物質(zhì)積累量則較后者平均低10.17%,未達(dá)到顯著水平.當(dāng)穗肥比例超過(guò)40%時(shí),大穗型雜交稻花后干物質(zhì)積累量顯著降低,而中穗型雜交稻花后干物質(zhì)積累量在不同氮肥運(yùn)籌模式下差異不顯著.品種與氮肥運(yùn)籌對(duì)成熟期干物質(zhì)積累產(chǎn)生顯著互作效應(yīng),大穗型和中穗型雜交稻分別在穗肥比例為40%和25%時(shí)生物產(chǎn)量最高.對(duì)物質(zhì)轉(zhuǎn)運(yùn)而言,不同穗重型品種間規(guī)律一致,即大穗型雜交稻花前干物質(zhì)輸出量、輸出率及轉(zhuǎn)換率均高于中穗型雜交稻,前者花前干物質(zhì)輸出量約為后者的1.5倍.
2.3 氮肥運(yùn)籌對(duì)2個(gè)不同穗重型雜交稻氮肥吸收與利用的影響
基于15N標(biāo)記的氮素示蹤結(jié)果見(jiàn)表4.蘗肥和穗肥吸收量及回收率在不同穗重型品種間存在顯著差異,基肥吸收量和回收率則不存在顯著的品種間特異性差異.氮肥運(yùn)籌對(duì)基、蘗、穗肥吸收量及回收率均產(chǎn)生顯著影響,而氮肥運(yùn)籌與品種間的互作則顯著影響總氮肥吸收量、回收率及其在總吸氮量中的占比.大穗型雜交稻對(duì)蘗肥的吸收量和回收率顯著低于中穗型雜交稻,而后者對(duì)穗肥的吸收量和回收率顯著低于前者.大穗型和中穗型雜交稻在不同氮肥運(yùn)籌模式下對(duì)氮肥的吸收和利用變化趨勢(shì)基本保持一致,即隨著基、蘗肥比例的降低,水稻對(duì)基、蘗肥的吸收量減少,但回收率明顯提高,而水稻對(duì)穗肥的吸收量隨著穗肥比例的升高顯著增加,穗肥回收率則有一定程度的降低.大穗型和中穗型雜交稻對(duì)氮肥的總吸收量均隨穗肥比例升高而顯著增加,氮肥回收率明顯升高,兩者之間不存在顯著的品種間特異性差異.就水稻總吸氮量中肥料氮的占比而言,大穗型雜交稻當(dāng)穗肥比例達(dá)到55%時(shí),肥料氮占總吸氮量的比例最大,而中穗型雜交稻以40%的穗肥比例處理時(shí)肥料氮占總吸氮量的比例最高.
氮肥運(yùn)籌對(duì)不同穗重型雜交稻氮肥利用率的影響見(jiàn)表5.大穗型雜交稻總吸氮量顯著低于中穗型雜交稻,但由于前者肥料氮占總吸氮量的比例更高,所以?xún)烧邔?duì)氮肥吸收量相近,氮肥回收率間無(wú)顯著差異.就氮肥農(nóng)學(xué)利用率及生理利用率而言,兩者存在顯著的品種間特異性差異,表現(xiàn)為大穗型雜交稻施用單位質(zhì)量氮肥的增產(chǎn)效果顯著好于中穗型雜交稻,并且大穗型雜交稻從氮肥中吸收的單位質(zhì)量氮素的增產(chǎn)效果也較中穗型雜交稻有顯著優(yōu)勢(shì).氮肥運(yùn)籌對(duì)水稻氮肥利用率產(chǎn)生極顯著影響.隨著穗肥
比例升高,氮肥回收率呈現(xiàn)先升高后降低的趨勢(shì),大穗型和中穗型雜交稻均是在穗肥比例為55%時(shí),氮肥回收率最高.氮肥農(nóng)學(xué)利用率和生理利用率亦隨著穗肥比例升高而先升后降.對(duì)大穗型雜交稻而言,在40%的穗肥比例處理下,施用單位質(zhì)量氮肥的增產(chǎn)效果最好,并且水稻從氮肥中吸收的單位質(zhì)量氮素的增產(chǎn)效果亦最佳;而對(duì)中穗型雜交稻而言,最適宜的穗肥比例則為25%.
