張曉芬
《高中數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“人類進(jìn)入信息時(shí)代,信息技術(shù)的蓬勃發(fā)展,使得數(shù)學(xué)教學(xué)內(nèi)容產(chǎn)生變化。計(jì)算器、計(jì)算機(jī)、互聯(lián)網(wǎng)、多媒體技術(shù)的使用,正在改變‘一張紙、一支筆、一個(gè)腦袋的數(shù)學(xué)工作格局。數(shù)學(xué)課程應(yīng)包括‘如何使用計(jì)算技術(shù)學(xué)習(xí)和研究數(shù)學(xué)的內(nèi)容?!痹跀?shù)學(xué)教學(xué)中應(yīng)用計(jì)算機(jī)是教學(xué)現(xiàn)代化的一個(gè)重要標(biāo)志,它對(duì)加速發(fā)展教育事業(yè),提高教育教學(xué)質(zhì)量有重要意義。幾何畫板是美國軟件“The Geometers Sketchpad”的漢化版,是美國優(yōu)秀的教育軟件,我國由人民教育出版社引進(jìn)的幾何畫板直觀、簡(jiǎn)單易學(xué),在中學(xué)數(shù)學(xué)教學(xué)中得以推廣,成為計(jì)算機(jī)進(jìn)入數(shù)學(xué)教學(xué)的一個(gè)轉(zhuǎn)折點(diǎn)。
興趣是人們愛好某種活動(dòng)或力求認(rèn)識(shí)某種事物的傾向,學(xué)習(xí)數(shù)學(xué)的興趣是學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)活動(dòng)和對(duì)象的一種力求認(rèn)識(shí)的傾向。數(shù)學(xué)學(xué)習(xí)興趣除了來自正確的學(xué)習(xí)動(dòng)機(jī)或者學(xué)習(xí)目的外,還必須采用一些激發(fā)、提高數(shù)學(xué)學(xué)習(xí)興趣的手段。教師按照傳統(tǒng)的教學(xué)方法,作圖、演算,一筆一畫地在黑板上書寫,學(xué)生會(huì)感覺枯燥,覺得數(shù)學(xué)難學(xué)。幾何畫板是一種直觀的軟件,把圖形的形成過程清楚地展現(xiàn)出來,學(xué)生可以從觀察圖形的形成過程了解圖形的性質(zhì);幾何畫板給學(xué)生提供了一個(gè)自己動(dòng)手的環(huán)境,讓他們由一個(gè)旁觀者和聽眾變成了一個(gè)參與者,對(duì)數(shù)學(xué)的新知識(shí)、新方法等產(chǎn)生強(qiáng)烈的好奇心,從而激發(fā)興趣,愿意去看數(shù)學(xué),學(xué)數(shù)學(xué)。
一、在平面解析幾何中的應(yīng)用
平面解析幾何是用代數(shù)方法來研究幾何問題的一門數(shù)學(xué)學(xué)科。在傳統(tǒng)的教學(xué)中,雖然教師經(jīng)常貫穿數(shù)形結(jié)合的思想,但是在實(shí)際教學(xué)中很難很好地實(shí)現(xiàn)數(shù)形結(jié)合,利用幾何畫板則可以輕松地解決。幾何畫板提供了計(jì)算機(jī)上的尺規(guī)作圖,能夠畫出任意一種平面幾何圖形,準(zhǔn)確地表現(xiàn)幾何對(duì)象。幾何畫板還能夠?qū)λ鞒龅膶?duì)象進(jìn)行度量,計(jì)算測(cè)量值,并且能把結(jié)果動(dòng)態(tài)地顯示在屏幕上。當(dāng)用鼠標(biāo)拖動(dòng)任意一個(gè)對(duì)象使其變動(dòng)時(shí),就可以顯示這些幾何對(duì)象大小的量也隨之發(fā)生改變。