宋乃平,吳旭東,潘軍,曲文杰,周娟,安超平
(寧夏大學(xué)西北土地退化與生態(tài)恢復(fù)國家重點(diǎn)實(shí)驗(yàn)室培育基地/西北退化生態(tài)系統(tǒng)恢復(fù)與重建教育部重點(diǎn)實(shí)驗(yàn)室,銀川750021)
荒漠草原人工檸條林對土壤質(zhì)地演進(jìn)過程的影響
宋乃平*,吳旭東,潘軍,曲文杰,周娟,安超平
(寧夏大學(xué)西北土地退化與生態(tài)恢復(fù)國家重點(diǎn)實(shí)驗(yàn)室培育基地/西北退化生態(tài)系統(tǒng)恢復(fù)與重建教育部重點(diǎn)實(shí)驗(yàn)室,銀川750021)
為了研究荒漠草原區(qū)人工檸條(Caragana intermedia)林建植后土壤質(zhì)地演進(jìn)過程,構(gòu)建了10a、17a、27a的林齡序列和檸條灌叢內(nèi)部、邊緣、外部的空間序列,分析了2個序列土壤顆粒組成、黏粉粒富集程度、分形維數(shù)以及與其密切相關(guān)的土壤有機(jī)碳和全氮含量.結(jié)果表明:1)土壤質(zhì)地隨著人工檸條林建植年限的增加從灌叢內(nèi)部、邊緣到外部均逐漸得到改善,表現(xiàn)為土層在垂直方向上的“自上而下"和水平方向上以灌叢為中心的“由內(nèi)到外"的漸進(jìn)改善過程.檸條灌叢內(nèi)部的土壤分形維數(shù)比外部平均增加0.189±0.401.2)檸條灌叢發(fā)育顯著增強(qiáng)了退化草原中土壤有機(jī)碳和全氮的空間異質(zhì)性,灌叢內(nèi)部土壤有機(jī)碳和全氮含量比外部分別增加(0.087± 0.100)%和(0.008±0.010)%,顯示出檸條的“肥島效應(yīng)".土壤有機(jī)碳和全氮含量與土壤黏粉粒含量呈極顯著正相關(guān)(P<0.01).3)人工檸條林建植對荒漠草原區(qū)土壤質(zhì)地和碳氮資源具有非常明顯的協(xié)同演進(jìn)作用.說明檸條林建植對于改善荒漠草原地區(qū)的土壤質(zhì)地及土壤有機(jī)碳和全氮含量具有顯著作用,但當(dāng)進(jìn)入老齡林階段后土壤質(zhì)地改善緩慢.
人工檸條林;土壤質(zhì)地;土壤顆粒;分形維數(shù);荒漠草原;寧夏鹽池縣
Journal of Zhejiang University(Agric.&Life Sci.),2015,41(6):703-711
SummaryPlanting Caragana has achieved remarkable success in the recovery of desertification land in desert steppe because of its excellent biological characteristics,such as tolerance of sand burying,drought-resistance,and so on.Thus,its sustainability of ecological restoration becomes one of the key topics of concern.Restoration of soil habitat is the foundation for ecosystem being fully restored,and soil texture is the core indicator to evaluate soil properties.In this study,soil texture evolution process and effects after planting C.intermedia stand were investigated to understand its role in desert steppe ecosystem.
Series of different stand ages(10a,17a,27a)and space sequences(from the inside via the edge to theoutside of shrubs)were designed to analyze the spatiotemporal rules of soil particle composition,increment in silt and clay,volume fractal dimension of soil particles,as well as the contents of soil organic carbon(SOC)and soil total nitrogen(STN).
The results showed that:1)The percentages of fine sand(ranging from 0.05mm to 0.1mm)were higher than those of silt and clay,coarse sand and gravel sand in the soil particle composition.With the increase ofC.intermediastand ages,soil texture was improved gradually according with vertical orientation of soil depth from top to bottom and horizontal direction from the inside to the outside of shrubs.The volume fractal dimension of soil particles inside shrubs increased by 0.189±0.401on average compared to the outside.2)Spatial heterogeneity of SOC and STN in the surface soil layer changed significantly with the increase ofC.intermediastand ages.SOC and STN inside shrubs increased by(0.087±0.100)%and(0.008±0.010)%respectively in comparison to those outside shrubs,which indicated the fertility island effect byC.intermedia.The contents of SOC and STN were significantly and positively correlated with the content of silt and clay(P<0.01).3)Caraganaintermediaplantation exerted a distinct co-succession influence on the content of silt and clay and the resource of carbon and nitrogen in desert steppe.