表3 氮肥運(yùn)籌對(duì)2個(gè)不同穗重型雜交稻干物質(zhì)積累和轉(zhuǎn)運(yùn)的影響Table 3 Effects of N management on dry matter accumulation and transportation of two rice varieties with different panicle masses
表4 氮肥運(yùn)籌對(duì)成熟期2個(gè)不同穗重型雜交稻氮肥吸收與利用的影響Table 4 Effects of N management on N fertilizer uptake and utilization of two rice varieties with different panicle masses at maturity stage
表5 氮肥運(yùn)籌對(duì)2個(gè)不同穗重型雜交稻氮肥利用率的影響Table 5 Effects of N management on N use efficiency of two rice varieties with different panicle masses
3.1 不同穗重型雜交稻產(chǎn)量及其構(gòu)成差異
水稻產(chǎn)量構(gòu)成因素包括有效穗數(shù)、每穗粒數(shù)、結(jié)實(shí)率和千粒質(zhì)量.在不同品種水稻產(chǎn)量形成過(guò)程中,各構(gòu)成因素發(fā)揮的作用有差異,并且這種作用的發(fā)揮會(huì)隨著生態(tài)環(huán)境、栽培措施等的變化而發(fā)生改變[6-8].楊從黨等[7]對(duì)云南6個(gè)不同生態(tài)區(qū)的研究顯示,庫(kù)容量的增加是水稻定量促控技術(shù)增產(chǎn)的主要途徑,結(jié)實(shí)率和千粒質(zhì)量對(duì)其影響很?。趲?kù)容量的增加來(lái)源中,既有有效穗數(shù)的增長(zhǎng),也有每穗粒數(shù)的增加.顧偉等[9]對(duì)高產(chǎn)地區(qū)水稻產(chǎn)量構(gòu)成的研究顯示,有效穗數(shù)增多推動(dòng)的庫(kù)容量變大是這些地區(qū)水稻高產(chǎn)的重要原因.袁平榮等[10]對(duì)不同穗重型水稻產(chǎn)量及其構(gòu)成因素的研究顯示,在光照條件一般或較差、濕度較大的地區(qū),大穗型雜交稻通過(guò)增大每穗粒數(shù)擴(kuò)大庫(kù)容量,在結(jié)實(shí)率及千粒質(zhì)量不降低的情況下大幅提高單穗質(zhì)量,雖然有效穗數(shù)有所降低但產(chǎn)量仍顯著提高.在本試驗(yàn)中,大穗型雜交稻在有效穗數(shù)及每穗粒數(shù)上均不占優(yōu)勢(shì),導(dǎo)致其庫(kù)容量顯著低于中穗型雜交稻,但大穗型雜交稻花后灌漿能力強(qiáng)、籽粒千粒質(zhì)量大確保了其比中穗型雜交稻更具產(chǎn)量?jī)?yōu)勢(shì).這種依靠千粒質(zhì)量增加來(lái)推動(dòng)產(chǎn)量提高的模式與前述研究的高產(chǎn)途徑存在一定的差異,這種差異可能與試驗(yàn)品種特性和試驗(yàn)地生態(tài)特征密切相關(guān).就品種特性而言,大穗型雜交稻植株分蘗能力較弱,在相同栽植密度條件下,其有效穗數(shù)不及中穗型雜交稻;因此,目前研究普遍認(rèn)為大穗型雜交稻庫(kù)容量?jī)?yōu)勢(shì)的發(fā)揮更多依靠每穗粒數(shù)的增加而非有效穗數(shù)的提高.就生態(tài)特征而言,成都平原寡日照、濕度大、溫差小的生態(tài)特點(diǎn)決定了該地區(qū)單位面積土地容穗能力有限,水稻產(chǎn)量提升必須更多依靠單穗質(zhì)量的增長(zhǎng),這也是成都平原大穗型雜交稻種植面積較高的最主要原因,但大穗型雜交稻能否展現(xiàn)其單穗質(zhì)量大的優(yōu)勢(shì),或者這種優(yōu)勢(shì)是通過(guò)每穗粒數(shù)的增多還是千粒質(zhì)量的增加來(lái)實(shí)現(xiàn),還與外界生態(tài)條件密不可分.本試驗(yàn)在實(shí)施過(guò)程中,水稻分蘗期和孕穗期降水較歷史同期高出數(shù)倍,日照時(shí)數(shù)則較歷史同期偏低,造成孕穗期水稻群體無(wú)效分蘗較多且物質(zhì)積累量偏低,無(wú)法滿(mǎn)足大穗型雜交稻穎花分化對(duì)營(yíng)養(yǎng)物質(zhì)的需求,使得大穗型雜交稻在每穗粒數(shù)上的優(yōu)勢(shì)無(wú)法體現(xiàn).
