• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      頁(yè)巖氣

      2015-10-31 03:21:10MississippianBarnettShaleFortWorthbasinnorthcentraltexasGasshaleplaywithmultitrillioncubicfootpotential
      關(guān)鍵詞:頁(yè)巖氣

      Mississippian Barnett Shale,F(xiàn)ort Worth basin,north-central texas: Gas-shale play with multi-trillion cubic foot potential

      Scott L. Montgomery; Daniel M. Jarvie; Kent A. Bowker; et al.

      Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment

      Daniel M. Jarvie; Ronald J. Hill; Tim E. Ruble; et al.

      Shale gas potential of the Lower Jurassic Gordondale Member,northeastern British Columbia,Canada

      Ross,DJK; Bustin,RM

      Characterizing the shale gas resource potential of Devonian-Mississippian strata in the Western Canada sedimentary basin: Application of an integrated formation evaluation

      Ross DJK,Bustin RM

      中國(guó)頁(yè)巖氣勘探開(kāi)發(fā)進(jìn)展與發(fā)展前景*

      董大忠1,鄒才能1,楊樺1,王玉滿1,李新景1,陳更生2,王世謙2,呂宗剛2,黃勇斌2

      (1. 中國(guó)石油勘探開(kāi)發(fā)研究院,北京100083;2. 中國(guó)石油西南油氣田公司,四川成都650001)

      中國(guó)頁(yè)巖氣形成機(jī)理、地質(zhì)特征及資源潛力*

      鄒才能1,2,董大忠1,2,王社教1,2,李建忠1,2,李新景1,2,王玉滿1,2,李登華1,2,程克明1,2

      (1. 中國(guó)石油勘探開(kāi)發(fā)研究院;2. 提高石油采收率國(guó)家重點(diǎn)實(shí)驗(yàn)室)

      頁(yè)巖氣成藏機(jī)理和分布

      張金川,金之鈞,袁明生

      頁(yè)巖氣

      ·編者按·

      “頁(yè)巖氣(shale gas)”是最重要的非常規(guī)天然氣資源,資源潛力超過(guò)致密氣和煤層氣之和,美國(guó)“頁(yè)巖氣革命”對(duì)全球能源格局已產(chǎn)生深刻影響.科羅拉多礦業(yè)學(xué)院Curtis教授系統(tǒng)闡述了頁(yè)巖氣的概念,頁(yè)巖氣是連續(xù)生成的生物化學(xué)成因、熱成因或兩者混合的天然氣聚集,具有普遍含氣、大面積分布、多種巖性封閉、短距離運(yùn)移等特點(diǎn),以游離形式存在于天然裂縫和孔隙中,以吸附狀態(tài)存在于干酪根和粘土顆粒表面,以溶解狀態(tài)存在于干酪根和瀝青質(zhì)中.近年來(lái),“頁(yè)巖氣”概念被廣泛引入國(guó)內(nèi),普遍認(rèn)為,頁(yè)巖氣是賦存于富有機(jī)質(zhì)泥頁(yè)巖層段中,以吸附態(tài)和游離態(tài)為主要賦存方式、大面積連續(xù)分布的非常規(guī)天然氣,為典型“自生自儲(chǔ)、原地滯留”聚集模式,成分以甲烷為主.

      相比常規(guī)天然氣,頁(yè)巖氣開(kāi)發(fā)較為困難,但具有開(kāi)發(fā)壽命長(zhǎng)和生產(chǎn)周期長(zhǎng)的優(yōu)點(diǎn).大部分產(chǎn)氣頁(yè)巖分布范圍廣、厚度大、普遍含氣,這使得頁(yè)巖氣井能夠長(zhǎng)期產(chǎn)氣,但是頁(yè)巖氣儲(chǔ)集層滲透率低,開(kāi)采難度較大.頁(yè)巖氣為完全的、獨(dú)立的、自生自儲(chǔ)的含油氣系統(tǒng),富有機(jī)質(zhì)黑色頁(yè)巖本身就是源巖、儲(chǔ)層和封蓋層,為源儲(chǔ)一體、原位持續(xù)聚集、早成藏的典型源巖氣藏,它既不同于常規(guī)天然氣,也有別于致密砂巖氣、煤層氣等非常規(guī)天然氣,具有五個(gè)重要的地質(zhì)與開(kāi)發(fā)特征:(1)頁(yè)巖氣可形成于有機(jī)質(zhì)演化的各個(gè)階段,包括生物氣、干酪根熱降解氣和原油熱裂解氣.研究表明,頁(yè)巖產(chǎn)氣能力與熱成熟度、TOC等密切相關(guān),一般生物成因頁(yè)巖氣產(chǎn)量低,熱成因頁(yè)巖氣產(chǎn)量高.(2)頁(yè)巖氣儲(chǔ)層致密,以納米級(jí)孔隙為主,具有極低的孔隙度和超低滲透率.(3)頁(yè)巖氣在成藏、開(kāi)采機(jī)理上與其它類(lèi)型天然氣有明顯的不同.頁(yè)巖氣氣體主要以吸附、游離2種狀態(tài)賦存.吸附氣含量一般為20%~85%,并隨深度不同有較大的變化,這一賦存形式類(lèi)似于煤層吸附氣,但其吸附氣量小于煤層吸附氣(85%以上).游離氣含量一般為80%~20%,和常規(guī)天然氣相似,儲(chǔ)層物性愈好,游離氣含量愈高.(4)頁(yè)巖氣大面積連續(xù)分布,資源規(guī)模大,源儲(chǔ)一體,含氣范圍與有效氣源巖相當(dāng),沒(méi)有明顯的圈閉界線,分布不受構(gòu)造的控制.(5)單井產(chǎn)量低,生產(chǎn)周期長(zhǎng),采收率變化較大.隨著水平井、多級(jí)水力體積壓裂等鉆完井、儲(chǔ)層增產(chǎn)改造等技術(shù)的進(jìn)步,頁(yè)巖氣采收率正在逐步提高.

      頁(yè)巖氣發(fā)現(xiàn)較早,1821年美國(guó)在東部泥盆系鉆探第一口頁(yè)巖氣井,1914年美國(guó)發(fā)現(xiàn)第一個(gè)頁(yè)巖氣大氣田—Big Sandy氣田,1981年頁(yè)巖氣之父喬治·米歇爾對(duì)Barnett頁(yè)巖實(shí)施大規(guī)模壓裂,實(shí)現(xiàn)了頁(yè)巖氣開(kāi)采真正意義上的大突破.頁(yè)巖氣由南部地區(qū)的Barnett頁(yè)巖,到Haynesville頁(yè)巖,再到東部地區(qū)的Marcellus頁(yè)巖,持續(xù)獲得重大發(fā)展,至2014年,北美地區(qū)在約50個(gè)富有機(jī)質(zhì)頁(yè)巖區(qū)帶中證實(shí)存在頁(yè)巖氣資源,在其中9個(gè)區(qū)帶實(shí)現(xiàn)了頁(yè)巖氣的規(guī)模開(kāi)發(fā),2014年美國(guó)頁(yè)巖氣產(chǎn)量為3637×108m3,占美國(guó)天然氣總產(chǎn)量的50%,依靠頁(yè)巖氣,美國(guó)實(shí)現(xiàn)了天然氣自給.全球正在進(jìn)行一場(chǎng)“頁(yè)巖氣革命”,北美以外地區(qū)已有20多個(gè)國(guó)家正在進(jìn)行頁(yè)巖氣資源的前期評(píng)價(jià)和勘探開(kāi)發(fā)先導(dǎo)試驗(yàn),中國(guó)、阿根廷、英國(guó)、印度、新西蘭等國(guó)已發(fā)現(xiàn)了頁(yè)巖氣,全球頁(yè)巖氣資源量約為456×1012m3,勘探開(kāi)發(fā)前景廣闊.中國(guó)頁(yè)巖氣資源豐富,發(fā)育海相、海陸過(guò)渡相—湖沼煤系和湖相3類(lèi)富含有機(jī)質(zhì)頁(yè)巖,均具備頁(yè)巖氣形成條件.近年來(lái),頁(yè)巖氣已得到國(guó)家和企業(yè)的高度重視,已在地質(zhì)基礎(chǔ)研究、資源評(píng)價(jià)和核心區(qū)優(yōu)選、水平井壓裂等技術(shù)創(chuàng)新、工業(yè)化試驗(yàn)區(qū)建設(shè)等攻關(guān)取得重大進(jìn)展.2004—2007年,引入頁(yè)巖氣概念;2008年,鉆探第一口頁(yè)巖氣地質(zhì)井長(zhǎng)芯1井;2009年,首次在中國(guó)頁(yè)巖氣儲(chǔ)集層中發(fā)現(xiàn)豐富的納米級(jí)孔隙;2010年,成立國(guó)家能源頁(yè)巖氣研發(fā)(實(shí)驗(yàn))中心;2010年,四川盆地威201井在志留系龍馬溪組獲日產(chǎn)大于1×104m3頁(yè)巖氣;2011年,國(guó)家第一個(gè)頁(yè)巖氣重大專(zhuān)項(xiàng)《頁(yè)巖氣勘探開(kāi)發(fā)關(guān)鍵技術(shù)》立項(xiàng);2012年四川盆地焦石壩構(gòu)造焦頁(yè)1HF在志留系龍馬溪組獲日產(chǎn)氣20.3×104m3工業(yè)氣流,發(fā)現(xiàn)了中國(guó)首個(gè)大型頁(yè)巖氣田—涪陵氣田,并已啟動(dòng)一期50×108m3產(chǎn)能建設(shè),中國(guó)頁(yè)巖氣勘探取得戰(zhàn)略突破.目前,中國(guó)已在重慶焦石壩、巫溪,四川長(zhǎng)寧-威遠(yuǎn)、富順-永川,云南昭通、陜西延安等地區(qū)開(kāi)展頁(yè)巖氣工業(yè)開(kāi)采或先導(dǎo)試驗(yàn).截至2014年底,中國(guó)累計(jì)投資200億元,完鉆頁(yè)巖氣井400口,壓裂獲氣160口井,2013年頁(yè)巖氣產(chǎn)量2×108m3,2014年產(chǎn)量13×108m3,中國(guó)頁(yè)巖氣開(kāi)發(fā)利用已順利實(shí)現(xiàn)工業(yè)起步.

      中國(guó)頁(yè)巖氣開(kāi)發(fā)利用面臨保存較差、埋藏較深、地表復(fù)雜、水源短缺、環(huán)境保護(hù)等一系列問(wèn)題,大規(guī)模經(jīng)濟(jì)有效開(kāi)發(fā)難度較大.中國(guó)頁(yè)巖氣規(guī)?;l(fā)展,需要突破理論關(guān)、技術(shù)關(guān)、成本關(guān)、環(huán)境關(guān)“四道關(guān)”,需注意優(yōu)先解決四川盆地龍馬溪組構(gòu)造型“甜點(diǎn)”和連續(xù)型“甜點(diǎn)區(qū)”頁(yè)巖氣遞減規(guī)律、四川盆地筇竹寺組優(yōu)質(zhì)資源落實(shí)、3500 m以深頁(yè)巖氣效益開(kāi)發(fā)技術(shù)與裝備研發(fā)、海陸過(guò)渡相/陸相頁(yè)巖氣資源潛力評(píng)價(jià)等關(guān)鍵問(wèn)題.初步估算,中國(guó)頁(yè)巖氣技術(shù)可采資源量大約為(10~25)×1012m3.預(yù)計(jì)未來(lái)5~10年,將是中國(guó)頁(yè)巖氣技術(shù)攻關(guān)與先導(dǎo)試驗(yàn)的關(guān)鍵期,需要制定“加快‘核心區(qū)’評(píng)選、加大‘試驗(yàn)區(qū)’建設(shè)、加強(qiáng)‘生產(chǎn)區(qū)’規(guī)劃”等戰(zhàn)略發(fā)展路線圖,力爭(zhēng)2020年前后實(shí)現(xiàn)頁(yè)巖氣工業(yè)化全面突破和規(guī)模發(fā)展.

      本專(zhuān)題得到了鄒才能教授(中國(guó)石油勘探開(kāi)發(fā)研究院)、郝梓國(guó)教授(中國(guó)地質(zhì)學(xué)會(huì))的大力支持.

      ·熱點(diǎn)數(shù)據(jù)排行·

      截至2015年4月20日,中國(guó)知網(wǎng)(CNKI)和Web of Science(WOS)的數(shù)據(jù)報(bào)告顯示,以頁(yè)巖氣(shale gas)為詞條可以檢索到的期刊文獻(xiàn)分別為1726與1020條,本專(zhuān)題將相關(guān)數(shù)據(jù)按照:研究機(jī)構(gòu)發(fā)文數(shù)、作者發(fā)文數(shù)、期刊發(fā)文數(shù)、被引用頻次進(jìn)行排行,結(jié)果如下.

      研究機(jī)構(gòu)發(fā)文數(shù)量排名(CNKI)

      研究機(jī)構(gòu)發(fā)文數(shù)量排名(WOS)

      作者發(fā)文數(shù)量排名(CNKI)

      作者發(fā)文數(shù)量排名(WOS)

      期刊發(fā)文數(shù)量排名(CNKI)

      期刊發(fā)文數(shù)量排名(WOS)

      根據(jù)中國(guó)知網(wǎng)(CNKI)數(shù)據(jù)報(bào)告,以頁(yè)巖氣(shale gas)為詞條可以檢索到的高被引論文排行結(jié)果如下.

      國(guó)內(nèi)數(shù)據(jù)庫(kù)高被引論文排行

      (數(shù)據(jù)來(lái)源:中國(guó)知網(wǎng),檢索時(shí)間:2015-4-20)

      根據(jù)Web of Science統(tǒng)計(jì)數(shù)據(jù),以頁(yè)巖氣(shale gas)為詞條可以檢索到的高被引論文排行結(jié)果如下.

      國(guó)外數(shù)據(jù)庫(kù)高被引論文排行

      ·經(jīng)典文獻(xiàn)推薦·

      基于Web of Science檢索結(jié)果,利用Histcite軟件選取LCS(Local Citation Score,本地引用次數(shù))TOP 30文獻(xiàn)作為節(jié)點(diǎn)進(jìn)行分析,得到本領(lǐng)域推薦的經(jīng)典文獻(xiàn)如下.

      來(lái)源出版物:AAPG Bulletin,2002,86(11): 1921-1938

      Mississippian Barnett Shale,F(xiàn)ort Worth basin,north-central texas: Gas-shale play with multi-trillion cubic foot potential

      Scott L. Montgomery; Daniel M. Jarvie; Kent A. Bowker; et al.

      Abstract: The Mississippian Barnett Shale serves as source,seal,and reservoir to a world-class unconventional natural-gas accumulation in the Fort Worth basin of north-central Texas. The formation is a lithologically complex interval of low permeability that requires artificial stimulation to produce. At present,production is mainly confined to a limited portion of the northern basin where the Barnett Shale is relatively thick(>300 ft; >92 m),organic rich(present-day total organic carbon >3.0%),thermally mature(vitrinite reflectance >1.1%),and enclosed by dense limestone units able to contain induced fractures. The most actively drilled area is Newark East field,currently the largest gas field in Texas. Newark East is 400 mi2(1036 km2)in extent,with more than 2340 producing wells and about 2.7 tcf of bookedgas reserves. Cumulative gas production from Barnett Shale wells through 2003 was about 0.8 tcf. Wells in Newark East field typically produce from depths of 7500 ft(2285 m)at rates ranging from 0.5 to more than 4 mmcf/day. Estimated ultimate re coveries per well range from 0.75 to as high as 7.0 bcf. Efforts to extend the current Barnett play beyond the field limits have encountered several challenges,including westward and northward increases in oil saturation and the absence of lithologic barriers to induced fracture growth. Patterns of oil and gas occurrence in the Barnett,in conjunction with maturation and burial-history data,indicate a complex,multiphased thermal evolution,with episodic expulsion of hydrocarbons and secondary cracking of primary oils to gas in portions of the basin where paleotemperatures were especially elevated. These and other data imply a large-potential Barnett resource for the basin as a whole(possibly >200 tcf gas in place). Recent assessment by the U.S. Geological Survey suggests a mean volume of 26.2 tcf of undiscovered,technically recoverable gas in the central Fort Worth basin. Recovery of a significant portion of this undiscovered resource will require continued improvements in geoscientific characterization and approaches to stimulation of the Barnett reservoirs.

      Keywords: interdisciplinary approach; Pennsylvanian; marattialean pecopterids; functional groups; FTIR

      來(lái)源出版物:AAPG Bulletin,2005,89(2): 155-175

      Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment

      Daniel M. Jarvie; Ronald J. Hill; Tim E. Ruble; et al.

      Abstract: Shale-gas resource plays can be distinguished by gas type and system characteristics. The Newark East gas field,located in the Fort Worth Basin,Texas,is defined by thermogenic gas production from low-porosity and low-permeability Barnett Shale. The Barnett Shale gas system,a self-contained source-reservoir system,has generated large amounts of gas in the key productive areas because of various characteristics and processes,including(1)excellent original organic richness and generation potential;(2)primary and secondary cracking of kerogen and retained oil,respectively;(3)retention of oil for cracking to gas by adsorption;(4)porosity resulting from organic matter decomposition; and(5)brittle mineralogical composition. The calculated total gas in place(GIP)based on estimated ultimate recovery that is based on production profiles and operator estimates is about 204 bcf/section(5.78×109M-3/1.73×104m3). We estimate that the Barnett Shale has a total generation potential of about 609 bbl of oil equivalent/ac-ft or the equivalent of 3657 mcf/ac-ft(84.0 m3/m3). Assuming a thickness of 350 ft(107 m)and only sufficient hydrogen for partial cracking of retained oil to gas,a total generation potential of 820 bcf/section is estimated. Of this potential,approximately 60% was expelled,and the balance was retained for secondary cracking of oil to gas,if sufficient thermal maturity was reached. Gas storage capacity of the Barnett Shale at typical reservoir pressure,volume,and temperature conditions and 6% porosity shows a maximum storage capacity of 540 mcf/ac-ft or 159 scf/ton.

