聶西度,符 靚*(.湖南工學院材料與化學工程學院,湖南 衡陽 42002;2.長江師范學院化學化工學院,重慶 40800)
鹽酸浸提-電感耦合等離子體發(fā)射光譜法測定秋葵中Na、Mg、P、K、Ca含量
聶西度1,符 靚2,*
(1.湖南工學院材料與化學工程學院,湖南 衡陽421002;2.長江師范學院化學化工學院,重慶408100)
建立電感耦合等離子體發(fā)射光譜法測定食用秋葵中Na、Mg、P、K、Ca元素的分析方法。食用秋葵樣品經(jīng)鹽酸浸提后,采用電感耦合等離子體 發(fā)射光譜法直接測定其中的Na、Mg、P、K、Ca 5種常量元素,分析鹽酸體積分數(shù)、浸提時間、浸提方式對樣品中常量元素浸提率的影響,選用國家標準物質(zhì)茶葉(GBW 08513)驗證了方法的準確度和精密度。在選定的工作條件下,各元素標準曲線線性相關系數(shù)不小于0.999 3,線性關系良好,方法的檢出限在3.88~12.26 μg/L之間,相對標準偏差在1.55%~3.91%之間。實際樣品的分析結果表明,食用秋葵中含有豐富的常量元素,其中K含量最高,其次是P和Ca。該方法操作簡單、結果準確,能滿足食用秋葵中5種常量元素的分析要求。
食用秋葵;鹽酸浸提;電感耦合等離子體發(fā)射光譜;常量元素
秋葵(Abelmoschus esculentus L. Moench)屬錦葵科秋葵屬一年生草本植物[1],其可食用部分是果莢。食用秋葵肉質(zhì)柔嫩,風味獨特,富含蛋白質(zhì)、不飽和脂肪酸、維生素、多糖、黃酮類化合物等營養(yǎng)成分[2]。食用秋葵還具有抗疲勞、健胃保肝、能減少肺損傷、提高機體免疫力、抗癌作用、 利尿、增強血管擴張力、保護心臟等保健功能[3],因此,食用秋葵既是營養(yǎng)豐富的鮮美蔬菜,又具有藥用保健效果[4]。
雖然食用秋葵的總體質(zhì)量通常是依據(jù)其有機成分來確定,但其無機成分對于人體微量元素的補充和食用秋葵的安全性均起重要的作用,顯然,準確分析食用秋葵中無機元素的組成及含量非常重要。目前,有關食用蔬菜中無機元素的分析已有大量文獻報道,其主要分析方法為原子吸收光譜法[5-7]、電感耦合等離子體發(fā)射光譜法[8-10]和電感耦合等離子體質(zhì)譜法[11-13]法。樣品的前處理方法主要有干法灰化[14]、常規(guī)濕法消解[15]、微波消解[16]和溶劑萃?。?7]法,其中,溶劑萃取法無需專用設備,具有簡單、實用、環(huán)保等常用于有機分離[18-20],在無機元素分析中應用較少。本實驗采用鹽酸浸提食用秋葵,應用電感耦合等離子體發(fā)射光譜法測定了其中的Na、Mg、P、K、Ca 5 種常量元素,旨在為食用蔬菜中常量元素的快速分析提供一種簡便實用的新方法。
1.1材料與試劑
秋葵 市售。
Na、Mg、P、K、Ca標準溶液(1 000 mg/L)國家標準物質(zhì)中心;鹽酸(MOS級)北京化學試劑研究所;超純水由Milli-Q超純水機制備。
1.2儀器與設備
Optima 2100 DV電感耦合等離子體發(fā)射光譜儀美國PerkinElmer公司;Milli-Q超純水機美國Millipore公司;B3200S-T型超聲波清洗機上海Branson公司。儀器電感耦合等離子體發(fā)射光譜優(yōu)化后的工作參數(shù)見表1。
表1 儀器的工作參數(shù)Table 1 Operational parameters of instruments
1.3方法
將秋葵果莢用超純水洗凈,瀝干水分于90 ℃烘箱中烘8 h,取出冷卻后粉碎過200 目尼龍篩,稱取約1.0 g粉末樣品于50 mL高密度聚乙烯塑料瓶中,加入10%鹽酸10 mL,超聲萃取60 min,靜置12 h后經(jīng)0.45 μm水系濾膜過濾,用1%的鹽酸洗滌殘渣,合并濾液于100 mL容量瓶中用超純水定容待測,同時做試劑空白實驗。
2.1鹽酸浸提條件的選擇
2.1.1鹽酸體積分數(shù)的影響
圖 1 鹽酸體積分數(shù)對元素浸提率的影響Fig.1 Effect of HCl concentration on the extraction rate of analytes