在育種層面上,大穗型雜交稻概念的提出主要基于其每穗粒數(shù)多的基因型特征;從栽培角度看,大穗型雜交稻高產(chǎn)栽培的主要策略是在基因型與環(huán)境互作過(guò)程中盡可能地發(fā)揮其每穗粒數(shù)多的遺傳優(yōu)勢(shì)來(lái)攻取大穗.但當(dāng)大穗型雜交稻在每穗粒數(shù)上的優(yōu)勢(shì)不明顯時(shí)是否意味著其“大穗"名不副實(shí)?本試驗(yàn)展示了大穗型雜交稻在其每穗粒數(shù)多的“先天優(yōu)勢(shì)"發(fā)揮受限的情況下,通過(guò)增大千粒質(zhì)量保證大穗優(yōu)勢(shì)進(jìn)而實(shí)現(xiàn)高產(chǎn)的途徑,這表明大穗型雜交稻在生態(tài)因素不利的情況下仍然能夠保持其穗質(zhì)量大、產(chǎn)量高的優(yōu)勢(shì),與中、小穗型雜交稻相比,其高產(chǎn)穩(wěn)產(chǎn)性能更佳.
與大、中穗型品種間的差異主要集中在千粒質(zhì)量不同,氮肥運(yùn)籌主要通過(guò)有效穗數(shù)和每穗粒數(shù)影響兩者的庫(kù)容量(總穎花量)進(jìn)而對(duì)其產(chǎn)量產(chǎn)生顯著影響.作為大穗型雜交稻產(chǎn)量最高的處理,V1N3的結(jié)實(shí)率和千粒質(zhì)量并不突出,其產(chǎn)量的提高主要源于較多有效穗數(shù)建立的大庫(kù)容優(yōu)勢(shì).對(duì)中穗型雜交稻而言,V2N2的高產(chǎn)優(yōu)勢(shì)亦是建立在庫(kù)容量更大的基礎(chǔ)上,在這個(gè)過(guò)程中,有效穗數(shù)和每穗粒數(shù)均發(fā)揮了積極作用.當(dāng)穗肥占比分別超過(guò)40%和25%時(shí),大穗型和中穗型雜交稻每穗粒數(shù)的增長(zhǎng)不足以彌補(bǔ)有效穗數(shù)減少造成的兩者庫(kù)容量減小,從而使產(chǎn)量顯著降低.
3.2 不同穗重型雜交稻物質(zhì)積累轉(zhuǎn)運(yùn)差異
作物生產(chǎn)能力和同化物向經(jīng)濟(jì)器官運(yùn)轉(zhuǎn)能力是作物產(chǎn)量形成的基礎(chǔ),受基因型和栽培措施共同作用[11].本試驗(yàn)相關(guān)分析顯示:成熟期干物質(zhì)積累量和收獲指數(shù)與產(chǎn)量呈極顯著正相關(guān)(n=30,r=0.85**,0.59**);就基因型的差異而言,大穗型和中穗型雜交稻成熟期干物質(zhì)積累量差異并不顯著,但前者收獲指數(shù)顯著高于后者,表明大穗型雜交稻同化產(chǎn)物向穗部轉(zhuǎn)運(yùn)能力更強(qiáng).就栽培措施的影響而言,產(chǎn)量高的氮肥運(yùn)籌處理成熟期干物質(zhì)積累量更大,而其收獲指數(shù)并不突出,表明氮肥運(yùn)籌措施主要通過(guò)影響水稻生物產(chǎn)量來(lái)影響其經(jīng)濟(jì)產(chǎn)量.