      Keywords: Sichuan Basin; middle paleo-uplift; pyrobitumen; natural gas potential; upper Proterozoic strata

      來(lái)源出版物:AAPG Bulletin,2007,91(4): 475-499

      Shale gas potential of the Lower Jurassic Gordondale Member,northeastern British Columbia,Canada

      Ross,DJK; Bustin,RM

      Abstract: The Lower Jurassic Gordondale Member is an organic-rich mudrock and is widely considered to have potential as a shale gas reservoir. Influences of Gordondale mudrock composition on total gas capacities(sorbed and free gas)have been determined to assess the shale gas resource potential of strata in the Peace River district,northeastern British Columbia. Sorbed gas capacities of moisture-equilibrated samples increase over a range of 0.5 to 12 weight percent total organic carbon content(TOC). Methane adsorption capacities range from 0.05 cc/g to over 2 cc/g in organic-rich zones(at 6 MPa and 30 degrees C). Sorption capacities of mudrocks under dry conditions are greater than moisture equilibrated conditions due to water occupation of potential sorption sites. However,there is no consistent decrease of sorption capacity with increasing moisture as the relationship is masked by both the amount of organic matter and thermal maturation level. Clays also affect total gas capacities in as much as clay-rich mudrocks have high porosity which may be available for free gas. Gordondale samples enriched with carbonate(calcite and dolomite)typically have lower total porosities than carbonate-poor rocks and hence have lower potential free gas contents. On a regional reservoir scale,a large proportion of the Gordondale total gas capacity is free gas storage(intergranular porosity),ranging from 0.1-22 Bcf/section(0.003-0.66 m3/section). Total gas-in-place capacity ranges from 1-31.4 Bcf/section(0.03-0.94 m3/section). The greatest potential for gas production is in the south of the study area(93-P)due to higher thermal maturity,TOC enrichment,higher reservoir pressure,greater unit thickness and improved fracture-potential.

      Keywords: shaly sand; pore-scale model; conductivity; clays

      來(lái)源出版物:Bulletin of Canadian Petroleum Geology,2007,55(1): 51-75

      Characterizing the shale gas resource potential of Devonian-Mississippian strata in the Western Canada sedimentary basin: Application of an integrated formation evaluation

      Ross DJK,Bustin RM

      Abstract: Devonian-Mississippian strata in the northwestern region of the Western Canada sedimentary basin(WCSB)were investigated for shale gas potential. In the subsurface,thermally mature strata of the Besa River,Horn River,Muskwa,and Fort Simpson formations attain thicknesses of more than 1 km(0.6 mi),encompassing an area of approximately 125000 km2(48300 mi2)and represent an enormous potential gas resource. Total gas capacity estimates range between 60 and 600 bcf/section. Of particular exploration interest are shales and mudrocks of the Horn River Formation(including the laterally equivalent lower Besa River mudrocks),Muskwa Formation,and upper Besa River Formation,which yield total organic carbon(TOC)contents of up to 5.7 wt.%. Fort Simpson shales seldom have TOC contents above 1 wt.%. Horn River and Muskwa formations have excellent shale gas potential in a region between longitudes 122°W and 123°W and latitudes 59°N and 60°N(National Topographic System [NTS] 94O08 to 94O15). In this area,which covers an areal extent of 6250 km2(2404 mi2),average TOC contents are higher(>3 wt.% as determined by wire-line-log calibrations),and have a stratal thickness of more than 200 m(656 ft). Gas capacities are estimated to be between 100 and 240 bcf/section and possibly greater than 400 tcf gas in place. A substantial percentage of the gas capacity is free gas caused by high reservoir temperatures and pressures. Muskwa shales have adsorbed gas capacities ranging between 0.3 and 0.5 cm3/g(9.6-16 scf/t)at reservoir temperatures of 60-80°C(140-176°F),whereas Besa River mudrocks and shales have low adsorbed gas capacities of less than 0.01 cm3/g(0.32 scf/t; Liard Basin region)because reservoir temperatures exceed 130°C(266°F). Potential free gas capacities range from 1.2 to 9.5 cm3/g(38.4 to 304 scf/t)when total pore volumes(0.4%-6.9%)are saturated with gas. The mineralogy has a major influence on total gas capacity. Carbonate-rich samples,indicative of adjacent carbonate platform and embayment successions,commonly have lower organic carbon content and porosity and corresponding lower gas capacity(<1% TOC and <1% porosity). Seaward of the carbonate Slave Point edge,Muskwa and lower Besa River mudrocks can be both silica and TOC rich(up to 92% quartz and 5 wt.% TOC)and most favorable for shale gas reservoir exploration because of possible fracture enhancement of the brittle organic- and siliceous-rich facies. However,an inverse relation between silica and porosity in some regions implies that zones with the best propensity for fracture completion may not provide optimal gas capacity,and a balance between favorable reservoir characteristics needs to be sought.

      來(lái)源出版物:AAPG Bulletin,2008,92(1): 87-125

      ·推薦綜述·

      中國(guó)頁(yè)巖氣勘探開(kāi)發(fā)進(jìn)展與發(fā)展前景*

      董大忠1,鄒才能1,楊樺1,王玉滿1,李新景1,陳更生2,王世謙2,呂宗剛2,黃勇斌2

      (1. 中國(guó)石油勘探開(kāi)發(fā)研究院,北京100083;2. 中國(guó)石油西南油氣田公司,四川成都650001)

      頁(yè)巖氣是典型的非常規(guī)天然氣,產(chǎn)自極低孔滲、以富有機(jī)質(zhì)頁(yè)巖為主的儲(chǔ)集巖系中.頁(yè)巖氣的形成與富集為自生自儲(chǔ)、以游離氣和吸附氣為主、原位飽和富集于以頁(yè)巖為主的儲(chǔ)集巖系的微—納米級(jí)孔隙—裂縫與礦物顆粒表面[1-2].頁(yè)巖氣常被稱為“人造氣藏”,開(kāi)采必須通過(guò)大型人工儲(chǔ)層造縫(網(wǎng))才能形成工業(yè)生產(chǎn)能力,初期產(chǎn)量一般較高、早期遞減較快,后期低產(chǎn)穩(wěn)產(chǎn)且生產(chǎn)時(shí)間長(zhǎng)(一般30-50年).頁(yè)巖氣是國(guó)外最早認(rèn)識(shí)的天然氣,自1821年在美國(guó)阿帕拉契亞盆地成功鉆探第1口頁(yè)巖氣井以來(lái),頁(yè)巖氣的發(fā)展已近200年歷史.但20世紀(jì)90年代前,當(dāng)時(shí)只重視了致密(巖石)氣與煤層氣,頁(yè)巖氣在天然氣大家族中的地位微不足道[3],21世紀(jì)以來(lái),隨著頁(yè)巖氣地質(zhì)與開(kāi)發(fā)理論的創(chuàng)新和勘探開(kāi)發(fā)關(guān)鍵技術(shù)的進(jìn)步,尤其是水平井鉆完井與分段壓裂技術(shù)的進(jìn)步及規(guī)模推廣應(yīng)用,頁(yè)巖氣邁進(jìn)了大發(fā)展階段.2005年以來(lái),中國(guó)借鑒北美經(jīng)驗(yàn),開(kāi)始了中國(guó)頁(yè)巖氣地質(zhì)條件評(píng)價(jià)與勘探開(kāi)發(fā)先導(dǎo)性試驗(yàn)[1,3-4].迄今,不僅在地質(zhì)認(rèn)識(shí)上取得進(jìn)展,在勘探開(kāi)發(fā)實(shí)踐上也取得突破,成為全球除北美以外地區(qū)率先發(fā)現(xiàn)頁(yè)巖氣的國(guó)家.筆者在全球頁(yè)巖氣發(fā)展現(xiàn)狀與中國(guó)頁(yè)巖氣勘探開(kāi)發(fā)實(shí)踐現(xiàn)狀把握基礎(chǔ)上,初步探討了中國(guó)頁(yè)巖氣形成與富集條件,對(duì)中國(guó)頁(yè)巖氣勘探開(kāi)發(fā)前景做了預(yù)測(cè),以期對(duì)推動(dòng)中國(guó)頁(yè)巖氣的發(fā)展有所幫助.

      1全球頁(yè)巖氣資源發(fā)展概況

      在全球,北美地區(qū)的頁(yè)巖氣資源勘探開(kāi)發(fā)最為成功,2000年北美地區(qū)的頁(yè)巖氣年產(chǎn)量突破了100×108m3,至2010年該地區(qū)的頁(yè)巖氣年產(chǎn)量達(dá)到1500×108m3[3-7],10年間增長(zhǎng)了10倍以上.美國(guó)能源信息署預(yù)測(cè)統(tǒng)計(jì)(圖1)[5-7],2010年北美地區(qū)在約50個(gè)富有機(jī)質(zhì)頁(yè)巖區(qū)帶中證實(shí)存在頁(yè)巖氣資源,在其中9個(gè)主要頁(yè)巖區(qū)帶進(jìn)行頁(yè)巖氣生產(chǎn),頁(yè)巖氣年產(chǎn)量1500×108m3,占北美天然氣總產(chǎn)量的20%左右.

      北美頁(yè)巖氣的快速發(fā)展,改變了北美天然氣供應(yīng)格局,影響到了全球能源供給格局的變化,頁(yè)巖氣在全球迅速成為重要的天然氣勘探開(kāi)發(fā)新目前.目前,全球掀起了轟轟烈烈的綠色“頁(yè)巖氣革命”(圖2),各國(guó)政府和油氣/能源公司幾乎都將頁(yè)巖氣提到了重要日程[8],北美以外地區(qū)已有20余個(gè)國(guó)家在進(jìn)行頁(yè)巖氣資源的前期評(píng)價(jià)和勘探開(kāi)發(fā)先導(dǎo)試驗(yàn),中國(guó)、英國(guó)、印度、新西蘭等國(guó)已紛紛宣稱在本國(guó)發(fā)現(xiàn)了頁(yè)巖氣.

      中國(guó)為全球除北美以外地區(qū)率先發(fā)現(xiàn)頁(yè)巖氣的國(guó)家.至2010年,中國(guó)已在富有機(jī)質(zhì)頁(yè)巖地質(zhì)特征、頁(yè)巖氣形成與富集地質(zhì)條件、頁(yè)巖氣遠(yuǎn)景區(qū)帶優(yōu)選等基礎(chǔ)地質(zhì)理論與認(rèn)識(shí)上取得重要了進(jìn)展;在四川盆地南部古生界、四川盆地北部中生代、鄂爾多斯盆地三疊系等多個(gè)地區(qū)和多個(gè)時(shí)代的海相、陸相富有機(jī)質(zhì)頁(yè)巖中取得重要頁(yè)巖氣突破和發(fā)現(xiàn).

      2中國(guó)頁(yè)巖氣勘探開(kāi)發(fā)進(jìn)展

      2.1中國(guó)頁(yè)巖氣勘探歷程

      與北美的頁(yè)巖氣勘探開(kāi)發(fā)成就相比,中國(guó)的頁(yè)巖氣勘探開(kāi)發(fā)起步較晚,而與全球其他地區(qū)相比,中國(guó)的頁(yè)巖氣勘探開(kāi)發(fā)則處于領(lǐng)先地位,為全球除北美以外地區(qū)率先進(jìn)入頁(yè)巖氣勘探評(píng)價(jià)突破和工業(yè)化開(kāi)發(fā)先導(dǎo)性試驗(yàn)的國(guó)家[1-4].實(shí)際上,從歷史發(fā)展分析,中國(guó)的油氣勘探開(kāi)發(fā)對(duì)頁(yè)巖氣并不陌生,過(guò)去的常規(guī)油氣勘探開(kāi)發(fā)中頁(yè)巖氣的發(fā)現(xiàn)已屢見(jiàn)不鮮.自20世紀(jì)60年代以來(lái),不斷在松遼、渤海灣、四川、鄂爾多斯、柴達(dá)木等幾乎所有陸上含油氣盆地中都發(fā)現(xiàn)了頁(yè)巖氣或泥頁(yè)巖裂縫性油氣藏,典型代表有1966年在四川盆地威遠(yuǎn)構(gòu)造上鉆探的威5井,在古生界寒武系筇竹寺組海相頁(yè)巖中獲得了日產(chǎn)氣2.46×104m3.1994—1998年間中國(guó)還專(zhuān)門(mén)針對(duì)泥、頁(yè)巖裂縫性油氣藏做過(guò)大量工作,此后許多學(xué)者也在不同含油氣盆地探索過(guò)頁(yè)巖氣形成與富集的可能性[2].2000—2005年中國(guó)廣大石油地質(zhì)學(xué)者再次關(guān)注北美在富有機(jī)質(zhì)頁(yè)巖中勘探開(kāi)發(fā)天然氣的新成就,從2005年起把視角投向中國(guó)本土,尋求中國(guó)頁(yè)巖氣形成與富集的地質(zhì)條件,調(diào)查頁(yè)巖氣資源潛力,探索中國(guó)頁(yè)巖氣的發(fā)展前景.歸納起來(lái),中國(guó)頁(yè)巖氣勘探開(kāi)發(fā)歷史暫可劃分為泥頁(yè)巖裂縫性油氣藏勘探開(kāi)發(fā)、頁(yè)巖氣地質(zhì)條件研究與關(guān)鍵開(kāi)發(fā)技術(shù)儲(chǔ)備、勘探評(píng)價(jià)突破與開(kāi)發(fā)先導(dǎo)性試驗(yàn)等過(guò)程,其里程碑事件總結(jié)于表1.

      2.2中國(guó)頁(yè)巖氣勘探開(kāi)發(fā)進(jìn)展

      中國(guó)的頁(yè)巖氣資源的勘探開(kāi)發(fā)熱潮始于2005年.在前期對(duì)北美頁(yè)巖氣資源發(fā)展進(jìn)程的跟蹤、研究基礎(chǔ)上,于2005年起,中國(guó)主要石油企業(yè)、石油與地質(zhì)類(lèi)高等院校、國(guó)土資源部與國(guó)家能源局等相關(guān)政府機(jī)構(gòu)[4],從老資料復(fù)查、露頭地質(zhì)調(diào)查等基礎(chǔ)著手,開(kāi)展了中國(guó)頁(yè)巖氣形成與富集地質(zhì)條件研究和頁(yè)巖氣資源潛力評(píng)價(jià),在頁(yè)巖氣遠(yuǎn)景區(qū)帶進(jìn)行了地質(zhì)淺井、地質(zhì)評(píng)價(jià)參數(shù)井等的鉆探,取得了早期頁(yè)巖氣地質(zhì)評(píng)價(jià)與頁(yè)巖氣資源潛力預(yù)測(cè)等關(guān)鍵參數(shù),優(yōu)選了一批有利頁(yè)巖氣區(qū)帶,鉆探了頁(yè)巖氣評(píng)價(jià)井和頁(yè)巖氣開(kāi)發(fā)先導(dǎo)性試驗(yàn)井,建立了四川威遠(yuǎn)—長(zhǎng)寧、云南昭通等多個(gè)國(guó)家級(jí)頁(yè)巖氣工業(yè)化開(kāi)發(fā)先導(dǎo)性示范區(qū)(圖3).

      2006年中國(guó)石油與美國(guó)新田石油公司進(jìn)行了國(guó)內(nèi)首次頁(yè)巖氣研討,依據(jù)四川盆地南部威遠(yuǎn)、陽(yáng)高寺等地區(qū)的常規(guī)天然氣勘探開(kāi)發(fā)過(guò)程中,鉆遇寒武系筇竹寺組和志留系龍馬溪組時(shí)出現(xiàn)的豐富含氣顯示現(xiàn)象,提出中國(guó)具備海相頁(yè)巖氣形成與富集的基本地質(zhì)條件[9-10].2007年即與新田石油合作,開(kāi)展了威遠(yuǎn)地區(qū)寒武系筇竹寺組頁(yè)巖氣資源潛力評(píng)價(jià)與開(kāi)發(fā)可行性的聯(lián)合研究,該研究項(xiàng)目為中國(guó)與國(guó)外的第一個(gè)頁(yè)巖氣聯(lián)合研究項(xiàng)目.與此同時(shí),對(duì)整個(gè)蜀南地區(qū)古生代海相頁(yè)巖地層開(kāi)展了露頭地質(zhì)調(diào)查與老資料(井)復(fù)查.為探索頁(yè)巖氣地質(zhì)與資源前景評(píng)價(jià)方法,2008年中國(guó)石油勘探開(kāi)發(fā)研究院在四川盆地南部長(zhǎng)寧構(gòu)造志留系龍馬溪組露頭區(qū)鉆探了中國(guó)第一口頁(yè)巖氣地質(zhì)評(píng)價(jià)淺井即長(zhǎng)芯1井,井深154.3 m,取心151.6 m[1].通過(guò)2007—2008年的前期地質(zhì)研究與選區(qū)評(píng)價(jià),初步認(rèn)識(shí)到上揚(yáng)子地區(qū)古生界發(fā)育多套海相富有機(jī)質(zhì)頁(yè)巖,厚度大,有機(jī)碳含量高,具有較好的頁(yè)巖氣形成條件.2009年中國(guó)石油率先在四川盆地威遠(yuǎn)—長(zhǎng)寧、云南昭通等地區(qū)進(jìn)行頁(yè)巖氣鉆探評(píng)價(jià),與殼牌(shell)公司在四川盆地富順—永川地區(qū)進(jìn)行中國(guó)第一個(gè)頁(yè)巖氣國(guó)際合作勘探開(kāi)發(fā)項(xiàng)目.同時(shí),國(guó)土資源部在全國(guó)油氣資源戰(zhàn)略選區(qū)調(diào)查與評(píng)價(jià)專(zhuān)項(xiàng)中設(shè)立了“中國(guó)重點(diǎn)地區(qū)頁(yè)巖氣資源潛力評(píng)價(jià)和有利區(qū)帶優(yōu)選”項(xiàng)目,中國(guó)石化在貴州大方—?jiǎng)P里方深1井區(qū)開(kāi)展了寒武系牛蹄塘組頁(yè)巖氣老井復(fù)

      查.2010年以來(lái),中國(guó)頁(yè)巖氣勘探開(kāi)發(fā)陸續(xù)取得單井突破,進(jìn)入到了開(kāi)發(fā)先導(dǎo)性試驗(yàn)區(qū)建設(shè)階段.初步統(tǒng)計(jì),迄今中國(guó)已在四川、鄂爾多斯、渤海灣、沁水、泌陽(yáng)等盆地,重慶黔江、云南昭通、貴州大方湖北建南、湖南漣源、貴州銅仁等地區(qū),鉆探頁(yè)巖氣井(直井與水平井,直井為主)50余口,水力壓裂試氣井近20口,獲工業(yè)頁(yè)巖氣(油)流井10口,多口井初期產(chǎn)量超過(guò)了1×104m3/d(圖4),實(shí)現(xiàn)了中國(guó)海相(古生界)頁(yè)巖氣的突破,海陸過(guò)渡相煤系(二疊系)頁(yè)巖氣與陸相(中生界)頁(yè)巖氣/油的發(fā)現(xiàn).