In conclusion,soil texture and soil fertility states are significantly improved after the construction ofCaraganaplantation.However,soil texture is improved more slowly when plantation aged.
人工灌叢已經(jīng)成為全球干旱、半干旱地區(qū)退化草原防風(fēng)治沙普遍建植的植被恢復(fù)類型[1-2].錦雞兒屬(Caragana)植物的多個檸條栽培種,因其較強(qiáng)的耐沙埋、耐旱等生物學(xué)特性,在我國荒漠草原極度沙化土地恢復(fù)中取得了顯著成效[3].土壤生境的恢復(fù)是生態(tài)系統(tǒng)全面恢復(fù)的根本,因此,需要深入揭示檸條灌叢恢復(fù)對土壤物理、土壤動物和微生物等的影響規(guī)律和土壤間的相互關(guān)系及作用.已有學(xué)者對植被在沙漠化及其逆轉(zhuǎn)過程中的土壤效應(yīng)開展了研究,發(fā)現(xiàn)了植被演替與土壤性質(zhì)協(xié)同進(jìn)化的長期規(guī)律[4]和微觀機(jī)制[5],以及草地植被恢復(fù)對沙質(zhì)土壤理化特性的演變規(guī)律及機(jī)制[6-7].對荒漠草原區(qū)人工檸條林建植引起的土壤有機(jī)質(zhì)、氮、磷等養(yǎng)分的積累效應(yīng)進(jìn)行了研究,發(fā)現(xiàn)了檸條林齡與土壤養(yǎng)分之間的關(guān)系以及檸條林引起的養(yǎng)分元素的不平衡性[8-9].但是土壤質(zhì)地在土壤恢復(fù)中具有決定性作用[10],需要對檸條林與土壤質(zhì)地演進(jìn)過程和機(jī)制開展深入研究.本文從時(shí)空2個方面研究了檸條灌叢對土壤的恢復(fù)效果,旨在回答人工檸條林在冠幅尺度上恢復(fù)土壤質(zhì)地從而形成“沃島"的過程和強(qiáng)度,及其對植被分布格局和土壤空間異質(zhì)性的影響.
1.1 研究區(qū)域概況
研究區(qū)位于寧夏鹽池縣城東北8km的皖記溝村,地貌為鄂爾多斯緩坡起伏臺地,中生代砂巖上覆蓋10多米到數(shù)十米的較粗風(fēng)積和殘積母質(zhì).氣候干旱少雨、蒸發(fā)量大、冬春2季風(fēng)大沙多,1954—2013年年平均氣溫8.2℃,年平均降水量290.1mm,無霜期160d.地帶性植被屬荒漠草原,旱生、沙生特征明顯.天然植被的主要植物種有本氏針茅(Stipa bungeana)、牛枝子(Lespedezapotaninii)、蒙古冰草(Agropyronmongolicum)、賴草(Leymussecalinus)、糙隱子草(Cleistogenessquarrosa)、甘草(Glycyrrhiza uralensis)、苦豆子(Sophoraalopecuroides)、白草(Pennisetumcentrasiaticum)、中華小苦荬(Ixeridium chinense)、刺葉柄棘豆(Oxytropisaciphylla)、老瓜頭(Cynanchumkomarovii)、乳漿大戟(Euphorbiaesula)等.人工植被的主要植物種有中間錦雞兒(Caragana intermedia)、檸條錦雞兒(Caraganakorshinskii)、沙柳(Salixcheilophila)、花棒(Hedysarumscoparium)、紫花苜蓿(Medicagosativa)等.土壤以有機(jī)質(zhì)含量低、易沙化的淡灰鈣土和風(fēng)沙土為主.由于沙漠化面積不斷擴(kuò)大,20世紀(jì)70年代開始種植檸條,目前檸條林面積已占研究區(qū)總土地面積的26.81%,不但對遏制沙漠化發(fā)揮了關(guān)鍵作用,也成為羊只冬春季的主要飼料來源.
1.2 研究方法
2013年10 月初,在皖記溝村緩坡地形和風(fēng)沙土的1km×1.5km范圍內(nèi),選擇種植10a(2003年種植)、17a(1996年種植)、27a(1986年種植)的帶狀中間錦雞兒(Caragana intermedia)人工林,對其 進(jìn)行調(diào)查,植被特征見表1.