分別采用1%、5%、10%、15%(以原鹽酸為100%按體積分數(shù)稀釋)的鹽酸浸提樣品,考察鹽酸體積分數(shù)對樣品中各待測元素浸提率的影響。圖1顯示,隨著鹽酸體積分數(shù)的增大,元素的浸提率也逐漸增大,當鹽酸體積分數(shù)為10%時,所有元素的浸提率均接近100%, 隨后不再發(fā)生變化。實驗最終確定鹽酸體積分數(shù)為10%。
圖 2 浸提方式對元素浸提率的影響Fig.2 Effect of extraction method on the extraction rate of analytes
2.1.2浸提方式的影響分別采用靜置、振蕩、超聲3 種方法浸提樣品
60 min,將提取后的殘渣用硝酸+雙氧水進行微波消解后測定其中殘留待測元素的量,考察不同浸提方式對待測元素浸提率的影響。圖2顯示,除P以外,采用靜置和振蕩方式待測元素的浸提率均低于超聲浸提,實驗最終采用超聲浸提方式。
2.1.3浸提時間的影響
圖 3 浸提時間對元素浸提率的影響Fig.3 Effect of extraction time on the extraction rate of analytes
采用超聲浸提方法分別浸提樣品30、60、90 min,將提取后的殘渣用硝酸+雙氧水進行微波消解后測定其中殘留待測元素的量,考察不同浸提時間對各待測元素浸提率的影響。從圖3可以看出,各元素在60 min時已基本浸提完全。實驗最終選擇超聲浸提時間為60 min。
2.2干擾及校正
本實驗采用鹽酸浸提食用秋葵中的常量元素,提取液中基體組成單一,共存元素之間的光譜干擾較小,通過選擇元素最優(yōu)分析線(表1)有效地避免了譜線重疊,消除了光譜干擾。基體干擾則在配制標準溶液時采用與樣品溶液相同濃度的鹽酸進行基體匹配消除,并應用在峰和離峰背景扣除法消除了背景干擾[21-23]。
2.3工作曲線和檢出限
分別配制0.00、20.00、50.00、100.00、200.00 mg/L的待測元素標準系列工作溶液,采用本法進行測定,得各待測元素譜線強度(Y)與溶液質(zhì)量濃度(X)的線性回歸方程。取樣品空白溶液進行11 次測定,以3 倍標準偏差計算各元素的檢出限,結果見表2,各元素工作曲線方程的線性相關系數(shù)不小于0.999 3,線性關系良好,各元素的檢出限在3.88~12.26 μg/L之間。
表2 標準工作曲線及檢出限Table 2 Standard curves and detection limits for the analyes
2.4標準物質(zhì)的分析
按上述浸提和光譜工作條件,采用本法重復測定國家標準物質(zhì)茶葉(GBW 08513)6 次,計算相對標準偏差(relative standard deviation,RSD),并與標準物質(zhì)的參考值進行比較,結果見表3。5 種常量元素的測定值與標準物質(zhì)的參考值基本一致,RSD為1.55%~3.91%,方法準確可靠,精密度良好。
表3 國家標準物質(zhì)茶葉的分析結果Table 3 Analytical results of reference standard material tea (GBW 08513)
2.5樣品分析
采用本法對市售兩種秋葵樣品進行測定,同時按照GB/T 5009.91—2003《食品中鉀、鈉的測定》[24]和GB/T 23375—2009《蔬菜及其制品中銅、鐵、鋅、鈣、鎂、磷的測定》[25]進行對比分析,表4表明,本方法與國家標準分析結果基本一致,食用秋葵中K含量最高,其次為P和Ca。
表 4 樣品分析結果Table 4 Analytical results of real samplesμg/g
本實驗建立了電感耦合等離子體發(fā)射光譜法測定秋葵中Na、Mg、P、K、Ca 5 種常量元素的分析方法。通過優(yōu)化浸提條件采用鹽酸浸提獲得了最佳浸提效果,樣品分析結果與國標法相比無明顯差異,但操作簡單、樣品空白和檢出限低。本方法無需對樣品進行消解即可實現(xiàn)食用秋葵中5 種常量元素的分析,具有很強的實用性。
3
[1]任丹丹, 陳谷. 黃秋葵多糖組分對人體腫瘤細胞增殖的抑制作用[J].食品科學, 2010, 31(21): 353-356.