      3中國(guó)頁(yè)巖氣勘探開(kāi)發(fā)前景

      3.1中國(guó)頁(yè)巖氣形成條件

      與北美相比,中國(guó)頁(yè)巖氣形成與富集條件具明顯特殊性,中國(guó)沉積盆地發(fā)育3類(lèi)富有機(jī)質(zhì)頁(yè)巖[1-3,11-14],包括海相富有機(jī)質(zhì)頁(yè)巖、海陸過(guò)渡相與湖沼相煤系富有機(jī)質(zhì)頁(yè)巖和湖相富有機(jī)質(zhì)頁(yè)巖.不同時(shí)代、不同地區(qū)發(fā)育不同類(lèi)型富有機(jī)質(zhì)頁(yè)巖組合,頁(yè)巖成氣潛力差異明顯.

      3.1.1海相富有機(jī)質(zhì)頁(yè)巖

      中國(guó)海相富有機(jī)質(zhì)頁(yè)巖分布廣泛,主要發(fā)育在中國(guó)南方地區(qū)、華北地區(qū)及西部塔里木盆地的上震旦統(tǒng)、下寒武統(tǒng)、上奧陶統(tǒng)—下志留統(tǒng)等(表2).海相富有機(jī)質(zhì)泥頁(yè)巖分布面積大、橫向變化穩(wěn)定,厚度一般在100~500 m.海相富有機(jī)質(zhì)頁(yè)巖有機(jī)質(zhì)豐富,平均含量1.0%~5.12%,其中高TOC含量(TOC含量大于2%)的富含有機(jī)質(zhì)頁(yè)巖段發(fā)育,厚度一般為20~180 m.海相富有機(jī)質(zhì)頁(yè)巖有機(jī)質(zhì)類(lèi)型以腐泥型—混合型為主,屬傾成油型母質(zhì),熱演化程度處在裂解成氣階段(1.0%<Ro<5.2%)[11],頁(yè)巖氣以原油熱裂解氣為主.海相高演化頁(yè)巖基質(zhì)孔隙、有機(jī)質(zhì)微—納米級(jí)孔隙發(fā)育,構(gòu)成了頁(yè)巖氣良好的儲(chǔ)集空間.海相頁(yè)巖脆性礦物豐富,黏土礦物單一.海相頁(yè)巖成氣藏條件優(yōu)越,勘探開(kāi)發(fā)前景好.

      中國(guó)南方地區(qū)是海相頁(yè)巖氣較有利地區(qū),尤以上揚(yáng)子地區(qū)為好,如四川盆地筇竹寺組富有機(jī)質(zhì)頁(yè)巖分布面積18.5×104km2,厚200~600 m,有效頁(yè)巖厚度110~163 m,TOC含量0.82%~4.68%,平均2.3%,頁(yè)巖含氣量0.13~5.02 m3/t,石英、長(zhǎng)石和碳酸鹽巖等脆性礦物為49%~58%;五峰組—龍馬溪組富有機(jī)質(zhì)頁(yè)巖分布面積13.7×104km2,厚300~500 m,有效頁(yè)巖厚度40~125 m,TOC含量0.5%~7.12%,平均2.1%,頁(yè)巖含氣量0.2~6.5 m3/t,石英、長(zhǎng)石和碳酸鹽巖等脆性礦物含量為33.0%~51.2%.2010年鉆探的W201、N201兩口頁(yè)巖氣評(píng)價(jià)井(直井),經(jīng)大型水力壓裂,在筇竹寺組頁(yè)巖和五峰組—龍馬溪組頁(yè)巖中均獲得了初始頁(yè)巖氣產(chǎn)量過(guò)1.0×104m3/d的高產(chǎn)頁(yè)巖氣流,實(shí)現(xiàn)了中國(guó)頁(yè)巖氣首次突破.

      3.1.2海陸過(guò)渡相—煤系富有機(jī)質(zhì)頁(yè)巖

      海陸過(guò)渡相—煤系富有機(jī)質(zhì)頁(yè)巖可劃分為海陸過(guò)渡相、湖沼相煤系富有機(jī)質(zhì)泥頁(yè)巖[1-2,11-14].海陸過(guò)渡相富有機(jī)質(zhì)泥頁(yè)巖主要分布在中國(guó)東部的石炭系—二疊系[15]、南方的二疊系;湖沼相煤系富有機(jī)質(zhì)泥頁(yè)巖包括四川盆地及周緣的上三疊統(tǒng)—下侏羅統(tǒng)、中國(guó)西部地區(qū)的侏羅系,具有分布面積大、有機(jī)質(zhì)類(lèi)型復(fù)雜、熱演化程度適中等特點(diǎn)[1-2](表3).

      研究發(fā)現(xiàn),中國(guó)海陸過(guò)渡相—煤系富有機(jī)質(zhì)泥頁(yè)巖除上揚(yáng)子及滇黔桂地區(qū)單層厚度較大外,其余多數(shù)地區(qū)的海陸過(guò)渡相—煤系富有機(jī)質(zhì)泥頁(yè)巖單層厚度都不大,不利于頁(yè)巖氣單層獨(dú)立開(kāi)發(fā).但海陸過(guò)渡相—煤系富有機(jī)質(zhì)泥頁(yè)巖總有機(jī)碳含量較高、演化程度一般在過(guò)成熟早期以下,有利于成氣且泥頁(yè)巖層多與煤、致密砂巖互層,易形成頁(yè)巖氣、煤層氣和致密砂巖氣等多種類(lèi)型天然氣藏疊置.

      3.1.3陸相富有機(jī)質(zhì)泥頁(yè)巖

      中國(guó)中生代、新生代盆地多為陸相沉積,深湖和半深湖相形成的富有機(jī)質(zhì)黑色泥頁(yè)巖是盆地的主力烴源巖[1-2,11-14].研究發(fā)現(xiàn),現(xiàn)階段多數(shù)泥頁(yè)巖正進(jìn)入大量生油期,僅在埋深較大的凹陷中的部分烴源巖才演化至生氣階段,因此,湖相頁(yè)巖氣勘探開(kāi)發(fā)領(lǐng)域,將會(huì)是頁(yè)巖油和頁(yè)巖氣并存的局面,縱向上具有“上油下氣”的展布特點(diǎn),橫向上埋深大的凹陷區(qū)及近凹陷斜坡區(qū)是頁(yè)巖氣的主要富集區(qū).渤海灣盆地沙河街組、松遼盆地青山口組、鄂爾多斯盆地延長(zhǎng)組、四川盆地侏羅系等都具備湖相頁(yè)巖氣形成基本地質(zhì)條件(表4).

      3.2中國(guó)頁(yè)巖氣資源發(fā)展前景

      有關(guān)中國(guó)頁(yè)巖氣資源發(fā)展前景,國(guó)內(nèi)不少機(jī)構(gòu)/學(xué)者對(duì)此做出了較為樂(lè)觀的預(yù)測(cè)(表5).預(yù)測(cè)顯示中國(guó)頁(yè)巖氣資源豐富,其中地質(zhì)資源量為(30~166)×1012m3,技術(shù)可采資源量為(7~45)×1012m3.無(wú)論是從地質(zhì)資源量還是技術(shù)可采資源量上看,中國(guó)頁(yè)巖氣資源都具備良好發(fā)展基礎(chǔ).甚至已有機(jī)構(gòu)/學(xué)者根據(jù)資源預(yù)測(cè)結(jié)果及目前進(jìn)展,認(rèn)為中國(guó)未來(lái)5年將實(shí)現(xiàn)頁(yè)巖氣規(guī)?;a(chǎn),頁(yè)巖氣產(chǎn)量達(dá)到65×108m3,至2020年前后,突破頁(yè)巖氣勘探開(kāi)發(fā)關(guān)鍵技術(shù),頁(yè)巖氣產(chǎn)量有望達(dá)到(600~1000)×108m3[4].頁(yè)巖氣儲(chǔ)層比任何致密油氣儲(chǔ)層都還要致密,實(shí)現(xiàn)有效開(kāi)發(fā)難度非常大.中國(guó)的頁(yè)巖氣勘探開(kāi)發(fā)雖已在先導(dǎo)性試驗(yàn)井中取得突破,但仍為起步階段.中國(guó)頁(yè)巖氣地質(zhì)條件與開(kāi)發(fā)條件都與北美不同(表6).首先,從地質(zhì)條件上看,中國(guó)的富有機(jī)質(zhì)頁(yè)巖,尤其是古生界海相富有機(jī)質(zhì)頁(yè)巖大多經(jīng)歷了復(fù)雜的構(gòu)造改造,在盆地周緣頁(yè)巖地層抬升出露、斷裂切割嚴(yán)重,保存條件是海相頁(yè)巖氣勘探開(kāi)發(fā)面臨的嚴(yán)峻挑戰(zhàn);中國(guó)富有機(jī)質(zhì)頁(yè)巖熱成熟度復(fù)雜,海相頁(yè)巖形成時(shí)間早,演化程度高,陸相頁(yè)巖形成時(shí)間晚,演化程度低,兩個(gè)端元的熱演化程度都將直接導(dǎo)致中國(guó)富有機(jī)質(zhì)頁(yè)巖含氣量變化大、含氣量偏低.其次,從開(kāi)發(fā)條件上看,中國(guó)富有機(jī)質(zhì)頁(yè)巖在盆地內(nèi)主體埋深較大,超過(guò)了3500 m或更大,在南方海相頁(yè)巖發(fā)育區(qū),地表多以山地和丘陵等復(fù)雜地表區(qū)為主,且不是常規(guī)油氣生產(chǎn)的主產(chǎn)區(qū),地面設(shè)施與管網(wǎng)缺乏.由此可見(jiàn),中國(guó)頁(yè)巖氣資源豐富,具有良好發(fā)展前景,但是,中國(guó)頁(yè)巖氣地質(zhì)與開(kāi)發(fā)條件復(fù)雜,決定了中國(guó)頁(yè)巖氣勘探開(kāi)發(fā)不會(huì)一蹴而就,需要一定時(shí)間準(zhǔn)備與探索.未來(lái)5~10年需要堅(jiān)持深化地質(zhì)認(rèn)識(shí)與技術(shù)攻關(guān),突出基礎(chǔ)地質(zhì)研究、核心區(qū)評(píng)價(jià)和先導(dǎo)試驗(yàn)區(qū)建設(shè).海相富有機(jī)質(zhì)頁(yè)巖氣重在深化基礎(chǔ)地質(zhì)研究,落實(shí)經(jīng)濟(jì)可采資源,優(yōu)選開(kāi)發(fā)核心區(qū),強(qiáng)化關(guān)鍵技術(shù)攻關(guān),推進(jìn)先導(dǎo)試驗(yàn)區(qū)建設(shè),形成一定規(guī)模頁(yè)巖氣產(chǎn)量.海陸過(guò)渡相—煤系與湖相富有機(jī)質(zhì)頁(yè)巖以地質(zhì)條件評(píng)價(jià)為重點(diǎn),以技術(shù)可采資源潛力落實(shí)為核心,鉆探一批先導(dǎo)試驗(yàn)井,優(yōu)選有利頁(yè)巖氣區(qū)帶和層系,實(shí)現(xiàn)中國(guó)頁(yè)巖氣持續(xù)穩(wěn)定發(fā)展.

      4結(jié)論

      (1)中國(guó)頁(yè)巖氣勘探開(kāi)發(fā)起步較晚,但在全球?yàn)楸泵酪酝獾貐^(qū)率先進(jìn)入頁(yè)巖氣勘探突破和工業(yè)化開(kāi)發(fā)先導(dǎo)性試驗(yàn)的國(guó)家.中國(guó)頁(yè)巖氣地質(zhì)條件研究與關(guān)鍵開(kāi)發(fā)技術(shù)儲(chǔ)備已有較好基礎(chǔ),在古生界海相、石炭-二疊系海陸過(guò)渡相—煤系與中生界-新生界陸相(湖相)頁(yè)巖氣/油上陸續(xù)取得單井突破與發(fā)現(xiàn),正進(jìn)入開(kāi)發(fā)先導(dǎo)性試驗(yàn)區(qū)建設(shè)階段.

      (2)中國(guó)發(fā)育海相、海陸過(guò)渡相—陸相煤系與陸相湖相3類(lèi)富有機(jī)質(zhì)頁(yè)巖,頁(yè)巖氣資源潛力大.古生界海相頁(yè)巖分布面積廣,厚度大,有機(jī)碳含量豐富,成熟度高,頁(yè)巖氣形成與富集條件優(yōu)越,是中國(guó)頁(yè)巖氣開(kāi)發(fā)的重點(diǎn)領(lǐng)域.

      (3)中國(guó)頁(yè)巖氣資源發(fā)展前景良好,目前勘探開(kāi)發(fā)程度低,與北美典型頁(yè)巖氣產(chǎn)區(qū)地質(zhì)與開(kāi)發(fā)條件有明顯差異,未來(lái)發(fā)展,需要借鑒北美的成功經(jīng)驗(yàn),針對(duì)中國(guó)的特點(diǎn),加強(qiáng)基礎(chǔ)地質(zhì)條件和關(guān)鍵開(kāi)發(fā)技術(shù)攻關(guān),努力尋求環(huán)境友好、低成本的開(kāi)發(fā)模式.

      中國(guó)頁(yè)巖氣形成機(jī)理、地質(zhì)特征及資源潛力*

      鄒才能1,2,董大忠1,2,王社教1,2,李建忠1,2,李新景1,2,王玉滿1,2,李登華1,2,程克明1,2

      (1. 中國(guó)石油勘探開(kāi)發(fā)研究院;2. 提高石油采收率國(guó)家重點(diǎn)實(shí)驗(yàn)室)

      1頁(yè)巖氣勘探開(kāi)發(fā)現(xiàn)狀

      油氣工業(yè)的生命周期大致有300年(1880—2180年)歷史,發(fā)展主要?dú)v經(jīng)構(gòu)造油氣藏、巖性地層油氣藏、非常規(guī)油氣藏(場(chǎng))勘探開(kāi)發(fā)3個(gè)階段和三大領(lǐng)域.油氣藏分布方式分別有單體型、集群型、連續(xù)型3種類(lèi)型.從構(gòu)造油氣藏向巖性地層油氣藏轉(zhuǎn)變是第一次理論技術(shù)創(chuàng)新,以尋找油氣圈閉為核心;從巖性地層圈閉油氣藏向非常規(guī)連續(xù)型油氣藏轉(zhuǎn)變是第二次理論技術(shù)創(chuàng)新或革命,以尋找有利油氣儲(chǔ)集體為核心,致密化“減孔成藏”機(jī)理新論點(diǎn)突破了常規(guī)儲(chǔ)集層物性下限與傳統(tǒng)圈閉找油的理念[1].隨著勘探開(kāi)發(fā)技術(shù)不斷進(jìn)步,占有80%左右資源的非常規(guī)油氣(一般將空氣滲透率大于1×10-3μm2或地層滲透率大于0.1×10-3μm2儲(chǔ)集層內(nèi)的油氣稱為常規(guī)油氣,把空氣滲透率小于1×10-3μm2或地層滲透率小于0.1×10-3μm2的油氣稱為非常規(guī)油氣)如頁(yè)巖氣、煤層氣、致密氣、致密油、頁(yè)巖油等已引起廣泛關(guān)注(見(jiàn)圖1),并得到有效開(kāi)發(fā),在油氣儲(chǔ)、產(chǎn)量中所占比例也逐年提高.傳統(tǒng)觀點(diǎn)僅認(rèn)識(shí)到頁(yè)巖可生油、生氣,沒(méi)認(rèn)識(shí)到頁(yè)巖亦可儲(chǔ)油、儲(chǔ)氣,更未認(rèn)識(shí)到還能聚集工業(yè)性頁(yè)巖油、頁(yè)巖氣.近年來(lái),典型頁(yè)巖氣的發(fā)展尤為迅速,地質(zhì)認(rèn)識(shí)不斷進(jìn)步,優(yōu)選核心區(qū)方法、實(shí)驗(yàn)分析技術(shù)、測(cè)井評(píng)價(jià)技術(shù)、資源評(píng)價(jià)技術(shù)、頁(yè)巖儲(chǔ)集層水平井鉆完井、同步多級(jí)并重復(fù)壓裂等先進(jìn)技術(shù)獲得應(yīng)用,形成“人造氣”是頁(yè)巖氣快速發(fā)展的關(guān)鍵因素.頁(yè)巖氣突破的意義在于:突破資源禁區(qū),增加資源類(lèi)型與資源量;挑戰(zhàn)儲(chǔ)集層極限,實(shí)現(xiàn)油氣理論技術(shù)升級(jí)換代,水平井多級(jí)壓裂等核心技術(shù)應(yīng)用于其他致密油氣等非常規(guī)和常規(guī)油氣儲(chǔ)集層中更加經(jīng)濟(jì)有效,可大幅度提高油氣采收率;帶動(dòng)非常規(guī)油氣技術(shù)發(fā)展,推動(dòng)致密油氣、頁(yè)巖油等更快成為常規(guī)領(lǐng)域.