開(kāi)花期較多的干物質(zhì)積累會(huì)降低開(kāi)花后光合生產(chǎn)對(duì)產(chǎn)量的貢獻(xiàn)[12].相關(guān)研究顯示,在光溫條件較差的地區(qū),水稻開(kāi)花期干物質(zhì)積累比花后光合生產(chǎn)對(duì)產(chǎn)量變化影響更大[13].本試驗(yàn)相關(guān)分析顯示,花前干物質(zhì)積累與產(chǎn)量關(guān)系密切(n=30,r=0.60**),而花后干物質(zhì)積累與產(chǎn)量的關(guān)系并未達(dá)到顯著水平.對(duì)大穗型和中穗型雜交稻比較顯示,大穗型雜交稻花后光合生產(chǎn)能力顯著低于中穗型雜交稻,但前者花前干物質(zhì)積累量?jī)?yōu)勢(shì)較大,且物質(zhì)輸出能力更強(qiáng),花前干物質(zhì)輸出量及對(duì)產(chǎn)量的貢獻(xiàn)均高于后者,這使得大穗型雜交稻能夠在花后光合生產(chǎn)能力較弱的情況下,籽粒灌漿更充分、千粒質(zhì)量更大,進(jìn)而保證其產(chǎn)量?jī)?yōu)勢(shì).與大穗型和中穗型雜交稻間的產(chǎn)量差異與花前干物質(zhì)積累密切相關(guān)不同,氮肥運(yùn)籌對(duì)產(chǎn)量的影響主要通過(guò)花后光合生產(chǎn)體現(xiàn),產(chǎn)量最高的V1N3和V2N2花后干物質(zhì)積累量最大,而花前干物質(zhì)輸出量和對(duì)產(chǎn)量的貢獻(xiàn)率均處于較低水平.
3.3 不同穗重型雜交稻氮素吸收利用差異
適度氮肥后移提高穗肥比例對(duì)大穗型雜交稻攻取大穗和實(shí)現(xiàn)高產(chǎn)具有重要意義[14-16].雖然在本試驗(yàn)中大穗型雜交稻高產(chǎn)的實(shí)現(xiàn)并未沿著發(fā)揮其穗大粒多優(yōu)勢(shì)的途徑進(jìn)行,而是采用了與中穗型雜交稻相近的多穗高產(chǎn)模式(兩者產(chǎn)量最高的處理均是有效穗數(shù)最多的處理),但兩者最佳的氮肥運(yùn)籌模式仍然存在一定的差異.大穗型雜交稻最佳的穗肥比例高于中穗型雜交稻,暗示了兩者在孕穗期對(duì)氮肥的需求差異,雖然這種差異并未反映在每穗粒數(shù)上.
在相同施氮模式下,大穗型和中穗型雜交稻對(duì)基肥需求無(wú)顯著差異,但前者對(duì)穗肥吸收效率更高,后者則對(duì)蘗肥吸收效率更高,這符合兩者的品種特性,即大穗型雜交稻分蘗能力較差,蘗肥吸收較少,但每穗粒數(shù)多,穗肥需求量大,中穗型雜交稻則相反.雖然在本試驗(yàn)中大穗型雜交稻每穗粒數(shù)多的優(yōu)勢(shì)并未展現(xiàn)出來(lái),但其與中穗型雜交稻在氮肥利用上的差異仍然暗示了這種潛在優(yōu)勢(shì)的存在,并且解釋了兩者最適氮肥運(yùn)籌中6%的穗肥比例差異的來(lái)源.
Jiang等[17-18]研究指出,提高穗肥比例有利于開(kāi)花前及整個(gè)生育期的氮素積累,提高肥料利用率,但穗肥比例過(guò)高會(huì)使過(guò)量氮素分配到葉片,影響其光合性能,使得成熟期氮素干物質(zhì)生產(chǎn)效率降低,氮肥增產(chǎn)效果變差.本試驗(yàn)結(jié)果與前人研究基本一致,就大穗型和中穗型雜交稻而言,40%和25%的穗肥比例是其最佳氮肥運(yùn)籌模式,繼續(xù)增大穗肥比例雖然可以顯著增加植株對(duì)肥料的吸收量,提高肥料回收率,但其生理利用率會(huì)迅速下降,造成奢侈吸收.