[2]SAVELLO P A, MARTIN F W, HILL J M. Nutrition composition of okra seed meal s[J]. Journal of Agricultural and Food Chemistry, 1980,28(6): 1163-1166.
[3]ROMANCHIK-CERPOVICZ J E, TILMON R W, BALDREE K A. Moistu re retention and consumer acceptability of chocolate bar cookies prepared with okra gum as a fat ingredient substitute[J]. Journal of the American Dietetic Association, 2002, 102(9): 1301-1303.
[4]黃阿根, 陳學好, 高云中, 等. 黃秋葵的成分測定與分析[J]. 食品科學, 2007, 28(10): 451-455.
[5]SHRIVAS K, PATEL D K. Ultrasound assisted-hollow fi bre liquidphase microextraction for the determination of selenium in vegetable and fruit samples by using GF-AAS[J]. Foo d Chemistry, 2011, 124(4): 1673-1677.
[6]ZHURAVLEV A, ZACHARIA A, GUCER S, et al. Direct atomic absorption spectrometry determination of arsenic, cadmium, copper,manganese, lead and zinc in vegetable oil and fat samples with graphite fi lter furnace atomizer[J]. Journal of Food Composition and Analysis, 2015, 38: 62-68.
[7]ALMEIDA J S, ANUNCIACAO T A, BRANDAO G C, et al. Ultrasound-assisted single-drop microextraction for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2015, 107: 159-163.
[8]BEZERRA M A, BRUNS R E, FERREIRA S L C. Statistical designprincipal component analysis optimization of a multiple response procedure using cloud point extraction and simultaneous determination of metals by ICP OES[J]. Analytica Chimica Acta, 2009, 580(2): 251-257.
[9]BEZERRA M A, dos SANTOS W N L, LEMOS V A, et al. On-line system for preconcentration and determination of metals in vegetables by inductively coupled plasma optical emission spectrometry[J]. Journal of Hazardous Materials, 2007, 148(1/2): 334-339.
[10] de SOUZA R M, LEOCADIO L G, da SILVEIRA C L P. ICP OES simultaneous determination of Ca, Cu, Fe, Mg, Mn, Na, and P inbiodiesel by axial and radial inductively coupled plasma-optical emission spectrometry[J]. Analytical Letter, 2008, 41(9): 1615-1622.
11] BRESSY F C, BRITO G B, BARBOSA I S, et al. Determination of trace element concentrations in tomato samples at different stages of maturation by ICP OES and ICP-MS following microwave-assisted digestion[J]. Microchemical Journal, 2013, 109: 145-149.
12] POURMAND N, SANAGI M M, NAIM A A, et al. Dispersive micro-solid phase extraction method using newly prepared poly (methyl methacrylate) grafted agarose combined with ICP-MS for the simultaneous determination of Cd, Ni, Cu and Zn in vegetable and natural water samples[J]. Analytical Methods, 2015, 7(7): 3215-3223.
13] ZHENG J, TAGAMI K, UCHIDA S. Rapid analysis of U isotopes in vegetables using ICP-MS: application to the emergency U monitoring after the nuclear accident at TEPCO's Fukushima Dai-ichi power station[J]. Journal of Radioanalytical and Nuclear Chemistry, 2011,292(1): 171-175.
14] ROWAN C A, ZAJICEK O T, CALABRESE E J. Dry ashing vegetables for the determination of sodium and potassium by atomic absorption spectrometry[J]. Analytical Chemistry, 1982, 54(1): 149-151.
15] AKINYELEA I O, SHOKUNBI O S. Comparative analysis of dry ashing and wet digestion methods for the determination of trace and heavy metals in food samples[J]. Food Chemistry, 2015, 173: 682-684.