      全球頁(yè)巖氣勘探開(kāi)發(fā)自1821年在美國(guó)東部泥盆系頁(yè)巖中鉆成第1口頁(yè)巖氣井、1914年發(fā)現(xiàn)第1個(gè)頁(yè)巖氣田——Big Sandy氣田[2]以來(lái),歷經(jīng)1821—1978年偶然發(fā)現(xiàn)、1978—2003年認(rèn)識(shí)創(chuàng)新與技術(shù)突破、2003—2006年水平井與水力壓裂等技術(shù)推廣應(yīng)用、2007—2010年全球化發(fā)展(頁(yè)巖氣中國(guó)年、歐州年)等4個(gè)階段.1981年被譽(yù)為“頁(yè)巖氣之父”的喬治·米歇爾對(duì)Barnet t頁(yè)巖C. W. Slay No. 1井實(shí)施大規(guī)模壓裂并獲成功以來(lái),實(shí)現(xiàn)了真正意義的頁(yè)巖氣突破.至2009年底,北美發(fā)現(xiàn)頁(yè)巖氣盆地30個(gè),開(kāi)發(fā)井50000余口,井深2500~4500 m;2009年年產(chǎn)量950×108m3[3],占北美天然氣總產(chǎn)量的12%(其中美國(guó)產(chǎn)量889×108m3).中國(guó)頁(yè)巖氣走過(guò)了裂縫油氣藏勘探與偶然發(fā)現(xiàn)(2005年以前)、基礎(chǔ)研究與技術(shù)準(zhǔn)備(2005—2009年)和工業(yè)化突破(2010年)等3個(gè)階段.1966年四川威5井在寒武系筇竹寺組頁(yè)巖中獲日產(chǎn)氣2.46×104m3,為中國(guó)最早的頁(yè)巖產(chǎn)氣井[4];2008年中國(guó)石油勘探開(kāi)發(fā)研究院在四川長(zhǎng)寧地區(qū)鉆探的長(zhǎng)芯1井[5]為中國(guó)第1口頁(yè)巖氣地質(zhì)井;2009年中國(guó)石油在四川威遠(yuǎn)-長(zhǎng)寧、富順-永川等地區(qū)啟動(dòng)了首批頁(yè)巖氣工業(yè)化試驗(yàn)區(qū)建設(shè);2010年中國(guó)石油勘探開(kāi)發(fā)研究院在四川長(zhǎng)寧地區(qū)建立了第1條中國(guó)頁(yè)巖氣數(shù)字化標(biāo)準(zhǔn)剖面;2010年中國(guó)石油鉆探的四川盆地威201井在寒武系、志留系頁(yè)巖中獲工業(yè)氣流,實(shí)現(xiàn)中國(guó)頁(yè)巖氣首次工業(yè)化突破.

      北美地區(qū)經(jīng)過(guò)多年的研究和開(kāi)發(fā)實(shí)踐,在頁(yè)巖氣形成機(jī)理、富集條件等方面已形成重要認(rèn)識(shí)和技術(shù)[6-15].本文重點(diǎn)分析中國(guó)頁(yè)巖氣基本特征、形成機(jī)理與富集條件、面臨的難題等,對(duì)中國(guó)頁(yè)巖氣資源潛力進(jìn)行預(yù)測(cè),以期為中國(guó)頁(yè)巖氣的研究和勘探開(kāi)發(fā)提供依據(jù).

      2中國(guó)富有機(jī)質(zhì)頁(yè)巖分布特征

      源巖油氣是一種新資源類(lèi)型,包括頁(yè)巖油、頁(yè)巖氣、煤層氣等,自生自儲(chǔ),主要產(chǎn)自源巖內(nèi)儲(chǔ)集層中.

      頁(yè)巖(shale)是由粒徑小于0.0039 mm的細(xì)粒碎屑、黏土、有機(jī)質(zhì)等組成,具頁(yè)狀或薄片狀層理、易碎裂的一類(lèi)沉積巖,亦即美國(guó)所稱的粒徑小于0.0039 mm的細(xì)粒沉積巖.

      頁(yè)巖氣(shale gas)是指從富有機(jī)質(zhì)黑色頁(yè)巖中開(kāi)采的天然氣,或自生自儲(chǔ)、在頁(yè)巖納米級(jí)孔隙中連續(xù)聚集的天然氣.

      中國(guó)3類(lèi)富有機(jī)質(zhì)頁(yè)巖泛指海相、海陸交互相以及陸相頁(yè)巖和泥巖,重點(diǎn)指含油氣盆地中的優(yōu)質(zhì)泥質(zhì)烴源巖,圖2為依據(jù)中國(guó)頁(yè)巖發(fā)育的層系和分布特點(diǎn)編制的3類(lèi)頁(yè)巖分布圖.中國(guó)南方揚(yáng)子地區(qū)海相頁(yè)巖多為硅質(zhì)頁(yè)巖(如揚(yáng)子地區(qū)牛蹄塘組底部頁(yè)巖)、黑色頁(yè)巖、鈣質(zhì)頁(yè)巖和砂質(zhì)頁(yè)巖,風(fēng)化后呈薄片狀,頁(yè)理發(fā)育.海陸過(guò)渡相頁(yè)巖多為砂質(zhì)頁(yè)巖和炭質(zhì)頁(yè)巖.陸相頁(yè)巖頁(yè)理發(fā)育,渤海灣盆地、柴達(dá)木盆地新生界陸相頁(yè)巖鈣質(zhì)含量高,為鈣質(zhì)頁(yè)巖,鄂爾多斯盆地中生界陸相頁(yè)巖石英含量較高.

      2.1富含頁(yè)巖氣的核心區(qū)特征

      目前進(jìn)行頁(yè)巖氣經(jīng)濟(jì)開(kāi)發(fā)的核心區(qū)有5個(gè)富集高產(chǎn)條件(見(jiàn)表1),通常是指TOC值大于2%、處在生氣窗內(nèi)、脆性礦物含量大于40%的有效頁(yè)巖.有效頁(yè)巖厚度大于30~50 m(有效頁(yè)巖連續(xù)發(fā)育時(shí)大于30 m,斷續(xù)發(fā)育或TOC值小于2%時(shí),累計(jì)厚度大于50 m)時(shí)亦足以滿足商業(yè)開(kāi)發(fā)要求.北美產(chǎn)氣頁(yè)巖有效厚度最小為6 m(Fayet teville),最大為304 m(Marcellus),核心區(qū)有效頁(yè)巖厚度均大于30 m.

      基于北美頁(yè)巖氣勘探開(kāi)發(fā)實(shí)踐、統(tǒng)計(jì)分析及關(guān)鍵實(shí)驗(yàn)等結(jié)果,認(rèn)為有利頁(yè)巖氣及核心區(qū)具有4方面主要地質(zhì)特征和3方面主要開(kāi)發(fā)特點(diǎn),詳見(jiàn)表1.

      2.2中國(guó)頁(yè)巖形成的區(qū)域地質(zhì)背景

      古生代,在中國(guó)南方、華北及塔里木地區(qū)形成了廣泛的海相和海陸過(guò)渡相沉積,發(fā)育多套海相富有機(jī)質(zhì)頁(yè)巖和海陸過(guò)渡相煤系炭質(zhì)頁(yè)巖[6].在后期改造過(guò)程中,部分古生界海相頁(yè)巖經(jīng)歷了擠壓變形或隆升,如南方的揚(yáng)子地區(qū),多為后期隆升改造.四川盆地、華北地區(qū)、塔里木盆地構(gòu)造相對(duì)穩(wěn)定,地層保存條件較好.

      中、新生代以來(lái),形成了中國(guó)獨(dú)特的陸相湖盆沉積[6].陸相沉積盆地一般面積不大,但在盆地穩(wěn)定沉降階段常形成分布廣泛的陸相生油巖,生烴潛力很大[6],如松遼盆地下白堊統(tǒng)青山口組、鄂爾多斯盆地上三疊統(tǒng)延長(zhǎng)組陸相頁(yè)巖,均是盆地主要烴源巖.

      2.3頁(yè)巖的沉積特征

      盆地不同演化階段直接控制富有機(jī)質(zhì)頁(yè)巖的發(fā)育與分布[16].根據(jù)沉積環(huán)境,可將富有機(jī)質(zhì)頁(yè)巖劃分為海相頁(yè)巖、海陸交互相煤系炭質(zhì)頁(yè)巖、陸相頁(yè)巖3種基本類(lèi)型(見(jiàn)表2).

      中國(guó)南方、華北地臺(tái)及塔里木地臺(tái)發(fā)育的古生界海相黑色頁(yè)巖多形成于水深200 m左右、生物化石豐富、強(qiáng)還原環(huán)境的深水陸棚相,如四川盆地發(fā)育的寒武系筇竹寺組、志留系龍馬溪組黑色頁(yè)巖為受大陸邊緣坳陷控制的深水陸棚相沉積[17](見(jiàn)圖3),富有機(jī)質(zhì)黑色頁(yè)巖面積13.5×104~18.0×104km2,厚200~400 m,有機(jī)質(zhì)豐富,含海洋浮游生物筆石化石及自生黃鐵礦等,有機(jī)碳含量1.85% ~4.36%,最高達(dá)11.0%~22.3%.在這兩套黑色頁(yè)巖中均發(fā)現(xiàn)了大量頁(yè)巖氣.

      海陸過(guò)渡相形成的煤系頁(yè)巖,如鄂爾多斯盆地石炭系本溪組及下二疊統(tǒng)山西組-太原組、準(zhǔn)噶爾盆地石炭-二疊系、塔里木盆地石炭-二疊系、華北地區(qū)石炭-二疊系、中國(guó)南方地區(qū)的二疊系龍?zhí)督M等,也是大型油氣田的主要烴源巖,如鄂爾多斯盆地上古生界炭質(zhì)頁(yè)巖是蘇里格等大氣區(qū)的主要?dú)庠磶r.三疊系-侏羅系和第三系發(fā)育多套與煤層相伴生的炭質(zhì)頁(yè)巖,同樣亦是優(yōu)質(zhì)氣源巖,吐哈盆地發(fā)現(xiàn)的油氣田多數(shù)來(lái)源于侏羅系煤系頁(yè)巖.

      中國(guó)發(fā)育陸相含油氣盆地頁(yè)巖:渤海灣盆地古近紀(jì)、松遼盆地白堊紀(jì)、鄂爾多斯盆地三疊紀(jì)、四川盆地侏羅紀(jì)、塔里木盆地三疊紀(jì))侏羅紀(jì)、準(zhǔn)噶爾盆地侏羅紀(jì)均為大型湖盆沉積,在湖盆的擴(kuò)張期,形成了分布廣泛且厚度大的湖相頁(yè)巖,有機(jī)質(zhì)十分豐富,含介形蟲(chóng)、孢粉、細(xì)菌、高等植物等化石,厚度200~2500 m,有機(jī)碳含量2%~3%,最高達(dá)到7%~14%.在中新生代發(fā)現(xiàn)了眾多規(guī)模不等的油氣聚集帶[18],大慶油田、勝利油田、遼河油田、鄂爾多斯中生界油氣聚集區(qū)等,其油氣就源于該套湖相泥巖.

      2.4頁(yè)巖的分布特征

      中國(guó)海相頁(yè)巖十分發(fā)育,分布廣、厚度大[19].主要發(fā)育在古生界的陡山沱組(Z2)、筇竹寺竹組(-C1)、大乘寺組(O1)、五峰-龍馬溪組(O3-S1)、羅富組(D2)、德塢組-大塘組(C1)、龍?zhí)督M(P2)(見(jiàn)表3).發(fā)育最好的頁(yè)巖分布在下寒武統(tǒng)、上奧陶統(tǒng)頂部-下志留統(tǒng)底部,以揚(yáng)子克拉通地區(qū)最為典型.

      下寒武統(tǒng)海相頁(yè)巖在中上揚(yáng)子區(qū)發(fā)育好,有機(jī)質(zhì)類(lèi)型為腐泥型-混合型.從沉積環(huán)境看,川東-鄂西、川南及湘黔3個(gè)深水陸棚區(qū)下寒武統(tǒng)海相頁(yè)巖最發(fā)育[20],平均厚度100 m,TOC值平均高達(dá)8%左右.四川盆地下寒武統(tǒng)海相頁(yè)巖全盆地發(fā)育,以硅質(zhì)頁(yè)巖、炭質(zhì)頁(yè)巖、粉沙質(zhì)頁(yè)巖和黑色頁(yè)巖為主,厚度平均為139 m,TOC值平均1.0%~5.5%,盆地南部頁(yè)巖埋藏淺于4000 m.

      上奧陶統(tǒng)-下志留統(tǒng)海相頁(yè)巖在川東南、川東北、鄂西渝東、中下?lián)P子等區(qū)廣泛發(fā)育[5],以黑色頁(yè)巖、炭質(zhì)頁(yè)巖、黑色筆石頁(yè)巖、鈣質(zhì)頁(yè)巖為主,平均厚120 m,TOC值平均4%左右,干酪根為腐泥型.四川盆地上奧陶統(tǒng)-下志留統(tǒng)海相頁(yè)巖在川南-川東地區(qū)發(fā)育較好.據(jù)筆者綜合運(yùn)用伽馬能譜、元素捕獲、探地雷達(dá)及陸地激光三維全信息掃描等手段建立的長(zhǎng)寧雙河上奧陶統(tǒng)五峰組-下志留統(tǒng)龍馬溪組海相頁(yè)巖地層數(shù)字化標(biāo)準(zhǔn)剖面(見(jiàn)圖4)統(tǒng)計(jì),川南上奧陶統(tǒng)五峰組-下志留統(tǒng)龍馬溪組黑色頁(yè)巖厚度大于308 m,有機(jī)質(zhì)類(lèi)型為腐泥型,TOC值平均2.94%,最高達(dá)8.75%.

      海陸交互相及陸相煤系炭質(zhì)頁(yè)巖在華北、華南地區(qū)和塔里木盆地廣泛分布(見(jiàn)表4).北部主要發(fā)育在天山-興蒙海槽.鄂爾多斯盆地海陸交互相山西組-太原組-本溪組頁(yè)巖厚40~120 m,單層厚度不大,多數(shù)與煤層、致密砂巖甚至薄層灰?guī)r交互出現(xiàn).準(zhǔn)噶爾盆地石炭系滴水泉組炭質(zhì)頁(yè)巖最厚達(dá)249 m,二疊系蘆草溝組黑色頁(yè)巖累計(jì)厚度超過(guò)200 m.中國(guó)南方地區(qū)的二疊系龍?zhí)督M(P2)炭質(zhì)頁(yè)巖厚20~200 m,最厚達(dá)670 m,分布面積約30×104~50×104km2.其中,滇黔桂地區(qū)上二疊統(tǒng)龍?zhí)督M頁(yè)巖厚度為20~60 m,四川盆地上二疊統(tǒng)頁(yè)巖厚10~125 m,川中和川西南一帶厚80~110 m,四川盆地西北緣、北緣及東北緣較薄,多小于20 m.中新生代陸相煤系炭質(zhì)頁(yè)巖主要發(fā)育在坳陷和斷陷湖盆中,如鄂爾多斯盆地和準(zhǔn)噶爾盆地侏羅系、四川盆地上三疊統(tǒng)(厚150~1000m)、吐哈盆地侏羅系(厚50~400 m,最厚達(dá)1200 m)等.

      總體上,中國(guó)海陸交互相和中新生代陸相炭質(zhì)頁(yè)巖除上揚(yáng)子及滇黔桂地區(qū)單層厚度較大外,多數(shù)地區(qū)單層厚度都不大,常與煤和致密砂巖甚至灰?guī)r互層,單層平均厚度一般小于15 m,單獨(dú)開(kāi)發(fā)這套薄層煤系頁(yè)巖氣將面臨很大的挑戰(zhàn),進(jìn)行頁(yè)巖氣、致密氣、煤層氣等多目的層聯(lián)合開(kāi)發(fā)是有效開(kāi)發(fā)的新途徑.

      主要分布于陸相含油氣盆地的湖相頁(yè)巖沉積范圍最廣(見(jiàn)表5),廣泛發(fā)育湖相頁(yè)巖油、致密砂巖油與致密頁(yè)巖油.松遼、鄂爾多斯、四川等中新生代坳陷盆地[21]及渤海灣新生代斷陷盆地都沉積了厚層湖相富有機(jī)質(zhì)頁(yè)巖、砂巖與泥巖[22].如松遼盆地嫩江組和青山口組兩套頁(yè)巖十分發(fā)育,嫩江組在全盆地穩(wěn)定分布,中央坳陷區(qū)厚度超過(guò)250 m,青山口組一段在中央坳陷區(qū)幾乎全部為黑色頁(yè)巖,厚度為60~80 m,干酪根類(lèi)型為ⅳ—型,Ro值為0.9%~1.8%.鄂爾多斯盆地延長(zhǎng)組長(zhǎng)7段主要為深湖相沉積,富有機(jī)質(zhì)頁(yè)巖平均厚度20~40 m,分布面積超過(guò)4×104km2,有機(jī)碳含量平均高達(dá)14%,干酪根類(lèi)型為ⅳ—型,Ro值為0.6%~1.2%.最近,在該套湖相頁(yè)巖地層內(nèi)發(fā)現(xiàn)了大量致密油,油層為厚10~20 m、孔隙度10.2%、滲透率0.21×10-3μm2的致密粉砂巖,有工業(yè)油氣流井近200口,平均產(chǎn)量8.6 t/d.該特征與北美在Williston盆地Bakken頁(yè)巖層中發(fā)現(xiàn)的致密油極為相似[23].Bakken地層位于上泥盆統(tǒng)頂部,由下向上分9段,最下面第1段頁(yè)巖厚度12~15 m,TOC值高達(dá)14%~18%,Ro值為1.1%~1.3%,為富有機(jī)質(zhì)頁(yè)巖層.上覆第2段致密粉砂巖油層孔隙度10%~13%,滲透率0.01×10-3~1×10-3μm2,厚5~15 m,面積約75563 km2,1999年USGS專(zhuān)家估算頁(yè)巖中致密油地質(zhì)資源量為578×108t,一般預(yù)測(cè)為241×108~518×108t.致密油是繼頁(yè)巖氣突破后又一重大發(fā)現(xiàn),成為新亮點(diǎn).