表1 人工檸條林樣地的植被特征Table 1 Vegetation characteristics of artificial C.intermedia stand sampling plots
在3種林齡的人工檸條林中各選擇30m×30 m的樣地3個,在其中隨機(jī)選擇3叢檸條,分別在灌叢根系中心、灌叢邊緣和檸條行中間,按5點(diǎn)取樣法用土鉆取0~10、10~20、20~40cm土壤混合樣.過0.25mm篩的風(fēng)干土樣品用重鉻酸鉀氧化-外加熱法[11]測定土壤有機(jī)碳(soil organic carbon,SOC)含量;利用凱氏定氮儀測定土壤全氮(soil total nitrogen,STN)含量[11];利用超聲30s和激光粒度儀Mastersizer 2000測量土壤粒徑的體積百分比.粒徑分級定為粗砂粒1~2mm、中砂粒0.5~1mm和0.25~0.5mm、細(xì)砂粒0.1~0.25mm和0.1~0.05mm、黏粉粒<0.05mm.
土壤粒徑分形維數(shù)以激光粒度分析儀所獲得的粒徑體積數(shù)據(jù)為基礎(chǔ),采用體積分形維數(shù)計(jì)算:式中:V為粒徑小于R的全部土壤顆粒的體積;r為土壤粒徑;R為各粒徑的分級區(qū)間值;VT為土壤顆粒總體積;λV在數(shù)值上等于最大粒徑數(shù)RL,而RL為其中最大粒徑分級區(qū)間值;D為土壤顆粒的體積分形維數(shù).
具體步驟如下:1)求得每一分級區(qū)間代表性粒徑的算術(shù)平均值;2)根據(jù)分級區(qū)間,算出小于等于各區(qū)間代表粒徑的累積體積,然后對V(r<R)/VT和R/λV分別求對數(shù);3)以lg(V/VT)和lg(R/λV)為縱、橫坐標(biāo)擬合直線斜率,該直線斜率即等于公式(1)中的3-D,從而求出分形維數(shù)D值.
采用SAS 8.0軟件進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析,采用單因素方差分析(one way ANOVA)和最小顯著差異法(least-significant difference,LSD)分析各樣地土壤分形維數(shù)、各粒徑含量、黏粉粒富集率和碳、氮含量的差異顯著性(α=0.01).
2.1 土壤顆粒組成隨檸條林齡變化特征
由表2可以看出,研究區(qū)土壤顆粒組成以細(xì)砂粒(0.05~0.25mm)為主,含量在42.62%~95.74%之間,平均為69.60%.灌叢內(nèi)部、邊緣、外部均隨人工檸條林建植年限的增大,黏粉粒(<0.05mm)和細(xì)砂粒(0.05~0.25mm)含量逐漸增大,增幅分別為(3.29±
3.11)%和(28.48±8.16)%;中砂粒(0.25~1mm)和粗砂粒(1~2mm)含量逐漸減少,減幅分別為(28.34±4.53)%和(3.43±4.47)%.具體表現(xiàn)為表層(0~10cm)土壤黏粉粒含量隨人工檸條林建植年限的增加而極顯著增加(P<0.01);10~20cm土層,在灌叢內(nèi)部,土壤黏粉粒隨建植年限的增加表現(xiàn)為極顯著增加(P<0.01),其他部位均表現(xiàn)為由10a檸條林到17a檸條林增加再到27a檸條林減少的態(tài)勢;20~40cm土層,在灌叢邊緣,土壤黏粉粒隨建植年限的增加表現(xiàn)為極顯著增加(P<0.01),其他部位均表現(xiàn)為由10a檸條林到17a檸條林增加再到27a檸條林減少的態(tài)勢.說明在風(fēng)沙土區(qū),隨著人工檸條林建植年限的增加,土壤黏粉粒含量在土層垂直方向上表現(xiàn)為“自上而下"的改善過程,在以灌叢為中心的水平方向上表現(xiàn)為“由內(nèi)到外"的漸次改善過程.土壤細(xì)砂粒含量在不同林齡各土層間均表現(xiàn)為統(tǒng)計(jì)學(xué)上的極顯著差異(P<0.01),且在灌叢內(nèi)部和邊緣隨檸條林齡增加而極顯著增加.而在灌叢外部,細(xì)砂粒含量由10a檸條林到17a檸條林呈不顯著減少的態(tài)勢,以及由17a檸條林到27a檸條林的顯著增加態(tài)勢.同時(shí),在灌叢不同部位各土層土壤中砂粒(0.25~1mm)含量均隨檸條林齡增加而極顯著減少(P<0.01),說明在檸條林營建之前,土壤沙化嚴(yán)重,隨著人工檸條林建植時(shí)間的增加,固沙效應(yīng)逐漸增加,促進(jìn)了土壤演 變過程.