若存在不變的幾何關(guān)系,幾何畫板能夠保持這些幾何關(guān)系不變。 如:畫出一個(gè)三角形,拖動(dòng)它的一個(gè)頂點(diǎn),不管這個(gè)頂點(diǎn)怎么移動(dòng),雖然三角形三個(gè)內(nèi)角大小在動(dòng)態(tài)改變著,但是顯示出三角形的內(nèi)角和的值保持不變。幾何畫板能對(duì)動(dòng)態(tài)對(duì)象進(jìn)行“追蹤”,并顯示該對(duì)象的軌跡。如:在學(xué)習(xí)橢圓的定義時(shí),可以由橢圓定義“到兩頂點(diǎn)距離之和等于定值的點(diǎn)的軌跡”出發(fā)(如圖1),令線段OB的長(zhǎng)為定值,在線段OB上取一點(diǎn)D,以O(shè)為圓心,OB的長(zhǎng)為半徑作圓。在圓內(nèi)取一點(diǎn)C,連接BC,作BC的中垂線,與OB交于點(diǎn)D,以點(diǎn)O為追蹤點(diǎn),讓學(xué)生觀察點(diǎn)D 的軌跡,討論圖形是什么。教師演示,得出結(jié)論:其軌跡是以點(diǎn)O、C為焦點(diǎn),OB為定長(zhǎng)的橢圓。這樣,學(xué)生能容易地掌握橢圓的概念,同時(shí)鍛煉了思維的嚴(yán)密性。
二、在立體幾何中的應(yīng)用
高中的立體幾何是在學(xué)生已學(xué)過的平面圖形知識(shí)的基礎(chǔ)上討論空間幾何圖形的性質(zhì)。從平面圖形到空間圖形,對(duì)高一很多學(xué)生而言都很難。剛開始學(xué)習(xí)立體幾何時(shí),大多數(shù)學(xué)生不具備豐富的空間想象能力以及平面與空間圖形的轉(zhuǎn)化能力。主要原因是很多學(xué)生依照對(duì)二維圖形的直觀來感知三維圖形,但是二維圖形不可能成為三維圖形的真實(shí)寫照。如:在平面上作出的兩條看起來相交的直線不一定相交,可能是異面直線;長(zhǎng)方體的各個(gè)面不能都畫成長(zhǎng)方形;正方體的各個(gè)面不能都畫成正方形。學(xué)生可能根據(jù)畫出來的圖像去想象情況,這樣可能會(huì)歪曲真相,對(duì)認(rèn)識(shí)立體幾何圖形帶來了困難。幾何畫板可以將圖形動(dòng)起來,使圖形各個(gè)元素的關(guān)系聯(lián)系起來,學(xué)生可以從不同方位去觀察圖形。教師可以拖動(dòng)某些點(diǎn)改變它的位置,使圖形有最佳的角度,會(huì)有很好的直觀性。這樣可以幫助學(xué)生理解立體幾何知識(shí),也可以讓他們的空間想象力和創(chuàng)造力得到充分的發(fā)揮。在講解正方體的直觀圖時(shí),如圖2,可以利用幾何畫板顯示正方體并且旋轉(zhuǎn),讓學(xué)生清楚正方體的各個(gè)面是正方形。
實(shí)踐證明:幾何畫板使數(shù)學(xué)的教學(xué)過程直觀生動(dòng),化靜為動(dòng),傳授教學(xué)知識(shí)準(zhǔn)確而快速,并且能夠充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,激發(fā)學(xué)生的數(shù)學(xué)興趣,同時(shí)把思維過程變?yōu)樾蜗蟆⑸鷦?dòng)的動(dòng)態(tài)過程,學(xué)生的積極性、合作性增強(qiáng),培養(yǎng)了學(xué)生的思維,節(jié)約了數(shù)學(xué)教學(xué)的空間和時(shí)間,優(yōu)化了數(shù)學(xué)教學(xué)。(作者單位:浙江省舟山市東海中學(xué))
□本欄責(zé)任編輯 徐純軍
E-mail:jxjyjxsxw@126.com