      3中國(guó)頁(yè)巖氣地球化學(xué)特征

      頁(yè)巖氣是富有機(jī)質(zhì)烴源巖層系中以甲烷為主的天然氣.作為一種重要的“有機(jī)礦物顆?!保袡C(jī)質(zhì)不僅為常規(guī)油氣藏提供豐富的物質(zhì)基礎(chǔ),其自身也可以儲(chǔ)集并產(chǎn)出油氣.大量研究表明,對(duì)于熱成因頁(yè)巖氣區(qū)帶的初步篩選,通常要求頁(yè)巖達(dá)到某些地球化學(xué)指標(biāo),如:有機(jī)質(zhì)豐度(TOC)大于2%,成熟度(Ro)大于1.1%,滿足這些約束條件的地區(qū),可有效降低頁(yè)巖氣勘探開(kāi)發(fā)風(fēng)險(xiǎn).

      3.1頁(yè)巖的基本地球化學(xué)特征

      中國(guó)海相、海陸交互相以及陸相頁(yè)巖廣泛分布[24-27],不同沉積環(huán)境形成的有機(jī)質(zhì)類(lèi)型不同,傾油、傾氣性也有差別,很多盆地或區(qū)塊達(dá)到富集頁(yè)巖氣所需基本地球化學(xué)標(biāo)準(zhǔn)(見(jiàn)表6).四川盆地下古生界寒武系筇竹寺組和志留系龍馬溪組兩套海相黑色頁(yè)巖屬ⅳ—1型干酪根,顯示良好的傾油性,當(dāng)Ro值高于1.2%時(shí),在高過(guò)成熟的頁(yè)巖地層中,先生油,后裂解成氣,形成海相頁(yè)巖“連續(xù)”生氣與聚氣.中國(guó)北方古生界石炭-二疊系、中生界侏羅系含煤層系炭質(zhì)頁(yè)巖作為重要的氣源巖,已形成了大規(guī)模天然氣聚集,有機(jī)質(zhì)主要是型,屬腐殖型干酪根,在整個(gè)成熟演化階段,以成氣為主:Ro值為1.0%時(shí),天然氣轉(zhuǎn)化率已達(dá)到40%以上;Ro值為2.5%時(shí),天然氣轉(zhuǎn)化率達(dá)到95%;Ro值為0.8%~2.5%是煤系有機(jī)質(zhì)主生氣期[28].富氫組分含量相對(duì)較高區(qū)塊,更有利于形成頁(yè)巖氣富集區(qū).可見(jiàn),中國(guó)的3類(lèi)主要頁(yè)巖具備形成頁(yè)巖氣資源的條件.

      中國(guó)頁(yè)巖氣潛力區(qū)的部分地球化學(xué)特征不同于北美頁(yè)巖氣主產(chǎn)區(qū).如:包括四川盆地在內(nèi)的揚(yáng)子地臺(tái)大部分地區(qū)古生界烴源巖是區(qū)域主力烴源,雖屬ⅳ型干酪根,但成熟度普遍為高或過(guò)成熟,連續(xù)生油、生氣、聚氣,殘余生烴潛力低;中國(guó)大中型煤型氣田,如鄂爾多斯、塔里木、華北地區(qū)上古生界石炭-二疊系炭質(zhì)頁(yè)巖,其有機(jī)質(zhì)豐度一般都比較高,Ro值為1.1%~2.5%,有機(jī)質(zhì)類(lèi)型則多為型;鄂爾多斯盆地中生界三疊系長(zhǎng)7黑色頁(yè)巖為優(yōu)質(zhì)烴源巖,呈較高自然伽馬、高電阻率、較低密度、高聲波時(shí)差,有機(jī)質(zhì)類(lèi)型為ⅳ型,具有很高的生烴潛力,但Ro值為0.90%~1.16%,尚屬生油高峰階段.

      中國(guó)陸相地層中廣泛發(fā)育頁(yè)巖油.頁(yè)巖油是生油巖內(nèi)納米-微米級(jí)孔隙與裂縫聚集的石油,如在松遼盆地古龍凹陷已發(fā)現(xiàn)下白堊統(tǒng)青山口組和嫩江組頁(yè)巖油聚集,頁(yè)巖富有機(jī)質(zhì),總厚300~620 m,一般異常高壓,干酪根為ⅳ—型,Ro值為0.9%~1.2%.最早在大安構(gòu)造大4井青山口組泥巖段獲日產(chǎn)油2.66 t,另有50余口井見(jiàn)油氣顯示,4口井產(chǎn)少量油氣-古501井、英15井、英3井、大111井),5口井獲工業(yè)油氣流(英12井、英18井、英16井、古1井、大4井).盆地南部新北油田泥巖裂縫性油藏幾口井已開(kāi)采10余年,累計(jì)產(chǎn)油超過(guò)3×104t.鄂爾多斯、渤海灣等盆地生油層系中也發(fā)育頁(yè)巖油.頁(yè)巖油是頁(yè)巖氣之后又一“源巖油”領(lǐng)域,值得重視.

      3.2關(guān)鍵地球化學(xué)參數(shù)與頁(yè)巖儲(chǔ)集能力的相關(guān)性

      自生自儲(chǔ)的頁(yè)巖氣儲(chǔ)集層,其有機(jī)地球化學(xué)關(guān)鍵參數(shù),如有機(jī)質(zhì)豐度和成熟度等,與頁(yè)巖儲(chǔ)集層含氣性、儲(chǔ)集空間的發(fā)育密不可分.北美地區(qū)頁(yè)巖含氣量往往與有機(jī)質(zhì)豐度(TOC)呈正相關(guān)性,ⅳ、型干酪根往往具有較高的吸附能力[29].中國(guó)四川盆地高)過(guò)成熟海相頁(yè)巖實(shí)驗(yàn)測(cè)試數(shù)據(jù)也證明,有機(jī)質(zhì)豐度高者,含氣量相對(duì)豐富,更有條件成為優(yōu)質(zhì)頁(yè)巖儲(chǔ)集層.

      隨著成熟度增加,干酪根、原油熱裂解大量生烴,除了生成大量油氣、為常規(guī)油氣藏提供豐富的物質(zhì)來(lái)源之外,有機(jī)質(zhì)本身可產(chǎn)生5~200 nm左右納米級(jí)孔隙[30].筆者在對(duì)中國(guó)四川盆地寒武系和志留系高-過(guò)成熟海相頁(yè)巖儲(chǔ)集層的研究中首次發(fā)現(xiàn),這兩套地層下部不僅有機(jī)質(zhì)豐度高、含氣量高,而且呈分散狀、紋層狀分布的“有機(jī)質(zhì)顆?!眱?nèi)部形成大量微米-納米級(jí)孔隙(見(jiàn)圖5),這些孔隙大者3~4 μm,小至幾個(gè)納米,一般都大于100~200 nm,為豐富的頁(yè)巖氣資源提供了充足的儲(chǔ)集空間,有力地說(shuō)明中國(guó)南方致密的海相頁(yè)巖具備優(yōu)質(zhì)儲(chǔ)集條件,在有機(jī)質(zhì)豐度比較高的層段和區(qū)域,勘探開(kāi)發(fā)前景良好.澳大利亞Beetaloo盆地在全球最老地層(約14×108a)——元古界發(fā)現(xiàn)了頁(yè)巖氣,有機(jī)碳含量4%,Ro值高達(dá)3.49%,預(yù)測(cè)頁(yè)巖氣資源量5600×108m3.

      4頁(yè)巖氣形成機(jī)理及儲(chǔ)集層特征

      4.1頁(yè)巖氣形成機(jī)理

      頁(yè)巖氣形成機(jī)制是原位“滯留成藏”,連續(xù)型分布.甲烷在頁(yè)巖微孔(孔徑小于2 nm)中順序填充,在介孔(孔徑為2~50 nm)中多層吸附至毛細(xì)管凝聚,在大孔(孔徑大于50 nm)中甲烷以壓縮或溶解態(tài)賦存.成藏中經(jīng)過(guò)吸附、解吸、擴(kuò)散等作用.有機(jī)質(zhì)生氣或油裂解成氣,天然氣先在有機(jī)質(zhì)孔內(nèi)表面飽和吸附;之后解吸擴(kuò)散至基質(zhì)孔中,以吸附、游離相原位飽和聚集;過(guò)飽和氣初次運(yùn)移至上覆無(wú)機(jī)質(zhì)頁(yè)巖孔中;氣再飽和后,二次運(yùn)移形成氣藏(見(jiàn)圖6)[31,32].

      4.2巖石礦物組成

      脆性礦物含量是影響頁(yè)巖基質(zhì)孔隙和微裂縫發(fā)育程度、含氣性及壓裂改造方式等的重要因素.頁(yè)巖中黏土礦物含量越低,石英、長(zhǎng)石、方解石等脆性礦物含量越高,巖石脆性越強(qiáng),在人工壓裂外力作用下越易形成天然裂縫和誘導(dǎo)裂縫,形成多樹(shù)-網(wǎng)狀結(jié)構(gòu)縫,有利于頁(yè)巖氣開(kāi)采.而高黏土礦物含量的頁(yè)巖塑性強(qiáng),吸收能量,以形成平面裂縫為主,不利于頁(yè)巖體積改造.美國(guó)產(chǎn)氣頁(yè)巖中石英含量為28%~52%、碳酸鹽含量4%~16%,總脆性礦物含量為46%~60%.筆者對(duì)中國(guó)3種不同類(lèi)型頁(yè)巖的礦物組成進(jìn)行測(cè)試后發(fā)現(xiàn),無(wú)論是海相頁(yè)巖、海陸過(guò)渡相炭質(zhì)頁(yè)巖,還是陸相頁(yè)巖,其脆性礦物含量總體比較高,均達(dá)到40%以上,如:上揚(yáng)子區(qū)古生界海相頁(yè)巖石英含量24.3%~52.0%、長(zhǎng)石含量4.3%~32.3%、方解石含量8.5%~16.9%,總脆性礦物含量40%~80%(見(jiàn)表7、圖7);四川盆地上三疊統(tǒng)須家河組黏土礦物含量一般為15%~78%,平均為50%左右,石英、長(zhǎng)石等脆性礦物含量一般為22%~85%,平均為50%左右.鄂爾多斯盆地上古生界含煤層系炭質(zhì)頁(yè)巖石英含量32%~54%,平均48%,總脆性礦物含量40%~58%;鄂爾多斯盆地中生界陸相頁(yè)巖石英含量27% 47%,平均40%,總脆性礦物含量58%~70%.

      巖石礦物組成對(duì)頁(yè)巖氣后期開(kāi)發(fā)至關(guān)重要,具備商業(yè)性開(kāi)發(fā)條件的頁(yè)巖,一般其脆性礦物含量要高于40%,黏土礦物含量小于30%.

      4.3孔滲特征與微裂縫

      4.3.1孔滲特征

      巖石孔隙是儲(chǔ)存油氣的重要空間和確定游離氣含量的關(guān)鍵參數(shù).據(jù)統(tǒng)計(jì),有平均50%左右的頁(yè)巖氣存儲(chǔ)在頁(yè)巖基質(zhì)孔隙中.頁(yè)巖儲(chǔ)集層為特低孔滲儲(chǔ)集層,以發(fā)育多類(lèi)型微米甚至納米級(jí)孔隙為特征,包括顆粒間微孔、黏土片間微孔、顆粒溶孔、溶蝕雜基內(nèi)孔、粒內(nèi)溶蝕孔及有機(jī)質(zhì)孔等.孔隙大小一般小于2 μm,有機(jī)質(zhì)孔喉一般100~200 nm,比表面積大,結(jié)構(gòu)復(fù)雜,豐富的內(nèi)表面積可以通過(guò)吸附方式儲(chǔ)存大量氣體[33].一般頁(yè)巖的基質(zhì)孔隙度為0.5%~6.0%,眾數(shù)多為2%~4%.四川盆地華鎣山紅巖煤礦龍馬溪組和威遠(yuǎn)地區(qū)筇竹寺組頁(yè)巖實(shí)測(cè)結(jié)果:龍馬溪組頁(yè)巖孔隙度為2. 43%~15.72%,平均4.83%;筇竹寺組頁(yè)巖孔隙度為0.34%~8.10%,平均3.02%.鄂爾多斯盆地中生界陸相頁(yè)巖實(shí)測(cè)孔隙度0.4%~1.5%,滲透率0.012×10-3~0.653×10-3μm2.

      中國(guó)海相富有機(jī)質(zhì)頁(yè)巖微米-納米孔十分發(fā)育(見(jiàn)圖5),既有粒間孔,也有粒內(nèi)孔和有機(jī)質(zhì)孔,尤其有機(jī)質(zhì)成熟后形成的納米級(jí)孔喉甚為發(fā)育,這些納米級(jí)孔喉是頁(yè)巖氣賦存的主要空間.

      4.3.2微裂縫

      裂縫包括地下原始裂縫和后期人造裂縫,可為頁(yè)巖氣提供充足的儲(chǔ)集空間、運(yùn)移通道,更能有效提高頁(yè)巖氣產(chǎn)量[2].在不發(fā)育裂隙情況下,頁(yè)巖滲透能力非常低.石英含量的高低是影響裂縫發(fā)育的重要因素,富含石英的黑色泥頁(yè)巖段脆性好,裂縫的發(fā)育程度比富含方解石的泥頁(yè)巖更強(qiáng)[34].Nelson認(rèn)為,除石英外,長(zhǎng)石和白云石也是泥頁(yè)巖中脆性組分[35].一般頁(yè)巖中具有高含量的黏土礦物,但暗色富有機(jī)質(zhì)頁(yè)巖中的黏土礦物含量通常則較低.頁(yè)巖氣勘探必須尋找能夠壓裂成縫的頁(yè)巖,即頁(yè)巖的黏土礦物含量足夠低(<50%)、脆性礦物含量豐富,使其易于成功壓裂.中國(guó)海相頁(yè)巖、海陸交互相炭質(zhì)頁(yè)巖和陸相頁(yè)巖均具有較好的脆性特征,無(wú)論是野外地質(zhì)剖面還是井下巖心觀察,發(fā)現(xiàn)其均發(fā)育較多的裂縫系統(tǒng).如:上揚(yáng)子地區(qū)寒武系筇竹寺組、志留系龍馬溪組黑色頁(yè)巖性脆、質(zhì)硬,節(jié)理和裂縫發(fā)育,在三維空間成網(wǎng)絡(luò)狀分布,巖石薄片顯示,微裂縫細(xì)如發(fā)絲,部分被方解石、瀝青等次生礦物充填;鄂爾多斯盆地上古生界山西組巖心切片可看到呈網(wǎng)狀分布的微裂縫;鄂爾多斯盆地中生界長(zhǎng)7段黑色頁(yè)巖頁(yè)理十分發(fā)育,風(fēng)化后呈薄片狀.

      4.4含氣性

      頁(yè)巖氣區(qū)根據(jù)含氣性可劃分為核心區(qū)、外圍區(qū).頁(yè)巖含氣量是衡量頁(yè)巖氣核心區(qū)是否具經(jīng)濟(jì)開(kāi)采價(jià)值和進(jìn)行資源潛力評(píng)估評(píng)價(jià)的重要指標(biāo),頁(yè)巖含氣量包括游離氣、吸附氣及溶解氣等.哈里伯頓公司認(rèn)為商業(yè)開(kāi)發(fā)遠(yuǎn)景區(qū)的頁(yè)巖含氣量最低為2.8 m3/t,目前北美已商業(yè)開(kāi)發(fā)的頁(yè)巖氣,其含氣量最低約為1.1 m3/t,最高達(dá)9.91 m3/t.實(shí)測(cè)發(fā)現(xiàn)四川盆地下寒武統(tǒng)寒武系筇竹寺組黑色頁(yè)巖含氣量為1.17~6.02 m3/t,平均2.82 m3/t,龍馬溪組黑色頁(yè)巖含氣量為1.73~3.28 m3/t,與北美產(chǎn)氣頁(yè)巖的含氣量(見(jiàn)表7)相比,均達(dá)到了商業(yè)性頁(yè)巖氣開(kāi)發(fā)下限,具備商業(yè)性開(kāi)發(fā)價(jià)值.由于中國(guó)頁(yè)巖氣尚未進(jìn)入開(kāi)發(fā)階段,鉆探頁(yè)巖氣井少,因此無(wú)法獲取更多的頁(yè)巖含氣量數(shù)據(jù).但根據(jù)老井復(fù)查結(jié)果,在已往的鉆井中,鉆遇的黑色頁(yè)巖段發(fā)現(xiàn)了大量的氣測(cè)顯示,有井涌和井噴現(xiàn)象發(fā)生,證明頁(yè)巖段含氣性很好.如:四川盆地威遠(yuǎn)地區(qū)鉆穿筇竹寺組的107口井中,32口井52個(gè)井段出現(xiàn)不同級(jí)別氣測(cè)顯示,威5井在鉆至2795~2798 m筇竹寺組頁(yè)巖層段時(shí)發(fā)生井噴,中途測(cè)試獲日產(chǎn)2.46×104m3的天然;鉆穿川南地區(qū)下志留統(tǒng)龍馬溪組頁(yè)巖層段的15口井中32個(gè)層段見(jiàn)良好氣測(cè)顯示,陽(yáng)63井3505~3518 m龍馬溪組頁(yè)巖段測(cè)試后獲日產(chǎn)天然氣3500 m3.

      5資源潛力及特殊性

      有不少學(xué)者或機(jī)構(gòu)對(duì)中國(guó)頁(yè)巖氣資源潛力做過(guò)預(yù)測(cè),總體評(píng)價(jià)偏樂(lè)觀[36-38].

      頁(yè)巖氣與常規(guī)氣存在明顯差異,不僅包括地質(zhì)條件的不確定性,也有開(kāi)發(fā)中的經(jīng)濟(jì)風(fēng)險(xiǎn)性,尤其是采收率的確定需要依賴井控?cái)?shù)據(jù).因此,客觀、準(zhǔn)確預(yù)測(cè)頁(yè)巖氣資源潛力具挑戰(zhàn)性.