表2 灌叢斑塊不同部位的土壤粒徑分布Table 2 Soil particle size distribution for shrubs of different sampling locations
2.2 人工檸條林建植對土壤顆粒富集程度的影響
由表3可以看出,人工檸條林對土壤的改善效應(yīng)在灌叢內(nèi)部顯著高于灌叢外部.隨著檸條林齡增加,灌叢內(nèi)部各土層黏粉粒組分相對于邊緣及外部的富集在統(tǒng)計(jì)學(xué)上表現(xiàn)出極顯著差異(P<0.01).隨著檸條灌叢斑塊的發(fā)育,灌叢內(nèi)部相對于邊緣的富集程度在0~40cm土層表現(xiàn)為自上而下的漸進(jìn)變化過程,即建植10a檸條林灌叢在10~40cm土層的黏粉粒富集程度高于0~10cm,且隨土層加深增長趨勢越明顯;建植17a檸條林灌叢在0~10cm土層的黏粉粒富集程度高于10~20cm土層;建植27a檸條林灌叢在0~20cm土層的黏粉粒富集程度高于20~40cm土層.灌叢內(nèi)部相對于外部黏粉粒富集程度在0~10cm土層表現(xiàn)為由10a檸條林到17a檸條林增加再到27a檸條林減少的態(tài)勢,這表明黏粉粒富集區(qū)域與檸條建植年限有關(guān),導(dǎo)致了土壤空間異質(zhì)性不斷增強(qiáng).由于7~14a的檸條中齡林階段是冠幅增長速度最快的階段,也是根系生長最活躍的階段[12],檸條林凋落物與根系的共同作用,對土壤黏粉粒的富集作用活躍.
表3 灌叢斑塊內(nèi)部相對于邊緣和外部黏粉粒的富集程度Table 3 Increments in silt and clay of in-shrub relative to edge-and out-shrubs
2.3 檸條林生長過程中土壤顆粒分形維數(shù)的時(shí)空變異特征
表4是按照公式(1)計(jì)算的不同林齡檸條林的不同部位及各土層土壤的分形維數(shù).研究區(qū)土壤顆粒分形維數(shù)在1.08~2.28之間,說明土壤沙化嚴(yán)重.隨檸條林齡增加土壤分形維數(shù)呈現(xiàn)由10a到17a增加再到27a減少的態(tài)勢,這與黏粉粒含量隨灌叢發(fā)育過程變化趨勢一致.黏粉粒含量越高,砂粒含量越低,土壤顆粒體積分形維數(shù)越大,土壤結(jié)構(gòu)越穩(wěn)定.土壤顆粒分形維數(shù)在檸條林不同部位的差異隨林齡而有不同表現(xiàn).3個林齡檸條灌叢內(nèi)部的土壤分形維數(shù)比外部平均增加0.189±0.401.就10a檸條林而言,其分形維數(shù)呈現(xiàn)為明顯的灌叢內(nèi)部>邊緣>外部的規(guī)律,而17a和27a檸條林的灌叢內(nèi)部、邊緣、外部土壤分形維數(shù)沒有明顯差異.說明檸條林發(fā)育到老齡林階段(>14a)使土壤質(zhì)地空間異質(zhì)性減少.黏粉粒含量及分形維數(shù)隨土層變化趨勢相同,即隨土層加深,分形維數(shù)逐漸減?。铸g越大,各層土壤的分形維數(shù)差異越大.說明檸條林土壤分形維數(shù)在垂直方向上的差異大于水平方向.
表4 灌叢斑塊內(nèi)部、邊緣與外部的土壤顆粒分形維數(shù)Table 4 Soil particle fractal dimension of in-,edge-and out-shrubs
2.4 灌叢斑塊內(nèi)部、邊緣與外部SOC的空間分布
由表5可以看出,各林齡檸條林表層SOC空間分布的共同特征是從灌叢內(nèi)部到邊緣再到外部的水平方向均呈現(xiàn)顯著下降趨勢(P<0.05),其他土層變化不明顯.從0~10cm土層到10~20cm再到20~40cm的垂直方向,10a檸條林的SOC含量在灌叢斑塊內(nèi)部、邊緣與外部3個位置均呈極顯著下降趨勢(P<0.01),其他年限也表現(xiàn)為表層SOC在各個部位均大于次表層和底層.3個林齡檸條灌叢內(nèi)部SOC比外部增加(0.087±0.100)%.這表明檸條灌叢斑塊在發(fā)育過程中均顯著增強(qiáng)了退化草原中SOC的空間異質(zhì)性,顯示了檸條的“肥島效應(yīng)",即隨著檸條林齡增加,其改善灌叢周圍土壤的作用越來越大.