目前國(guó)際上研究認(rèn)為,在水稻生產(chǎn)中如果施肥措施得當(dāng),氮肥的回收率可以達(dá)到50%~70%,農(nóng)學(xué)利用率可以達(dá)到20%~30%,而氮素干物質(zhì)生產(chǎn)效率則可以達(dá)到100kg/kg[19-21].就本試驗(yàn)高產(chǎn)處理而言,氮肥回收率和農(nóng)學(xué)利用率均較低,表明本試驗(yàn)高產(chǎn)處理仍有較大優(yōu)化空間.針對(duì)成都平原水稻孕穗期寡日多雨的氣候特點(diǎn),通過(guò)提早曬田減少無(wú)效分蘗,優(yōu)化孕穗期水稻群體結(jié)構(gòu),提高其光合生產(chǎn)能力,進(jìn)一步滿(mǎn)足穎花分化對(duì)營(yíng)養(yǎng)物質(zhì)的需求,實(shí)現(xiàn)每穗粒數(shù)的增長(zhǎng),推動(dòng)水稻庫(kù)容量的提升,從而提高產(chǎn)量.
(References):
[1] 楊建昌,王朋,劉立軍,等.中秈水稻品種產(chǎn)量與株型演進(jìn)特征研究.作物學(xué)報(bào),2006,32(7):949-955.Yang J C,Wang P,Liu L J,et al.Evolution characteristics of grain yield and plant type for mid-season indica rice cultivars.Acta Agronomica Sinica,2006,32(7):949-955.(in Chinese with English abstract)
[2] 周開(kāi)達(dá),馬玉清,劉太清,等.雜交水稻亞種間重穗型組合選育:雜交水稻超高產(chǎn)育種的理論與實(shí)踐.四川農(nóng)業(yè)大學(xué)學(xué)報(bào),1995,13(4):403-407.Zhou K D,Ma Y Q,Liu T Q,et al.The breeding of subspecific heavy ear hybrid rice:Exploration about superhigh yield breeding of hybrid rice.Journal of Sichuan Agricultural University,1995,13(4):403-407.(in Chinese with English abstract)
[3] 李旭毅,孫永健,程洪彪,等.兩種生態(tài)條件下氮素調(diào)控對(duì)不同栽培方式水稻干物質(zhì)積累和產(chǎn)量的影響.植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2011,17(4):773-781.Li X Y,Sun Y J,Cheng H B,et al.Effects of nitrogen regulation on dry matter accumulation and grain yield of rice under different cultivation models and two kinds of ecological conditions.Plant Nutrition and Fertilizer Science,2011,17(4):773-781.(in Chinese with English abstract)
[4] 鄧飛,王麗,劉利,等.不同生態(tài)條件下栽培方式對(duì)水稻干物質(zhì)生產(chǎn)和產(chǎn)量的影響.作物學(xué)報(bào),2012,38(10):1930-1942. Deng F,Wang L,Liu L,et al.Effects of cultivation methods on dry matter production and yield of rice under different ecological conditions.Acta Agronomica Sinica,2012,38(10):1930-1942.(in Chinese with English abstract)
[5] 孫永健,孫園園,劉樹(shù)金,等.水分管理和氮肥運(yùn)籌對(duì)水稻養(yǎng)分吸收、轉(zhuǎn)運(yùn)及分配的影響.作物學(xué)報(bào),2011,37(12):2221-2232.Sun Y J,Sun Y Y,Liu S J,et al.Effects of water management and nitrogen application strategies on nutrient absorption,transfer,and distribution in rice.Acta Agronomica Sinica,2011,37(12):2221-2232.(in Chinese with English abstract)
[6] 楊從黨,朱德峰,周玉萍,等.不同生態(tài)條件下水稻產(chǎn)量及其構(gòu)成因子分析.西南農(nóng)業(yè)學(xué)報(bào),2004,17(增刊1):35-39.Yang C D,Zhu D F,Zhou Y P,et al.Analysis on rice yield and its components under different environments.Southwest China Journal of Agricultural Sciences,2004,17(Supplement 1):35-39.(in Chinese with English abstract)
[7] 楊從黨,李剛?cè)A,李貴勇,等.立體生態(tài)區(qū)水稻定量促控栽培技術(shù)的增產(chǎn)機(jī)理.中國(guó)農(nóng)業(yè)科學(xué),2012,45(10):1904-1913.Yang C D,Li G H,Li G Y,et al.Research on the mechanism of grain yield increase of rice by quantitative intensifying and controlling cultivation under an erect ecology in Yunnan Province of China.Scientia Agricultura Sinica,2012,45(10):1904-1913.(in Chinese with English abstract)