      中國(guó)頁(yè)巖氣勘探開(kāi)發(fā)尚處于起步階段,可用于頁(yè)巖氣資源潛力預(yù)測(cè)的資料非常有限.盡管中國(guó)不同地區(qū)在富有機(jī)質(zhì)頁(yè)巖發(fā)育規(guī)模、頁(yè)巖質(zhì)量等方面具廣泛的相似性,但中國(guó)地質(zhì)條件復(fù)雜,尤其是構(gòu)造演化、沉積環(huán)境、熱演化過(guò)程等,使不同地區(qū)頁(yè)巖氣形成、富集存在許多差異.中國(guó)古生界海相富有機(jī)質(zhì)頁(yè)巖分布范圍廣、連續(xù)厚度大、有機(jī)質(zhì)豐度高,但演化程度高、構(gòu)造變動(dòng)多;中新生界陸相富有機(jī)質(zhì)頁(yè)巖橫向變化大,以厚層泥巖或砂泥互層為主,有機(jī)質(zhì)豐度中等,熱成熟度低.因此,基于地質(zhì)類(lèi)比對(duì)中國(guó)頁(yè)巖氣資源潛力進(jìn)行預(yù)測(cè).中國(guó)古生界海相富有機(jī)質(zhì)頁(yè)巖有利領(lǐng)域展布面積63×104~90×104km2,中新生界陸相富有機(jī)質(zhì)泥頁(yè)巖有利領(lǐng)域展布面積23×104~33×104km2,有效頁(yè)巖厚度20~300 m,有機(jī)碳含量0.50%~25.71%,Ro值為0.8%~4.5%,預(yù)測(cè)頁(yè)巖氣資源量30×1012~100×1012m8,這些預(yù)測(cè)數(shù)據(jù)都是初步結(jié)果,而中國(guó)頁(yè)巖氣的技術(shù)與經(jīng)濟(jì)可采資源量正在研究之中.

      目前,中國(guó)已在四川盆地南部等地區(qū)啟動(dòng)了多個(gè)頁(yè)巖氣工業(yè)化生產(chǎn)試驗(yàn)區(qū)建設(shè),已取得突破;正在開(kāi)展的中下?lián)P子、鄂爾多斯、塔里木等地區(qū)的前期評(píng)價(jià),將優(yōu)選出頁(yè)巖氣有利接替地區(qū).開(kāi)發(fā)頁(yè)巖氣對(duì)緩解中國(guó)天然氣資源緊缺現(xiàn)狀、改變能源結(jié)構(gòu)、保障國(guó)家能源安全具有戰(zhàn)略意義,同時(shí)對(duì)石油地質(zhì)理論創(chuàng)新與勘探開(kāi)發(fā)技術(shù)革新也有重大科學(xué)價(jià)值.

      中國(guó)頁(yè)巖氣與北美頁(yè)巖氣對(duì)比,有3個(gè)特殊性:海相頁(yè)巖熱演化程度較高(Ro值為2.5%~5.0%)、構(gòu)造活動(dòng)較強(qiáng),需尋找保存條件有利的地區(qū),避開(kāi)露頭和斷裂破壞區(qū);陸相頁(yè)巖熱演化程度較低、分布非均質(zhì)性較強(qiáng),有效開(kāi)發(fā)需針對(duì)性技術(shù);地面多山地、丘陵等復(fù)雜地表,埋藏較深(5000~7000 m),還面臨水資源與環(huán)保等問(wèn)題,需采用適用技術(shù)降低成本.因此,中國(guó)頁(yè)巖氣勘探開(kāi)發(fā)應(yīng)特別注意復(fù)雜地表、埋藏深度、后期保存等特殊地質(zhì)條件,如塔里木盆地海相頁(yè)巖埋藏深度大,南方部分地區(qū)頁(yè)巖出露后面臨保存、開(kāi)發(fā)中地表多山地等難題,因此,要加強(qiáng)有利核心區(qū)優(yōu)選與經(jīng)濟(jì)評(píng)價(jià).

      6結(jié)論

      中國(guó)陸上廣泛發(fā)育海相、海陸過(guò)渡相、陸相三大套富有機(jī)質(zhì)黑色泥頁(yè)巖,均具備形成頁(yè)巖氣的基本地質(zhì)條件.它們有共性,也有特殊性,勘探開(kāi)發(fā)實(shí)踐與研究中一定要注意區(qū)別對(duì)待.盆地內(nèi)古生界頁(yè)巖以海相沉積為主,區(qū)域穩(wěn)定分布,厚度大,有機(jī)質(zhì)豐富,演化程度高,已見(jiàn)大量氣顯示,是頁(yè)巖氣勘探開(kāi)發(fā)的現(xiàn)實(shí)領(lǐng)域.

      中國(guó)石炭-二疊系、三疊-侏羅系煤系中發(fā)育高炭泥頁(yè)巖、煤層,與砂巖伴生,連續(xù)分布有頁(yè)巖氣與致密氣.中新生界陸相泥頁(yè)巖、泥巖與砂巖、灰?guī)r互層,成熟度低,連續(xù)分布的頁(yè)巖油與致密油是戰(zhàn)略新領(lǐng)域.

      源巖油氣是新領(lǐng)域,包括頁(yè)巖油、頁(yè)巖氣、煤層氣等形成機(jī)制是原位“滯留成藏”.頁(yè)巖氣與上下連續(xù)型分布的致密砂巖氣、煤層氣等同步開(kāi)發(fā),可提高產(chǎn)量和效益.

      四川盆地內(nèi)發(fā)育海相、海陸過(guò)渡相、陸相多套頁(yè)巖氣層系,是中國(guó)頁(yè)巖氣勘探開(kāi)發(fā)最現(xiàn)實(shí)的地區(qū).四川盆地古生界頁(yè)巖地層發(fā)育豐富的微米-納米級(jí)孔隙,頁(yè)巖含氣飽和度較高,盆地中南部的威遠(yuǎn)-長(zhǎng)寧等地區(qū)是頁(yè)巖氣有利分布區(qū),也是勘探開(kāi)發(fā)突破的重要核心區(qū)之一.對(duì)中國(guó)其他盆地要加強(qiáng)核心區(qū)優(yōu)選與經(jīng)濟(jì)評(píng)價(jià).

      ·高被引論文摘要·

      被引頻次:628

      頁(yè)巖氣成藏機(jī)理和分布

      張金川,金之鈞,袁明生

      對(duì)頁(yè)巖氣成藏機(jī)理進(jìn)行了全面分析,獲得了四個(gè)方面的認(rèn)識(shí).①頁(yè)巖氣成藏機(jī)理兼具煤層吸附氣和常規(guī)圈閉氣藏特征,體現(xiàn)出了復(fù)雜的多機(jī)理遞變特點(diǎn).②在頁(yè)巖氣的成藏過(guò)程中,天然氣的賦存方式和成藏類(lèi)型逐漸改變,含氣豐度和富集程度逐漸增加.③完整的頁(yè)巖氣成藏與演化可分為3個(gè)主要的作用過(guò)程,自身構(gòu)成了從吸附聚集、膨脹造隙富集到活塞式推進(jìn)或置換式運(yùn)移的機(jī)理序列.④相應(yīng)的成藏條件和成藏機(jī)理變化對(duì)頁(yè)巖氣的成藏與分布產(chǎn)生了控制和影響作用,巖性特征變化和裂縫發(fā)育狀況對(duì)頁(yè)巖氣藏中天然氣的賦存特征和分布規(guī)律具有控制作用.研究了我國(guó)的情況,認(rèn)為我國(guó)的許多盆地存在工業(yè)性頁(yè)巖氣藏發(fā)育的基本地質(zhì)條件,其中,吐哈盆地吐魯番坳陷的水西溝群是頁(yè)巖氣發(fā)育的重要區(qū)域之一.

      頁(yè)巖氣;賦存狀態(tài);成藏機(jī)理;序列遞變

      來(lái)源出版物:天然氣工業(yè),2004,24(7): 15-18聯(lián)系郵箱:張金川,zhangjc@cugb.edu.cn

      被引頻次:352

      中國(guó)頁(yè)巖氣形成機(jī)理、地質(zhì)特征及資源潛力

      鄒才能,董大忠,王社教,等

      摘要:以四川盆地為重點(diǎn),介紹中國(guó)海相、海陸過(guò)渡相、陸相三大類(lèi)型頁(yè)巖形成的沉積環(huán)境、地球化學(xué)與儲(chǔ)集層特征、含氣量與遠(yuǎn)景資源量.中國(guó)海相頁(yè)巖是一套高有機(jī)質(zhì)豐度(TOC為1.0%~5.5%)、高—過(guò)成熟(Ro值為2.0%~5.0%)、富含頁(yè)巖氣(含氣量1.17~6.02 m3/t)、以陸棚相為主的沉積,主要分布在華南揚(yáng)子地區(qū)古生界、華北地臺(tái)古生界和塔里木盆地寒武系—奧陶系;海陸過(guò)渡相煤系炭質(zhì)頁(yè)巖有機(jī)質(zhì)豐度高(TOC為2.6%~5.4%)、成熟度適中(Ro值為1.1%~2.5%);中新生界陸相頁(yè)巖有機(jī)質(zhì)豐度高(TOC為0.5%~22.0%)、低熟—成熟(Ro值為0.6%~1.5%).在對(duì)四川盆地下古生界頁(yè)巖儲(chǔ)集層研究中首次發(fā)現(xiàn),寒武系和志留系海相頁(yè)巖發(fā)育大量與北美地區(qū)相似的微米—納米級(jí)孔隙.綜合評(píng)價(jià)認(rèn)為四川盆地發(fā)育的多套頁(yè)巖氣層系是勘探開(kāi)發(fā)的現(xiàn)實(shí)領(lǐng)域,四川盆地中南部威遠(yuǎn)—長(zhǎng)寧等地區(qū)的寒武系和志留系是頁(yè)巖氣勘探開(kāi)發(fā)的核心區(qū)與層系,其特點(diǎn)是:熱演化程度較高(Ro值為2.0%~4.0%)、孔隙度較高(3.0%~4.8%),含氣量較高(2.82~3.28 m3/t)、脆性礦物含量較高(40%~80%)、埋深適中(1500~4500 m),有利于開(kāi)采.

      關(guān)鍵詞:非常規(guī)油氣;頁(yè)巖氣;納米級(jí)孔喉;頁(yè)巖油;致密油;源巖油氣

      來(lái)源出版物:石油勘探與開(kāi)發(fā),2010,37(6): 641-653

      被引頻次:327

      中國(guó)頁(yè)巖氣資源勘探潛力

      張金川,徐波,聶海寬,等

      摘要:頁(yè)巖氣是以吸附和游離狀態(tài)同時(shí)存在于泥頁(yè)巖地層中的天然氣,它分別在天然氣的成因機(jī)理、賦存相態(tài)、成藏聚集機(jī)理、分布變化特點(diǎn)及其與其他類(lèi)型氣藏關(guān)系之間存在廣泛的變化性.由于頁(yè)巖氣成藏邊界條件可有適度地放寬且變化較大,各成藏地質(zhì)要素之間具有明顯的互補(bǔ)性.基于地質(zhì)、測(cè)井、地震等方法和手段,可對(duì)頁(yè)巖氣進(jìn)行快速識(shí)別.研究表明,中國(guó)存在頁(yè)巖氣大量發(fā)育的區(qū)域地質(zhì)條件,初步計(jì)算中國(guó)頁(yè)巖氣資源量約為(15~30)×1012m3.平面上以中國(guó)南方和西北地區(qū)最為有利(也包括鄂爾多斯盆地及其周緣),剖面上以古生界資源量為最大,中生界位居其次.

      關(guān)鍵詞:中國(guó);頁(yè)巖氣;地質(zhì)特征;有利區(qū);分布;資源量;潛力

      來(lái)源出版物:天然氣工業(yè),2008,28(6): 136-140聯(lián)系郵箱:張金川,zhangjc@cugb.edu.cn

      被引頻次:313

      北美裂縫性頁(yè)巖氣勘探開(kāi)發(fā)的啟示

      李新景,胡素云,程克明

      摘要:北美實(shí)踐證明,非常規(guī)油氣資源——頁(yè)巖氣是現(xiàn)實(shí)的接替能源了,勘探風(fēng)險(xiǎn)在于能否從低滲透的頁(yè)巖儲(chǔ)集層中獲取經(jīng)濟(jì)可采儲(chǔ)量,勘探目標(biāo)是有機(jī)質(zhì)和硅質(zhì)含量高、裂縫發(fā)育的脆性優(yōu)質(zhì)烴源巖.頁(yè)巖氣生產(chǎn)機(jī)制復(fù)雜,涉及吸附氣與游離氣、天然裂縫與誘導(dǎo)裂縫系統(tǒng)之間的相互關(guān)系.在地質(zhì)、地化、測(cè)井和地震綜合評(píng)價(jià)基礎(chǔ)上,通過(guò)水力壓裂等增產(chǎn)措施提高儲(chǔ)集層滲透能力是頁(yè)巖氣開(kāi)采的關(guān)鍵.中國(guó)廣泛分布海相和湖相細(xì)粒碎屑巖,有效烴源巖多富含炭質(zhì)、灰質(zhì)或硅質(zhì),已陸續(xù)發(fā)現(xiàn)裂縫性油氣藏,有條件尋找豐富的頁(yè)巖氣資源,特別是液態(tài)烴在高成熟或過(guò)成熟階段裂解產(chǎn)生的甲烷氣滯留在烴源巖內(nèi)形成的連續(xù)分布式非常規(guī)頁(yè)巖氣資源.

      關(guān)鍵詞:頁(yè)巖氣;吸附氣;裂縫;壓裂;烴源巖儲(chǔ)集層

      來(lái)源出版物:石油勘探與開(kāi)發(fā),2007,34(4): 392-400

      被引頻次:283

      頁(yè)巖氣成藏控制因素及中國(guó)南方頁(yè)巖氣發(fā)育有利區(qū)預(yù)測(cè)

      聶海寬,唐玄,邊瑞康

      摘要:在系統(tǒng)研究美國(guó)頁(yè)巖氣成藏理論和成藏條件的基礎(chǔ)上,分析了頁(yè)巖氣成藏的主要控制因素,分為內(nèi)部因素和外部因素:前者指頁(yè)巖本身的因素,包括有機(jī)質(zhì)類(lèi)型和含量、成熟度、裂縫、孔隙度和滲透率、礦物組成、厚度、濕度等;后者主要包括深度、溫度和壓力等.其中,有機(jī)質(zhì)類(lèi)型和含量、成熟度、裂縫及孔隙度和滲透率是控制頁(yè)巖氣成藏的主要因素.結(jié)合主要影響參數(shù),建立了預(yù)測(cè)頁(yè)巖含氣的種類(lèi)、比例和頁(yè)巖氣藏發(fā)育有利區(qū)的參數(shù)模型.運(yùn)用此模型類(lèi)比研究發(fā)現(xiàn),中國(guó)南方古生界海相頁(yè)巖層中,寒武系和志留系是頁(yè)巖氣發(fā)育的最有利層系.寒武系頁(yè)巖氣藏發(fā)育最有利區(qū)位于四川盆地和米倉(cāng)山—大巴山前陸以及渝東、黔北、湘西—江南隆起北緣一線;志留系頁(yè)巖氣藏發(fā)育最有利區(qū)位于上揚(yáng)子的四川盆地和米倉(cāng)山—大巴山前陸和渝東—鄂西一帶、中揚(yáng)子鄂北以及下?lián)P子蘇南等地.并對(duì)各有利區(qū)的泥頁(yè)巖指標(biāo)進(jìn)行分析,以期為中國(guó)頁(yè)巖氣早期評(píng)價(jià)提供參考.

      關(guān)鍵詞:頁(yè)巖氣;主控因素;中國(guó)南方;寒武系;志留系;頁(yè)巖氣有利區(qū)

      來(lái)源出版物:石油學(xué)報(bào),2009,30(4): 484-491聯(lián)系郵箱:聶海寬,niehaikuan@126.com

      被引頻次:250

      四川盆地頁(yè)巖氣成藏地質(zhì)條件

      張金川,聶海寬,徐波,等

      摘要:與傳統(tǒng)上的“泥頁(yè)巖裂縫氣”并不完全相同,頁(yè)巖氣是主體上以吸附相和游離相同時(shí)賦存于泥巖及頁(yè)巖地層中的天然氣.四川盆地經(jīng)歷了克拉通和前陸盆地演化過(guò)程中復(fù)雜的構(gòu)造變動(dòng),形成了與美國(guó)典型頁(yè)巖氣盆地相似的構(gòu)造演化特點(diǎn)和地質(zhì)條件,其中的古生界頁(yè)巖不僅是盆地內(nèi)常規(guī)氣藏的烴源巖,而且還是頁(yè)巖氣成藏及勘探的主要對(duì)象,目前已發(fā)現(xiàn)了頁(yè)巖氣存在的大量證據(jù).根據(jù)演化及勘探地質(zhì)特點(diǎn),四川盆地非常規(guī)天然氣具有兩分格局,東南部以頁(yè)巖氣為主而西北部以根緣氣為主,古生界主體發(fā)育頁(yè)巖氣而中生界主體發(fā)育根緣氣.川東和川南地區(qū)(包括川西南)古生界生氣頁(yè)巖發(fā)育厚度大、有機(jī)質(zhì)含量高、埋藏深度小,下寒武統(tǒng)和下志留統(tǒng)具有良好的頁(yè)巖氣成藏及勘探地質(zhì)條件;川中地區(qū)同時(shí)發(fā)育中、古生界烴源巖,上三疊統(tǒng)、下志留統(tǒng)和下寒武統(tǒng)可作為頁(yè)巖氣勘探的有利層位;川西中生界泥/頁(yè)巖常與致密砂巖形成頻繁互層并產(chǎn)生具有砂巖底部含氣特點(diǎn)的根緣氣,整體上存在著頁(yè)巖氣發(fā)育和勘探的遠(yuǎn)景條件,局部埋藏相對(duì)較淺的高碳泥/頁(yè)巖是頁(yè)巖氣勘探的基本對(duì)象.