表5 灌叢斑塊內(nèi)部、邊緣與外部的SOC質(zhì)量分?jǐn)?shù)Table 5 Soil organic carbon(SOC)contents of in-,edge-and out-shrubs w/%
2.5 灌叢斑塊內(nèi)部、邊緣與外部STN的空間分布
由表6可以看出:10a人工檸條林灌叢各部位在0~10cm土層的STN含量表現(xiàn)為內(nèi)部小于邊緣和外部,越向下層差異越不顯著;而17a和27a檸條林灌叢在0~40cm土層的STN表現(xiàn)為內(nèi)部明顯大于邊緣和外部,且達(dá)到統(tǒng)計(jì)學(xué)上的顯著差異.3個林齡檸條灌叢內(nèi)部STN比外部增加(0.008± 0.010)%.在垂直方向上,從0~10、10~20cm到20~40cm土層,STN含量均呈現(xiàn)極顯著下降趨勢(P<0.01).這與檸條的固氮作用和發(fā)育時(shí)間有關(guān),而且檸條的存在顯著增強(qiáng)了沙化草地中STN的空間異質(zhì)性.STN在灌叢內(nèi)外和土層深度之間的這種極顯著差異,說明其是檸條灌叢發(fā)育的一個敏感性指標(biāo).
表6 灌叢斑塊內(nèi)部、邊緣與外部的STN質(zhì)量分?jǐn)?shù)Table 6 Soil total nitrogen(STN)contents of in-,edge-and out-shrubs w/%
2.6 灌叢各部位土壤顆粒組成與相關(guān)因子間的分析
土壤顆粒組成同土壤養(yǎng)分間的相關(guān)性分析結(jié)果(表7)顯示:黏粉粒含量越大,土壤顆粒分形維數(shù)D值越大,SOC及STN含量越高,<0.05mm粒級顆粒組分含量均與D值、SOC和STN呈極顯著正相關(guān)(P<0.01);<0.1mm粒級顆粒組分含量均與SOC和STN呈極顯著正相關(guān)(P<0.01),說明<0.1mm粒級能顯著改善土壤結(jié)構(gòu)和提高土壤養(yǎng)分.相反,0.1~0.25mm粒級組分含量與D值呈極顯著負(fù)相關(guān)(P<0.01),說明土壤顆粒越粗,D值越小,土壤結(jié)構(gòu)越差;0.25~0.5mm粒級組分含量與SOC及STN含量呈顯著負(fù)相關(guān)(P<0.05),這一顆粒組分隨著檸條林齡增加逐漸減小,土壤養(yǎng)分逐漸提高.另外,SOC與STN含量間呈極顯著正相關(guān)(P<0.01).相關(guān)分析結(jié)果表明,<0.1mm粒級顆粒組分含量、土壤顆粒分形維數(shù)D值、SOC及STN間均呈極顯著正相關(guān)(P<0.01),這些指標(biāo)可以作為表征土壤質(zhì)地結(jié)構(gòu)、土壤沙化程度、土壤肥力及檸條固沙效應(yīng)的指示器.