[8] 王夫玉,黃丕生.水稻群體源庫(kù)特征及高產(chǎn)栽培策略研究.中國(guó)農(nóng)業(yè)科學(xué),1997,30(5):26-33.Wang F Y,Huang P S.Study on source-sink characteristics and high-yield cultivation strategies of rice population.Scientia Agricultura Sinica,1997,30(5):26-33.(in Chinese with English abstract)
[9] 顧偉,李剛?cè)A,楊從黨,等.特殊生態(tài)區(qū)水稻超高產(chǎn)生態(tài)特征研究.南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2009,32(4):1-6.Gu W,Li G H,Yang C D,et al.Studies on ecological traits of super high-yield rice in special eco-site.Journal of Nanjing Agricultural University,2009,32(4):1-6.(in Chinese with English abstract)
[10] 袁平榮,孫傳清,楊從黨,等.云南秈稻每公頃15噸高產(chǎn)的產(chǎn)量及其結(jié)構(gòu)分析.作物學(xué)報(bào),2000,26(6):756-762.Yuan P R,Sun C Q,Yang C D,et al.Analysis on grain yield and yield components of the 15t/hm2high-yielding indicarice(Oryza sativa L.)in Yunnan.Acta Agronomica Sinica,2000,26(6):756-762.(in Chinese with English abstract)
[11] Kobata T,Sugawara M,Takatu S.Shading during the early grain filling period does not affect potential grain dry matter increase in rice.Agronomy Journal,2000,92(3):411-417.
[12] Venkateswarlu B,Prasad G S V.Pre-and post-flowering photosynthetic contribution to grain yield in rice(Oryza sativa L.).Indian Journal of Plant Physiology,1980,23(3):300-308.
[13] 楊志遠(yuǎn),胡蓉,孫永健,等.三角形強(qiáng)化栽培模式下氮肥運(yùn)籌對(duì)Ⅱ優(yōu)498產(chǎn)量及氮肥利用的影響.作物學(xué)報(bào),2012,38(6):1097-1106.Yang Z Y,Hu R,Sun Y J,et al.Effects of nitrogen fertilizer management on yield and nitrogen use efficiency of Eryou 498in triangle-planted system of rice intensification.Acta Agronomica Sinica,2012,38(6):1097-1106.(in Chinese with English abstract)
[14] 李忠,陳軍,林世圣,等.氮肥運(yùn)籌比例對(duì)水稻生長(zhǎng)及產(chǎn)量的影響.福建農(nóng)業(yè)學(xué)報(bào),2011,26(4):557-561.Li Z,Chen J,Lin S S,et al.Effects of nitrogen application ratio on the growth and yield of rice(Oryza sativa L.).Fujian Journal of Agricultural Sciences,2011,26(4):557-561.(in Chinese with English abstract)
[15] 張洪程,吳桂成,戴其根,等.水稻氮肥精確后移及其機(jī)制.作物學(xué)報(bào),2011,37(10):1837-1851.Zhang H C,Wu G C,Dai Q G,et al.Precise postponing nitrogen application and its mechanism in rice.Acta Agronomica Sinica,2011,37(10):1837-1851.(in Chinese with English abstract)
[16] 萬(wàn)靚軍.水稻氮肥運(yùn)籌效應(yīng)及技術(shù)改進(jìn)的研究.江蘇,揚(yáng)州:揚(yáng)州大學(xué),2006:46-47.Wang L J.Studies on effect of nitrogen application technique improvement in rice.Yangzhou,Jiangsu:Yangzhou University,2006:46-47.(in Chinese with English abstract)
[17] Jiang L G,Dai T B,Jiang D,et al.Characterizing physiological N-use efficiency as influenced by nitrogen management in three rice cultivars.Field Crops Research,2004,88(2):239-250.