      關(guān)鍵詞:四川盆地;頁(yè)巖氣;成藏條件;勘探前景

      來(lái)源出版物:天然氣工業(yè),2008,28(2): 151-156聯(lián)系郵箱:張金川,zhangjc@cugb.edu.cn

      被引頻次:192

      我國(guó)頁(yè)巖氣富集類(lèi)型及資源特點(diǎn)

      張金川,姜生玲,唐玄,等

      摘要:根據(jù)頁(yè)巖氣聚集的機(jī)理?xiàng)l件和中、美頁(yè)巖氣地質(zhì)條件的相似性對(duì)比結(jié)果認(rèn)為:中國(guó)頁(yè)巖氣富集地質(zhì)條件優(yōu)越,具有與美國(guó)大致相同的頁(yè)巖氣資源前景及開(kāi)發(fā)潛力.中國(guó)含氣頁(yè)巖具有高有機(jī)質(zhì)豐度、高有機(jī)質(zhì)熱演化程度及高后期改造程度等“三高”特點(diǎn),頁(yè)巖氣具有海陸相共存、沉積分區(qū)控制以及分布多樣復(fù)雜等特點(diǎn).以間接型和直接型頁(yè)巖氣劃分方法為基礎(chǔ)并結(jié)合中國(guó)區(qū)域地質(zhì)特點(diǎn),將中國(guó)的頁(yè)巖氣富集模式劃分為南方型、北方型及西北型等3種,分別具有以下特點(diǎn):①以揚(yáng)子地臺(tái)為核心的南方型頁(yè)巖氣聚集條件有利并以改造較為嚴(yán)重的海相古生界海相頁(yè)巖聚氣為主,具有單層厚度大、發(fā)育層位多、分布面積廣、熱演化程度高、后期改造強(qiáng)等特點(diǎn);②以華北地臺(tái)為主體的北方型頁(yè)巖氣具有古—中—新生界頁(yè)巖發(fā)育齊全、沉積遷移特征明顯、薄互層變化頻率高、沉積相帶分隔明顯等特點(diǎn);③以塔里木地臺(tái)為基礎(chǔ)的西北型頁(yè)巖氣儲(chǔ)層以中—古生界為主,沉積類(lèi)型多、有機(jī)碳豐度高、有機(jī)質(zhì)熱演化程度相對(duì)較低.結(jié)論認(rèn)為:中國(guó)頁(yè)巖氣可采資源量約為26×1012m3,大致與美國(guó)的28×1012m3相當(dāng).

      關(guān)鍵詞:中國(guó);頁(yè)巖氣;資源評(píng)價(jià);分區(qū)特點(diǎn);富集模式;開(kāi)發(fā)潛力;華北地臺(tái);揚(yáng)子地臺(tái);塔里木地臺(tái)

      來(lái)源出版物:天然氣工業(yè),2009,29(12): 109-114

      被引頻次:189

      常規(guī)與非常規(guī)油氣聚集類(lèi)型、特征、機(jī)理及展望——以中國(guó)致密油和致密氣為例

      鄒才能,朱如凱,吳松濤,等

      摘要:油氣勘探開(kāi)發(fā)領(lǐng)域從常規(guī)油氣向非常規(guī)油氣跨越,是石油工業(yè)發(fā)展的必然趨勢(shì),二者在油氣類(lèi)型、地質(zhì)特征及聚集機(jī)理等方面明顯不同.常規(guī)油氣研究的靈魂是成藏,目標(biāo)是回答圈閉是否有油氣;非常規(guī)油氣研究的靈魂是儲(chǔ)層,目標(biāo)是回答儲(chǔ)集有多少油氣.非常規(guī)油氣主要表現(xiàn)在連續(xù)分布、無(wú)自然工業(yè)產(chǎn)量.目前,常規(guī)油氣面臨非常規(guī)的問(wèn)題,非常規(guī)需要發(fā)展成新的“常規(guī)”.伴隨技術(shù)的進(jìn)步,非常規(guī)可向常規(guī)轉(zhuǎn)化.常規(guī)油氣聚集包括構(gòu)造油氣藏、巖性-地層油氣藏,油氣以孤立的單體式或較大范圍的集群式展布,圈閉界限明顯,儲(chǔ)集體發(fā)育毫米級(jí)—微米級(jí)孔喉系統(tǒng),浮力成藏.非常規(guī)油氣聚集包括致密砂巖油和氣、致密碳酸鹽巖油和氣、頁(yè)巖油和氣等,一般源儲(chǔ)共生,大面積連續(xù)或準(zhǔn)連續(xù)分布于盆地斜坡或中心,圈閉界限不明顯,頁(yè)巖系統(tǒng)儲(chǔ)集體廣泛發(fā)育納米級(jí)孔喉,浮力作用受限,油氣以原位滯留或短距離運(yùn)移為主.以中國(guó)重點(diǎn)盆地致密油和致密氣為例,系統(tǒng)分析了其地質(zhì)特征與勘探潛力.非常規(guī)油氣儲(chǔ)集空間主體為納米級(jí)孔喉系統(tǒng),局部發(fā)育微米—毫米級(jí)孔隙,其中頁(yè)巖氣儲(chǔ)層孔徑為5~200 nm,致密灰?guī)r油儲(chǔ)層孔徑為40~500 nm,致密砂巖油儲(chǔ)層孔徑為50~900 nm,致密砂巖氣儲(chǔ)層孔徑為40~700 nm.針對(duì)全球石油工業(yè)和納米等技術(shù)的快速發(fā)展,提出了“納米油氣”的概念,指出“納米油氣”是未來(lái)石油工業(yè)的發(fā)展方向,需要發(fā)展納米油氣透視觀測(cè)鏡、納米油氣驅(qū)替劑、納米油氣開(kāi)采機(jī)器人等換代技術(shù),油氣智能化時(shí)代將隨之到來(lái).

      關(guān)鍵詞:常規(guī)油氣;非常規(guī)油氣;頁(yè)巖系統(tǒng)油氣;納米油氣;致密油;致密氣;頁(yè)巖氣;頁(yè)巖油;連續(xù)型油氣聚集

      來(lái)源出版物:石油學(xué)報(bào),2012,33(2): 173-187聯(lián)系郵箱:鄒才能,zcn@petrochina.com.cn

      被引頻次:187

      頁(yè)巖氣儲(chǔ)層的基本特征及其評(píng)價(jià)

      蔣裕強(qiáng),董大忠,漆麟,等

      摘要:頁(yè)巖氣獨(dú)特的賦存狀態(tài),“連續(xù)成藏”的聚集模式,區(qū)別于常規(guī)天然氣儲(chǔ)層的特征以及評(píng)價(jià)內(nèi)容等決定了頁(yè)巖氣儲(chǔ)層研究的特殊性.目前,國(guó)內(nèi)針對(duì)頁(yè)巖氣儲(chǔ)層特征及評(píng)價(jià)的工作開(kāi)展得相對(duì)較少,需要建立相應(yīng)的評(píng)價(jià)標(biāo)準(zhǔn).在大量調(diào)研國(guó)外文獻(xiàn)的基礎(chǔ)上,綜合利用四川盆地最新的淺井鉆探和野外露頭取樣資料,從常規(guī)儲(chǔ)層研究思路入手,詳細(xì)分析了頁(yè)巖氣儲(chǔ)層的基本特征(有機(jī)質(zhì)特征、礦物組成、物性特征、儲(chǔ)滲空間特征),進(jìn)而總結(jié)了頁(yè)巖氣儲(chǔ)層評(píng)價(jià)的主要內(nèi)容;同時(shí),借鑒美國(guó)頁(yè)巖氣勘探成功經(jīng)驗(yàn),從實(shí)際資料出發(fā),篩選出有機(jī)質(zhì)豐度、熱成熟度、含氣性等8大關(guān)鍵地質(zhì)因素,進(jìn)而提出了一套較為適用的儲(chǔ)層評(píng)價(jià)標(biāo)準(zhǔn).據(jù)該標(biāo)準(zhǔn)評(píng)價(jià)后認(rèn)為,四川盆地下古生界筇竹寺組和龍馬溪組2套海相黑色頁(yè)巖具有良好的勘探開(kāi)發(fā)前景.

      關(guān)鍵詞:頁(yè)巖氣;儲(chǔ)集層;溶蝕孔隙;有機(jī)孔隙;裂縫;評(píng)價(jià)內(nèi)容;評(píng)價(jià)標(biāo)準(zhǔn);關(guān)鍵地質(zhì)因素

      來(lái)源出版物:天然氣工業(yè),2010,30(10): 7-12聯(lián)系郵箱:蔣裕強(qiáng),xnsjij93055@126.com

      被引頻次:168

      頁(yè)巖氣資源評(píng)價(jià)方法及其在四川盆地的應(yīng)用

      董大忠,程克明,王世謙,等

      摘要:近10年來(lái),在高天然氣價(jià)格、水平井鉆井技術(shù)和壓裂技術(shù)進(jìn)步的推動(dòng)下,頁(yè)巖氣成為美國(guó)最重要的天然氣開(kāi)發(fā)目標(biāo),形成了適合于不同勘探開(kāi)發(fā)階段的頁(yè)巖氣資源潛力評(píng)價(jià)方法,對(duì)頁(yè)巖氣資源的認(rèn)識(shí)不斷得到深化.在詳細(xì)研究美國(guó)頁(yè)巖氣資源評(píng)價(jià)方法基礎(chǔ)上,探索了我國(guó)現(xiàn)階段頁(yè)巖氣資源評(píng)價(jià)方法,并針對(duì)四川盆地西南部地區(qū)及威遠(yuǎn)氣田區(qū)下古生界下寒武統(tǒng)筇竹寺組的頁(yè)巖氣資源做了初步預(yù)測(cè).結(jié)果認(rèn)為四川盆地頁(yè)巖氣資源豐富,不少于盆地常規(guī)天然氣資源量,是未來(lái)值得重視的重要天然氣勘探開(kāi)發(fā)新領(lǐng)域.

      關(guān)鍵詞:頁(yè)巖氣;資源;評(píng)價(jià)方法;四川盆地;應(yīng)用;

      來(lái)源出版物:天然氣工業(yè),2009,29(5): 33-39聯(lián)系郵箱:董大忠,ddz@petrochina.com.cn

      被引頻次:194

      Methane and the greenhouse-gas footprint of natural gas from shale formations

      Howarth,Robert W; Santoro,Renee; Ingraffea,Anthony

      Abstract: We evaluate the greenhouse gas footprint of natural gas obtained by high-volume hydraulic fracturing from shale formations,focusing on methane emissions. Natural gas is composed largely of methane,and 3.6% to 7.9% of the methane from shale-gas production escapes to the atmosphere in venting and leaks over the life-time of a well. These methane emissions are at least 30% more than andperhaps more than twice as great as those from conventional gas. The higher emissions from shale gas occur at the time wells are hydraulically fractured-as methane escapes from flow-back return fluids-and during drill out following the fracturing. Methane is a powerful greenhouse gas,with a global warming potential that is far greater than that of carbon dioxide,particularly over the time horizon of the first few decades following emission. Methane contributes substantially to the greenhouse gas footprint of shale gas on shorter time scales,dominating it on a 20-year time horizon. The footprint for shale gas is greater than that for conventional gas or oil when viewed on any time horizon,but particularly so over 20 years. Compared to coal,the footprint of shale gas is at least 20% greater and perhaps more than twice as great on the 20-year horizon and is comparable when compared over 100 years.

      Keywords: Methane; Greenhouse gases; Global warming; Natural gas; Shale gas; Unconventional gas; Fugitive emissions; Lifecycle analysis; LCA; Bridge fuel; Transitional fuel; Global warming potential; GWP

      來(lái)源出版物:Climatic Change,2011,106(4): 679-690聯(lián)系郵箱:Howarth,Robert W; rwh2@cornell.edu

      被引頻次:158

      Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment

      Jarvie,Daniel M; Hill,Ronald J; Ruble,Tim E; Pollastro,Richard M

      Abstract: Shale-gas resource plays can be distinguished by gas type and system characteristics. The Newark East gas field,located in the Fort Worth Basin,Texas,is defined by thermogenic gas production from low-porosity and low-permeability Barnett Shale. The Barnett Shale gas system,a self-contained source-reservoir system,has generated large amounts of gas in the key productive areas because of various characteristics and processes,including(1)excellent original organic richness and generation potential;(2)primary and secondary cracking of kerogen and retained oil,respectively;(3)retention of oil for cracking to gas by adsorption;(4)porosity resulting from organic matter decomposition; and(5)brittle mineralogical composition. The calculated total gas in place(GIP)based on estimated ultimate recovery that is based on production profiles and operator estimates is about 204 bcf/section(5.78×109M-3/1.73×104m3). We estimate that the Barnett Shale has a total generation potential of about 609 bbl of oil equivalent/ac-ft or the equivalent of 3657 mcf/ac-ft(84.0 m3/m3). Assuming a thickness of 350 ft(107 m)and only sufficient hydrogen for partial cracking of retained oil to gas,a total generation potential of 820 bcf/section is estimated. Of this potential,approximately 60% was expelled,and the balance was retained for secondary cracking of oil to gas,if sufficient thermal maturity was reached. Gas storage capacity of the Barnett Shale at typical reservoir pressure,volume,and temperature conditions and 6% porosity shows a maximum storage capacity of 540 mcf/ac-ft or 159 scf/ton.

      Keywords: primary migration; organic-matter; source rocks; carbon; basin; hydrocarbons; adsorption; diffusion; kerogen; play

      來(lái)源出版物:AAPG Bulletin,2007,91(4): 475-499聯(lián)系郵箱:Jarvie,DM; danjarvie@humble-inc.com

      被引頻次:157

      Fractured shale-gas systems

      Curtis,JB

      Abstract: The first commercial United States natural gas production(1821)came from an organic-rich Devonian shale in the Appalachian basin. Understanding the geological and geochemical nature of organic shale formations and improving their gas producibility have subsequently been the challenge of millions of dollars worth of research since the 1970s. Shale-gas systems essentially are continuous-type biogenic(predominant),thermogenic,or combined biogenic-thermogenic gas accumulations characterized by widespread gas saturation,subtle trapping mechanisms,seals of variable lithology,and relatively short hydrocarbon migration distances. Shale gas may be stored as free gas in natural fractures and intergranular porosity,as gas sorbed onto kerogen and clay-particle surfaces,or as gas dissolved in kerogen and bitumen. Five United States shale formations that presently produce gas commercially exhibit an unexpectedly wide variation in the values of five key parameters: thermal maturity(expressed as vitrinite reflectance),sorbed-gas fraction,reservoir thickness,total organic carbon content,and volume of gas in place. The degree of natural fracture development in an otherwise low-matrix-permeability shale reservoir is a controlling factor in gas producibility. To date,unstimulated commercial production has been achievable in only a small proportion of shale wells,those that intercept natural fracture networks. In most other cases,a successful shale-gas well requires hydraulic stimulation. Together,the Devonian Antrim Shale of the Michigan basin and Devonian Ohio Shale of the Appalachian basin accounted for about 84% of the total 380 bcf of shale gas produced in 1999. However annual gas production is steadily increasing from three other major organic shale formations that subsequently have been explored and developed: the Devonian New Albany Shalein the Illinois basin,the Mississippian Barnett Shale in the Fort Worth basin,and the Cretaceous Lewis Shale in the San Juan basin. In the basins for which estimates have been made,shale-gas resources are substantial,with in-place volumes of 497-783 tcf. The estimated technically recoverable resource(exclusive of the Lewis Shale)ranges from 31 to 76 tcf. In both cases,the Ohio Shale accounts for the largest share.

      Keywords: subsequent thermal history; appalachian basin; organic-matter; rome trough; accumulation; methane

      來(lái)源出版物:AAPG Bulletin,2002,86(11): 475-499

      被引頻次:123

      Mississippian Barnett Shale,F(xiàn)ort Worth basin,north-central texas: Gas-shale play with multi-trillion cubic foot potential

      Montgomery,SL; Jarvie,DM; Bowker,KA; et al.

      Abstract: The Mississippian Barnett Shale serves as source,seal,and reservoir to a world-class unconventional natural-gas accumulation in the Fort Worth basin of north-central Texas. The formation is a lithologically complex interval of low permeability that requires artificial stimulation to produce. At present,production is mainly confined to a limited portion of the northern basin where the Barnett Shale is relatively thick(>300 ft; >92 m),organic rich(present-day total organic carbon>3.0%),thermally mature(vitrinite reflectance>1.1%),and enclosed by dense limestone units able to contain induced fractures. The most actively drilled area is Newark East field,currently the largest gas field in Texas. Newark East is 400 mi2(1036 km2)in extent,with more than 2340 producing wells and about 2.7 tcf of booked gas reserves. Cumulative gas production from Barnett Shale wells through 2003 was about 0.8 tcf. Wells in Newark East field typically produce from depths of 7500 ft(2285 m)at rates ranging from 0.5 to more than 4 mmcf/day. Estimated ultimate re coveries per well range from 0.75 to as high as 7.0 bcf. Efforts to extend the current Barnett play beyond the field limits have encountered several challenges,including westward and northward increases in oil saturation and the absence of lithologic barriers to induced fracture growth. Patterns of oil and gas occurrence in the Barnett,in conjunction with maturation and burial-history data,indicate a complex,multiphased thermal evolution,with episodic expulsion of hydrocarbons and secondary cracking of primary oils to gas in portions of the basin where paleotemperatures were especially elevated. These and other data imply a large-potential Barnett resource for the basin as a whole(possibly >200 tcf gas in place). Recent assessment by the U.S. Geological Survey suggests a mean volume of 26.2 tcf of undiscovered,technically recoverable gas in the central Fort Worth basin. Recovery of a significant portion of this undiscovered resource will require continued improvements in geoscientific characterization and approaches to stimulation of the Barnett reservoirs.