表7 土壤顆粒組成與各因子間的相關(guān)性分析Table 7 Correlation analysis between soil particle size distribution and different factors
在荒漠草原風(fēng)沙土區(qū),建植人工檸條林對沙化土地生態(tài)系統(tǒng)的改善與固沙效應(yīng)尚存在爭議,體現(xiàn)在建植年限與固沙效應(yīng)的可持續(xù)性方面[13].在人為過度利用的退化草原中,灌叢在發(fā)育過程中形成不同大小的灌叢斑塊[14-16],它們通過對土壤碳、氮資源的吸收和沉積[17-22],將其集中于冠幅內(nèi)土壤中,從而引起土壤碳、氮資源的空間異質(zhì)性[23].本研究發(fā)現(xiàn),在荒漠草原人工檸條林建植后,土壤質(zhì)地在灌叢個體尺度上改善明顯,表現(xiàn)為在土層垂直方向及灌叢部位水平方向上檸條灌叢斑塊小尺度上的土壤顆粒組成的顯著差異.這與熊小剛等[13]和賈曉紅等[23]的研究結(jié)論一致.但是沙化之后的土壤恢復(fù)速度較慢,反映在土壤顆粒組成的分形維數(shù)整體偏低(1.08~2.28).土壤的低分形維數(shù)反映出地上植被生物量往往也較低[7].土壤分形維數(shù)由10a檸條林到17a檸條林增加再到27a檸條林減少的態(tài)勢正好與檸條林及其間的草本植物生物量一致[24].植物的根系和凋落物對土壤質(zhì)地都有著非常重要的影響.已有研究表明,在距根系中心150cm范圍內(nèi),10a檸條根系集中在40~150cm之間,17a檸條根系集中在40~140cm之間,27a檸條的細(xì)根集中分布在30~70cm深處[25].在0~40cm土壤中主要為草本植物根系.調(diào)查發(fā)現(xiàn),17a檸條的聚生叢發(fā)育最好,10a和17a檸條林行間草本生物量較高,而27a檸條林的聚生叢和行間草本植物均出現(xiàn)衰退.這可能是土壤質(zhì)地演進(jìn)在17a到27a之間不顯著的原因.與土壤質(zhì)地不同的是,碳氮含量從17a到27a繼續(xù)增加.很多研究表明,土壤黏粒含量與土壤碳氮含量之間呈顯著正相關(guān)[13,23].本研究也驗(yàn)證了這一結(jié)論.檸條灌叢的SOC和STN含量也存在空間異質(zhì)性,并且這種異質(zhì)性隨著灌叢斑塊自身擴(kuò)展和建植年限增大而趨于增強(qiáng),“肥島效應(yīng)"明顯.隨著人工檸條林建植年限的增加,土壤碳氮資源富集程度均呈現(xiàn)顯著的增強(qiáng)趨勢(P<0.01).說明檸條發(fā)育時(shí)間與其冠層下土壤質(zhì)地、碳氮資源空間異質(zhì)性增強(qiáng)之間存在著正反饋?zhàn)饔茫?7],表現(xiàn)出明顯的累積性.特別是表層土壤空間異質(zhì)性的增強(qiáng)與草本植物的根系分解和灌叢自身凋落物的生產(chǎn)以及對凋落物的截留有關(guān)[26].由上述研究可得出以下結(jié)論:
1)土壤顆粒組成、黏粉粒富集程度和土壤分形維數(shù)等指標(biāo)的時(shí)空變化均表明,土壤質(zhì)地隨著人工檸條林建植年限的增加表現(xiàn)為土層在垂直方向上的“自上而下"和水平方向上的“由內(nèi)而外"及時(shí)間上的漸進(jìn)改善過程.檸條灌叢內(nèi)部的土壤分形維數(shù)比外部平均增加0.189±0.401.但當(dāng)進(jìn)入老齡林階段后土壤質(zhì)地改善緩慢.
2)檸條灌叢發(fā)育顯著增強(qiáng)了退化草原中SOC和STN的空間異質(zhì)性,灌叢內(nèi)部SOC和STN含量比外部分別增加(0.087±0.100)%和(0.008± 0.010)%,充分顯示了檸條的“肥島效應(yīng)";SOC和STN含量與土壤黏粉粒含量呈極顯著正相關(guān)(P<0.01);與黏粉粒含量不同,SOC和STN含量在27a檸條林繼續(xù)增加,顯示了養(yǎng)分元素在檸條和草本植物根系與凋落物作用下的累積作用.
3)人工檸條林建植對荒漠草原區(qū)土壤質(zhì)地和碳氮資源協(xié)同演進(jìn)具有非常明顯的作用.<0.1mm粒級土壤顆粒組分含量、分形維數(shù)D值、SOC和STN間均呈極顯著正相關(guān)(P<0.01),這些指標(biāo)可以作為表征土壤質(zhì)地、土壤肥力及檸條固沙效應(yīng)的指示器.
(References):
[1] Grover H D,Musick H B.Shrubland encroachment in southern New Mexico,U.S.A.:An analysis of desertification processes in the American southwest.Climatic Change,1990,17:305-330.
[2] Archer S.Herbivore mediation of grass-woody plant interaction.Tropical Grasslands,1995,29:218-235.