16] 賴志輝, 周嘉欣, 管艷艷, 等. 微波消解ICP-AES法定量測定芥菜中微量元素的含量[J]. 現(xiàn)代食品科技, 2013, 29(6): 1377-1380.
17] CITAK D, TUZEN M. A novel preconcentration procedure using cloud point extraction for determination of lead, cobalt and copper in water and food samples using fl ame atomic absorption spectrometry[J]. Food and Chemical Toxicology, 2010, 48(5): 1399-1404.
[18] SGORBINI B, CAGLIERO C, CORDERO C, et al. New mediumto-high polarity twister coatings for liquid and vapour phase sorptive extraction of matrices of vegetable origin[J]. Journal of Chromatography A, 2012, 1265: 39-45.
[19] ZHAO Xin, XU Xu, SU Rui, et al. An application of new microwave absorption tube in non-polar solvent microwave-assisted extraction of organophosphorus pesticides from fresh vegetable samples[J]. Journal of Chromatography A, 2012, 1229: 6-12.
[20] SUN Hanwen, YANG Yanlei, LI Hui, et al. Development of multiresidue analysis for twenty phthalate esters in edible vegetable oils by microwave-assisted extraction-gel permeation chromatographysolid phase extraction-gas chromatography-tandem mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2012,60(22): 5532-5539.
[21] AYDIN I. Comparison of dry, wet and microwave digestion procedures for the determination of chemical elements in wool samples in Turkey using ICP-OES technique[J]. Microchemical Journal, 2008,90(1): 82-87.
[22] AYDIN I, AYDIN F, HAMAMCI C. Vanadium fractions determination in asphaltite combustion waste using sequential extraction with ICP-OES[J]. Microchemical Journal, 2013, 108: 64-67.
[23] 聶西度, 符靚. ICP-OES法測定堅果中微量元素的研究[J]. 食品工業(yè)科技, 2012, 33(10): 66-69.
[24] 中國預防醫(yī)科院營養(yǎng)與食品所. GB/T 5009.91—2003 食品中鉀、鈉的測定[S]. 北京: 中國標準出版社, 2003.
[25] 農(nóng)業(yè)部食品質(zhì)量監(jiān)督檢驗測試中心. GB/T 23375—2009 蔬菜及其制品中銅、鐵、鋅、鈣、鎂、磷的測定[S]. 北京: 中國標準出版社, 2009.
Determination of Macro Elements in Okra by Inductively Coupled Plasma Optical Emission Spectrometry with Hydrochloric Acid Extraction
NIE Xidu1, FU Liang2,*
(1. College of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang421002, China;2. College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing408100, China)
An analytical method was develo ped for the determination of 5 macro elements including Na, Mg, P, K a nd Ca in okra by inductively coupled plasma optical emission spectrometry (ICP-OES) with hydrochloric acid extraction. The effects of different extraction conditions including HCl concentration, extraction method and extraction time on extraction effi ciency were investigated. The accuracy and precision of this met hod were confi rmed by using the reference standard material tea (GBW 08513). Under the optimum conditions, the standard curve of each element exhibited a good linear correlation with a coeffi cient higher than 0.999 3. The detection limits for the 5 elements were in the range of 3.88-12.26 μg/L, with relative standard deviations (RSDs) between 1.55% and 3.91%. A satisfactory result was obtained when the proposed method was applied to analyze real samples. Okra contained abundant amounts of nutrient elements, with K being the most predominant element, followed by P and Ca. The method was simple and accurate, and could be used for the determination of the 5 macro elements in okra.
okra; hydrochloric acid extraction; inductively coupled plasma optical emission spectrometry; macro elements
O657.63
A
1002-6630(2015)24-0101-05
10.7506/spkx1002-6630-201524017
2015-02-04
國家自然科學基金面上項目(21271187);湖南省教育廳重點科研項目(14A035);
湖南省重點學科建設項目(湘教發(fā)[2011]76號)
聶西度(1964—),男,教授,博士,主要從事質(zhì)譜分析方法研究與應用。E-mail:nxd1922@vip.sina.com
符靚(1987—),女,講師,博士,主要從事質(zhì)譜分析化學研究與應用。E-mail:fuliang@vip.163.com