[18] Jiang L G,Dong D F,Gan X Q,et al.Photosynthetic efficiency and nitrogen distribution under different nitrogen management and relationship with physiological N-use efficiency in three rice genotypes.Plant and Soil,2005,271(1):321-328.
[19] Schnier H F,Dingkuhn M,de Datta S K,et al.Nitrogen fertilization of direct-seeded flooded vs.transplanted rice:Ⅰ.Nitrogen uptake,photosynthesis,growth,and yield.Crop Science,1990,30(6):1276-1284.
[20] Jing Q,Bouman B,Hengsdijk H,et al.Exploring options to combine high yields with high nitrogen use efficiencies in irrigated rice in China.European Journal of Agronomy,2007,26(2):166-177.
[21] Peng S B,Buresh R J,Huang J L,et al.Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China.Field Crops Research,2006,96(1):37-47.
本刊繼續(xù)入編北京大學(xué)圖書(shū)館爯中文核心期刊要目總覽爲(wèi)
依據(jù)文獻(xiàn)計(jì)量學(xué)的原理和方法,經(jīng)研究人員對(duì)相關(guān)文獻(xiàn)的檢索、統(tǒng)計(jì)和分析,以及3 700多位學(xué)科專(zhuān)家的評(píng)審,本刊繼續(xù)入編北京大學(xué)圖書(shū)館2014年版(即第7版)《中文核心期刊要目總覽》之綜合性農(nóng)業(yè)科學(xué)類(lèi)核心期刊.
本次核心期刊評(píng)選仍采用定量評(píng)價(jià)指標(biāo)(被索量、被摘量、被引量、他引量、被摘率、影響因子、他引影響因子、被重要檢索系統(tǒng)收錄、基金論文比、Web下載量、論文被引指數(shù)、互引指數(shù)等)和專(zhuān)家定性評(píng)審相結(jié)合的方法,從中國(guó)正在出版的中文期刊中評(píng)選出了1 983種核心期刊.
——浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版)編輯部
Effects of nitrogen management on grain yield and nitrogen use efficiency of two hybrid rice varieties with different panicle masses.
Yang Shimin/,Yang Zhiyuan/,Sun Yongjian,Ma Jun*
(Key Laboratory of Crop Physiology,Ecology and Cultivation in Southwest,Ministry of Agriculture/Rice Research Institute,Sichuan Agricultural University,Chengdu 611130,China)
hybrid rice;large panicle;medium panicle;grain yield;nitrogen management
S 311;S 143.1
A
10.3785/j.issn.1008-9209.2015.07.241
農(nóng)業(yè)部作物生理生態(tài)與耕作重點(diǎn)實(shí)驗(yàn)室開(kāi)放課題(201303);國(guó)家“十二五"科技支撐計(jì)劃(2011BAD16B05,2012BAD04B13,2013BAD07B13);四川省科技支撐計(jì)劃(2013NZ0046,2014NZ0041,2014NZ0047);四川省育種攻關(guān)專(zhuān)項(xiàng)(2011NZ0098-15).
馬均(http://orcid.org/0000-0001-6103-5635),Tel:+86-28-86290303,E-mail:majunp2002@163.com
聯(lián)系方式:楊世民(http://orcid.org/0000-0002-9749-2499),E-mail:yangshiminl@163.com;楊志遠(yuǎn)(http://orcid.org/0000-0003-3754-2797),E-mail:dreamislasting@163.com./共同第一作者
2015-07-24;接受日期(Accepted):2015-10-09;< class="emphasis_bold">網(wǎng)絡(luò)出版日期
日期(Published online):2015-11-18
URL:http://www.cnki.net/kcms/detail/33.1247.s.20151118.1646.008.html