[3] 李新榮.干旱沙漠區(qū)生態(tài)工程與生態(tài)恢復(fù)研究//陳宜瑜.生態(tài)系統(tǒng)定位研究.北京:科學(xué)出版社,2009:219-224.Li X R.Study on ecological engineering and ecological restoration in the arid desert//Chen Y Y.Ecosystem Positioning Research.Beijing:Science Press,2009:219- 224.(in Chinese)
[4] 李新榮.干旱沙區(qū)土壤空間異質(zhì)性變化對植被恢復(fù)的影響.中國科學(xué)D輯:地球科學(xué),2005,35(4):361-370.Li X R.Impacts of soil spatial heterogeneity on vegetation restoration in arid desert.Science in China Series D:Earth Sciences,2005,35(4):361-370.(in Chinese)
[5] Schlesinger W H,Reynolds J F,Cunningham G L,et al.Biological feedbacks in global desertification.Science,1990,247:1043-1048.
[6] 趙哈林,周瑞蓮,趙學(xué)勇,等.呼倫貝爾沙質(zhì)草地土壤理化特性的沙漠化演變規(guī)律及機(jī)制.草業(yè)學(xué)報(bào),2012,21(2):1-7.Zhao H L,Zhou R L,Zhao X Y,et al.Desertification mechanisms and process of soil chemical and physical properties in Hulunbeir sandy grassland,Inner Mongolia.Acta Prataculturae Sinica,2012,21(2):1-7.(in Chinese with English abstract)
[7] 田佳倩,周志勇,包彬,等.農(nóng)牧交錯區(qū)草地利用方式導(dǎo)致的土壤顆粒組分變化及其對土壤碳氮含量的影響.植物生態(tài)學(xué)報(bào),2008,32(3):601-610.Tian J Q,Zhou Z Y,Bao B,et al.Variations of soil particle size distribution with land-use types and influences on soil organic carbon and nitrogen.Journal of Plant Ecology,2008,32(3):601-610.(in Chinese with English abstract)
[8] 宋乃平,楊新國,何秀珍,等.荒漠草原人工檸條林重建的土壤養(yǎng)分效應(yīng).水土保持通報(bào),2012,32(4):21-26.Song N P,Yang X G,He X Z,et al.Soil nutrient effect of desert steppe reconstructed artificial Caragana microphylla stand.Bulletin of Soil and Water Conservation,2012,32(4):21-26.(in Chinese with English abstract)
[9] 劉任濤,楊新國,宋乃平,等.荒漠草原區(qū)固沙人工檸條林生長過程中土壤性質(zhì)演變規(guī)律.水土保持學(xué)報(bào),2012,26(4):108-112.Liu R T,Yang X G,Song N P,et al.Soil properties following growing process of artificial forests(Caragana microphylla)in desert steppe.Journal of Soil and Water Conservation,2012,26(4):108-112.(in Chinese with English abstract)
[10] 李新榮,趙洋,回嶸,等.中國干旱區(qū)恢復(fù)生態(tài)學(xué)研究進(jìn)展及趨勢評述.地理科學(xué)進(jìn)展,2014,33(11):1435-1443.Li X R,Zhao Y,Hui R,et al.Progress and trend of development of restoration ecology research in the arid regions of China.Progress in Geography,2014,33(11):1435-1443.(in Chinese with English abstract)
[11] 鮑士旦.土壤農(nóng)化分析.3版.北京:中國農(nóng)業(yè)出版社,2000:68-70.Bao S D.Soil Agro-Chemistrical Analysis.3rd ed.Beijing:China Agricultural Press,2000:68-70.(in Chinese)
[12] 史建偉,王孟本,陳建文,等.檸條細(xì)根的空間分布特征及其季節(jié)動態(tài).生態(tài)學(xué)報(bào),2011,31(3):726-733.Shi J W,Wang M B,Chen J W,et al.The spatial distribution and seasonal dynamics of fine roots in a mature Caragana korshinskii plantation.Acta Ecologica Sinica,2011,31(3):726-733.(in Chinese with English abstract)
[13] 熊小剛,韓興國,陳全勝.干旱和半干旱生態(tài)系統(tǒng)中的沃島效應(yīng)//李承森.植物科學(xué)進(jìn)展:第5卷.北京:高等教育出版社,2003:179-183.Xiong X G,Han X G,Chen Q S.Fertile island effects in arid and semi-arid ecosystems//Li C S.Advances in Plant Sciences:Vol.5.Beijing:Higher Education Press,2003:179-183.(in Chinese)
[14] 熊小剛,韓興國,潘慶民.錫林河流域草原中小葉錦雞兒分布增加的趨勢、原因和結(jié)局.草業(yè)學(xué)報(bào),2003,12(3):57-62.Xiong X G,Han X G,Pan Q M.Increased distribution of Caragana microphylla in rangelands in Xi-Lin River Basin and its causes and consequences.Acta Prataculturae Sinica,2003,12(3):57-62.(in Chinese with English abstract)
[15] 張宏,史培軍,鄭秋紅.半干旱地區(qū)草地灌叢化與土壤異質(zhì)性關(guān)系研究進(jìn)展.植物生態(tài)學(xué)報(bào),2001,25(3):366-370.Zhang H,Shi P J,Zheng Q H.Research progress in relationship between shrub invasion and soil heterogeneity in a natural semi-arid grassland.Acta Phytoecologica Sinica,2001,25(3):366-370.(in Chinese with English abstract)
[16] Schlesinger W H,Raikes J A,Hartley A E,et al.On the spatial pattern of soil nutrients in desert ecosystems.Ecology,1996,77:364-374.
[17] Kieft T L,White C S,Loftin S R,et al.Temporal dynamics in soil carbon and nitrogen resources at a grassland-shrub land ecotone.Ecology,1998,79(2):671-683.
[18] Hibbard K A,Archer S,Schimel D S,et al.Biogeochemical changes accompanying woody plant encroachment in a subtropical savanna.Ecology,2001,82:1999-2011.
[19] Li X R,Zhou H Y,Wang X P,et al.The effects of sand stabilization and revegetation on cryptogam species diversity and soil fertility in the Tengger Desert,Northern China.Plant and Soil,2003,251:237-245.
[20] Li X R,Xiao H L,Zhang J G,et al.Ecosystem effects of sand-binding vegetation and restoration of biodiversity in arid region of China.Restoration Ecology,2004,12:376-390.
[21] Wezel A,Rajot J L,Herbrig C,et al.Influence of shrubs on soil characteristics and their function in Sahelian agroecosystems in semi-arid Niger.Journal of Arid Environments,2000,44:383-398.
[22] Fearnehough W,F(xiàn)ullen M A,Mitchell D J,et al.Aeolian deposition and its effect on soil and vegetation changes on stabilized desert dunes in northern China.Geomorphology,1998,23:171-182.
[23] 賈曉紅,李新榮,陳應(yīng)武.騰格里沙漠東南緣白刺灌叢地土壤性狀的特征.干旱區(qū)地理,2007,30(4):557-564.Jia X H,Li X R,Chen Y W.Soil properties of Nitrarialand in southeastern Tengger Desert.Arid Land Geography,2007,30(4):557-564.(in Chinese with English abstract)
[24] 楊明秀.荒漠草原人工檸條林地灌草量質(zhì)動態(tài)及其約束因子研究.銀川:寧夏大學(xué),2104:32-37.Yang M X.Study on quantity-quality dynamic and restriction factors of shrub and grass in artificial Caraganaland in desert steppe.Yinchuan:Ningxia University,2014:32-37.(in Chinese with English abstract)
[25] 宋乃平,楊明秀,王磊,等.荒漠草原區(qū)人工檸條林土壤水分周年動態(tài)變化.生態(tài)學(xué)雜志,2014,33(10):2618-2624.Song N P,Yang M X,Wang L,et al.Monthly variation in soil moisture under Caragana intermedia stands grown in desert steppe.Chinese Journal of Ecology,2014,33(10):2618-2624.(in Chinese with English abstract)
[26] Whitford W G.Desertification:Implications and limitations of the ecosystem health metaphor//Rapport D J,Gaudet C L,Calow P.Evaluating and Monitoring the Health of Large-Scale Ecosystems.Berlin,Germany:Springer-Verlag,1995:273-293.
Impacts of artificial Caragana intermediastand on soil texture evolution in desert steppe.
Song Naiping*,Wu Xudong,Pan Jun,Qu Wenjie,Zhou Juan,An Chaoping
(Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China/Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in North-western China of Ministry of Education,Ningxia University,Yinchuan 750021,China)
artificialCaraganaintermediastand;soil texture;soil particle;fractal dimension;desert steppe;Yanchi County in Ningxia Hui Autonomous Region
S 152
A
10.3785/j.issn.1008-9209.2015.05.291
國家自然科學(xué)基金(41461046);國家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃前期專項(xiàng)(2012CB723206);寧夏大學(xué)211項(xiàng)目.
宋乃平(http://orcid.org/0000-0003-0444-498X),Tel:+86-951-2062838,E-mail:songnp@163.com
2015-05-29;接受日期(Accepted):2015-09-06;< class="emphasis_bold">網(wǎng)絡(luò)出版日期
日期(Published online):2015-11-18
URL:http://www.cnki.net/kcms/detail/33.1247.s.20151118.1809.014.html