      來(lái)源出版物:AAPG Bulletin,2005,89(2): 155-175聯(lián)系郵箱:Montgomery,SL; scott.montgomery@prodigy.net

      被引頻次:110

      The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs

      Ross,Daniel J.K; Bustin,R. Marc

      Abstract: The effect of shale composition and fabric upon pore structure and CH4sorption is investigated for potential shale gas reservoirs in the Western Canadian Sedimentary Basin(WCSB). Devonian-Mississippian(D-M)and Jurassic shales have complex,heterogeneous pore volume distributions as identified by low pressure CO2and N2sorption,and high pressure Hg porosimetry. Thermally mature D-M shales(1.6%-2.5% VRo)have Dubinin-Radushkevich(D-R)CO2micropore volumes ranging between 0.3 and 1.2 cc/100 g and N2BET surface areas of 5-31 m2/g. Jurassic shales,which are invariably of lower thermal maturity ranging from 0.9 to 1.3% VRo,than D-M shales have smaller D-R CO2micropore volumes and N2BET surface areas,typically in the range of 0.23-0.63 cc/100 g(CO2)and 1-9 m2/g(N2). High pressure CH4isotherms on dried and moisture equilibrated shales show a general increase of gas sorption with total organic carbon(TOC)content. Methane sorption in D-M shales increases with increasing TOC and micropore volume,indicating that microporosity associated with the organic fraction is a primary control upon CH4sorption. Sorption capacities for Jurassic shales,however,can be in part unrelated to micropore volume. The large sorbed gas capacities of organic-rich Jurassic shales,independent of surface area,imply a portion of CH4is stored by solution in matrix bituminite. Solute CH4is not an important contributor to gas storage in D-M shales. Structural transformation of D-M organic matter has occurred during thermal diagenesis creating and/or opening up microporosity onto which gas can sorb. As such,D-M shales sorb more CH4per weight percent(wt %)TOC than Jurassic shales. Inorganic material influences modal pore size,total porosity and sorption characteristics of shales. Clay minerals are capable of sorbing gas to their internal structure,the amount of which is dependent on clay-type. Illite and montmorillonite have CO2micropore volumes of 0.78 and 0.79 cc/100 g,N2BET surface areas of 25 and 30 m2/g,and sorb 2.9 and 2.1 cc/g of CH4,respectively(dry basis)-a reflection of microporosity between irregular surfaces of clay platelets,and possibly related to the size of the clay crystals themselves. Mercury porosimetry analyses show that total porosities are larger in clay-rich shales compared to silica-rich shales due to open porosity associated with the aluminosilicate fraction. Clay-rich sediments(low Si/Al ratios)have unimodal pore size distributions <10 nm and average total porosities of 5.6%. Siliceous/quartz-rich shales(high Si/Al)exhibit no micro- or mesopores using Hg analyses and total porosities average 1%,analogous to chert.

      Keywords: Pore structure; Microporosity; Sorption; Shale gas reservoirs

      來(lái)源出版物:Marine and Petroleum Geology,2009,26(6): 916-927

      聯(lián)系郵箱:Ross,Daniel J.K; daniel.ross@shell.com

      被引頻次:70

      Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin,Texas

      Loucks,Robert G; Ruppel,Stephen C

      Abstract: The Mississippian Barnett Formation of the Fort Worth Basin is a classic shale-gas system in which the rock is the source,reservoir,and seal. Barnett strata were deposited in a deeper water foreland basin that had poor circulation with the open ocean. For most of the basin's history,bottom waters were euxinic,preserving organic matter and,thus,creating a rich source rock,along with abundant framboidal pyrite. The Barnett interval comprises a variety of facies but is dominated by fine-grained(clay-to silt-size)particles. Three general lithofacies are recognized on the basis of mineralogy,fabric,biota,and texture:(1)laminated siliceous mudstone;(2)laminated argillaceous lime mudstone(marl); and(3)skeletal,argillaceous lime packstone. Each facies contains abundant pyrite and phosphate(apatite),which are especially common at hardgrounds. Carbonate concretions,a product of early diagenesis,are also common. The entire Barnett biota is composed of debris transported to the basin from the shelf or upper oxygenated slope by hemipelagic mud plumes,dilute turbidites,and debris flows. Biogenic sediment was also sourced from the shallower,better oxygenated water column. Barnett deposition is estimated to have occurred over a 25-m.y. period,and despite the variations in sublithofacies,sedimentation style remained remarkably similar throughout this span of time.

      來(lái)源出版物:AAPG Bulletin,2007,91(4): 579-601聯(lián)系郵箱:Loucks,Robert G; bob.loucks@beg.utexas.edu

      被引頻次:68

      Water Management Challenges Associated with the Production of Shale Gas by Hydraulic Fracturing

      Gregory,Kelvin B; Vidic,Radisav D; Dzombak,David A

      Abstract: Development of unconventional,onshore natural gas resources in deep shales is rapidly expanding to meet global energy needs. Water management has emerged as a critical issue in the development of these inland gas reservoirs,where hydraulic fracturing is used to liberate the gas. Following hydraulic fracturing,large volumes of water containing very high concentrations of total dissolved solids(TDS)return to the surface. The TDS concentration in this wastewater,also known as “flowback”,can reach 5 times that of sea water. Wastewaters that contain high TDS levels are challenging and costly to treat. Economical production of shale gas resources will require creative management of flowback to ensure protection of groundwater and surface water resources. Currently,deep-well injection is the primary means of management. However,in many areas where shale gas production will be abundant,deep-well injection sites are not available. With global concerns over the quality and quantity of fresh water,novel water management strategies and treatment technologies that will enable environmentally sustainable and economically feasible natural gas extraction will be critical for the development of this vast energy source.

      Keywords: shale gas; hydraulic fracturing; produced water; flowback

      來(lái)源出版物:Elements,2011,7(3): 181-186聯(lián)系郵箱:Gregory,Kelvin B; kelvin@cmu.edu

      被引頻次:58

      Impact of Shale Gas Development on Regional Water Quality

      Vidic,R.D; Brantley,S.L; Vandenbossche,J.M; et al.

      Abstract: Unconventional natural gas resources offer an opportunity to access a relatively clean fossil fuel that could potentially lead to energy independence for some countries. Horizontal drilling and hydraulic fracturing make the extraction of tightly bound natural gas from shale formations economically feasible. These technologies are not free from environmental risks,however,especially those related to regional water quality,such as gas migration,contaminant transport through induced and natural fractures,wastewater discharge,and accidental spills. We review the current understanding of environmental issues associated with unconventional gas extraction. Improved understanding of the fate and transport of contaminants of concern and increased long-term monitoring and data dissemination will help manage these water-quality risks today and in the future.

      Keywords: potential contaminant pathways; hydraulically fractured shale; marcellus shale; methane contamination; appalachian basin;pennsylvania; aquifers; wells; extraction; challenges

      來(lái)源出版物:Science,2013,340(6134)文獻(xiàn)號(hào):1235009聯(lián)系郵箱:Vidic,R.D; vidic@pitt.edu

      被引頻次:58

      Nanoscale gas flow in shale gas Sediments

      Javadpour,F(xiàn); Fisher,D; Unsworth,M

      Abstract: Production of gas out of low permeability shale packages is very recent in the Western Canadian Sedimentary Basin(WCSB). The process of gas release and production from shale gas sediments is not well understood. Because of adsorptive capacity of certain shaleconstituents,including organic carbon content: coalbed methane models are sometimes being applied to model and simulate tight shale gas production behaviour. Alternatively,conventional Darcy flow models are sometimes applied to tight shale gas. However,neither of these approaches takes into account the differences in transport mechanisms in shale due to additional nanopore networks. Hence,the application of existing models for shale results in erroneous evaluation and predictions. Our analysis shows that a combination of a nanopore network connected to a micrometre pore network controls the gas flow in shale. Mathematical modelling of gas flow in nanopores is difficult since the standard assumption of no-slip boundary conditions in the Navier-Stokes equation breaks down at the nanometre scale,while the computational times of applicable molecular-dynamics(MD)codes become exorbitant. We found that the gas flow in nanopores of the shale can be modelled with a diffusive transport regime with a constant diffusion coefficient and negligible viscous effects. The obtained diffusion coefficient is consistent with the Knudsen diffusivity which supports the slip: boundary condition at the nanopore surfaces. This model can be used for shale gas evaluation and production optimization.

      來(lái)源出版物:Journal of Canadian Petroleum Technology,2007,46(10): 55-61

      被引頻次:58

      Life-Cycle Greenhouse Gas Emissions of Shale Gas,Natural Gas,Coal,and Petroleum

      Burnham,Andrew; Han,Jeongwoo; Clark,Corrie E; et al.

      Abstract: The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been g debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas,conventional natural gas,coal,and petroleum,we estimated up-to-date life-cycle greenhouse gas emissions. In addition,we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas,23% lower than gasoline,and 33% lower than coal. However,the range in values for shale and conventional gas overlap,so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover,this life-cycle analysis,among other work in this area,provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.

      來(lái)源出版物:Environmental Science & Technology,2012,46(2): 619-627聯(lián)系郵箱:Burnham,Andrew; aburnham@anl.gov

      ·推薦論文摘要·

      頁(yè)巖油形成機(jī)制、地質(zhì)特征及發(fā)展對(duì)策

      鄒才能,楊智,崔景偉,等

      摘要:頁(yè)巖油是儲(chǔ)存于富有機(jī)質(zhì)、納米級(jí)孔徑為主頁(yè)巖地層中的成熟石油,是常規(guī)—非常規(guī)“有序聚集”體系的重要類(lèi)型之一,對(duì)中國(guó)陸相頁(yè)巖油形成的沉積環(huán)境、儲(chǔ)集空間、地球化學(xué)特征和聚集機(jī)制等基本石油地質(zhì)問(wèn)題進(jìn)行了分析總結(jié).富有機(jī)質(zhì)頁(yè)巖主要發(fā)育在半深湖—深湖環(huán)境,不同巖性組合共生沉積;發(fā)育紋層結(jié)構(gòu),微米—納米級(jí)孔喉和微裂縫是主要儲(chǔ)集空間;有利頁(yè)巖以Ⅰ型和AⅡ 型干酪根為主、Ro 值為0.7%~2.0%、TOC值大于2.0%、有效厚度大于10 m;揭示了頁(yè)巖孔隙演化和頁(yè)巖油滯留聚集模式,儲(chǔ)集空間、脆性指數(shù)、黏度、壓力、滯留量等是頁(yè)巖油“核心區(qū)”評(píng)價(jià)的關(guān)鍵.中國(guó)陸相頁(yè)巖油在湖盆中心連續(xù)聚集,初步預(yù)測(cè)可采頁(yè)巖油資源量約30×108~60×108t,水平井體積壓裂、改造“天然裂縫”、注粗顆?!叭嗽靸?chǔ)集層”等可能是頁(yè)巖油工業(yè)化發(fā)展的核心技術(shù),提出加快頁(yè)巖油“分布區(qū)”研究、加強(qiáng)“核心區(qū)”評(píng)選、加大“試驗(yàn)區(qū)”建設(shè)的“三步走”發(fā)展思路.借鑒北美海相頁(yè)巖氣突破成功經(jīng)驗(yàn),陸相頁(yè)巖油工業(yè)化有望在中國(guó)首先突破.

      關(guān)鍵詞:頁(yè)巖油;頁(yè)巖氣;頁(yè)巖系統(tǒng)油氣;納米級(jí)孔喉;非常規(guī)油氣;常規(guī)—非常規(guī)“有序聚集”體系

      來(lái)源出版物:石油勘探與開(kāi)發(fā),2013,40(1): 14-26聯(lián)系郵箱:鄒才能,zcn@petrochina.com.cn

      川南下寒武統(tǒng)筇竹寺組頁(yè)巖氣形成條件及資源潛力

      黃金亮,鄒才能,李建忠,等

      摘要:利用四川盆地南部地區(qū)最新鉆探的井下資料、周邊露頭地質(zhì)調(diào)查資料及大量樣品的分析測(cè)試結(jié)果,從富有機(jī)質(zhì)頁(yè)巖區(qū)域展布、地球化學(xué)特征、巖石儲(chǔ)集特征、含氣性等方面研究川南地區(qū)下寒武統(tǒng)筇竹寺組頁(yè)巖氣形成條件與資源前景.研究區(qū)筇竹寺組有機(jī)質(zhì)含量高(TOC值為0.55%~25.70%,平均值大于2%),頁(yè)巖有效厚度大(黑色頁(yè)巖厚60~300 m),脆性礦物含量較高(大于40%),頁(yè)巖中發(fā)育豐富的納米一微米級(jí)孔隙和微裂縫,含氣量高(頁(yè)巖含氣量0.27~6.02 m3/t,平均1.90 m3/t),有利于頁(yè)巖氣的形成與富集.鉆井過(guò)程中筇竹寺組氣顯示頻繁并獲得了工業(yè)性突破,是目前中國(guó)最有利的頁(yè)巖氣勘探開(kāi)發(fā)層系之一,綜合對(duì)比研究認(rèn)為威遠(yuǎn)、敘永一筠連地區(qū)是研究區(qū)內(nèi)筇竹寺組頁(yè)巖氣勘探開(kāi)發(fā)最有利的地區(qū).

      關(guān)鍵詞:四川盆地南部;下寒武統(tǒng);筇竹寺組;頁(yè)巖氣;形成條件;資源前景

      來(lái)源出版物:石油勘探與開(kāi)發(fā),2012,39(1): 69-75聯(lián)系郵箱:黃金亮,huangjl1983@petrochina.com.cn

      煤層氣/頁(yè)巖氣開(kāi)發(fā)地質(zhì)條件及其對(duì)比分析

      孟召平,劉翠麗,紀(jì)懿明

      摘要:從煤層氣、頁(yè)巖氣基本概念入手,系統(tǒng)分析了煤層氣/頁(yè)巖氣開(kāi)發(fā)地質(zhì)條件,主要包括成藏地質(zhì)條件、賦存環(huán)境條件和開(kāi)發(fā)工程力學(xué)條件3個(gè)方面,進(jìn)一步對(duì)煤層氣/頁(yè)巖氣開(kāi)發(fā)地質(zhì)條件進(jìn)行了對(duì)比分析,揭示了煤層氣/頁(yè)巖氣開(kāi)發(fā)地質(zhì)條件的共性和差異性.煤層氣/頁(yè)巖氣賦存于煤層/頁(yè)巖中的一種自生自儲(chǔ)式非常規(guī)天然氣,其富集成藏主要取決于“生、儲(chǔ)、?!被镜刭|(zhì)條件是否存在、質(zhì)量好壞以及相互之間的配合關(guān)系.在一定埋藏深度范圍內(nèi)煤層氣/頁(yè)巖氣都發(fā)生過(guò)解吸-擴(kuò)散-運(yùn)移,并普遍存在“垂向分帶”現(xiàn)象,有機(jī)質(zhì)演化程度越高解吸帶深度越小,風(fēng)化帶越深解吸帶深度越大,解吸帶內(nèi)煤層氣/頁(yè)巖氣富集在一定程度上服從于常規(guī)天然氣的構(gòu)造控氣規(guī)律;原生帶內(nèi)煤層氣/頁(yè)巖氣富集卻可能更多地受控于煤儲(chǔ)層/頁(yè)巖層的吸附特性.不同賦存環(huán)境條件下所形成的煤/頁(yè)巖儲(chǔ)層差異性大,使煤/頁(yè)巖儲(chǔ)層中吸附氣和游離氣相互轉(zhuǎn)化,導(dǎo)致煤層氣/頁(yè)巖氣成藏類(lèi)型、規(guī)模和質(zhì)量等方面的差異性.影響煤層氣開(kāi)發(fā)的主要地質(zhì)因素有:煤層厚度及其穩(wěn)定性、含氣量大小或煤層氣資源豐度、構(gòu)造及裂隙發(fā)育與滲透性和煤層氣保存條件等方面;影響頁(yè)巖氣開(kāi)發(fā)的主要地質(zhì)因素包括頁(yè)巖厚度、有機(jī)質(zhì)含量、熱成熟度、含氣量、天然裂縫發(fā)育程度和脆性礦物含量等.

      關(guān)鍵詞:煤層氣;頁(yè)巖氣;開(kāi)發(fā)地質(zhì);對(duì)比分析

      來(lái)源出版物:煤炭學(xué)報(bào),2013,38(5): 728-736聯(lián)系郵箱:孟召平,mzp@ cumtb.edu.cn

      中國(guó)南方海相頁(yè)巖氣高效開(kāi)發(fā)的科學(xué)問(wèn)題

      王紅巖,劉玉章,董大忠,等

      摘要:中國(guó)頁(yè)巖氣資源豐富,已在多個(gè)地區(qū)獲初步發(fā)現(xiàn),其中中國(guó)南方古生界寒武系、奧陶系和志留系中發(fā)育多套海相富有機(jī)質(zhì)頁(yè)巖,技術(shù)可采資源量占全國(guó)的3/4,將是重點(diǎn)開(kāi)發(fā)地區(qū).與北美相比,中國(guó)南方海相頁(yè)巖氣儲(chǔ)集層具有構(gòu)造改造強(qiáng)、地應(yīng)力復(fù)雜、埋藏較深、地表?xiàng)l件特殊等特點(diǎn),照搬國(guó)外現(xiàn)有理論與技術(shù)難以有效開(kāi)發(fā).頁(yè)巖氣儲(chǔ)集層納米級(jí)孔隙對(duì)頁(yè)巖氣產(chǎn)能的影響尚不明確,頁(yè)巖氣產(chǎn)能預(yù)測(cè)方法尚未建立,鉆井過(guò)程中水平段垮塌嚴(yán)重、鉆井周期長(zhǎng),增產(chǎn)改造效果不理想、單井產(chǎn)量較低,需要針對(duì)納米級(jí)孔隙成因及多尺度儲(chǔ)集空間定量表征、復(fù)雜介質(zhì)多場(chǎng)耦合非線性流動(dòng)機(jī)理、頁(yè)巖失穩(wěn)與縫網(wǎng)形成的力學(xué)機(jī)制3個(gè)科學(xué)問(wèn)題進(jìn)行研究.

      關(guān)鍵詞:海相頁(yè)巖氣;高效開(kāi)發(fā);科學(xué)問(wèn)題;中國(guó)南方;納米級(jí)孔隙

      來(lái)源出版物:石油勘探與開(kāi)發(fā),2013,40(5): 574-579

      非常規(guī)油氣地質(zhì)學(xué)重要理論問(wèn)題

      賈承造,鄭民,張永峰

      摘要:2012年常規(guī)能源燃料的消費(fèi)量和生產(chǎn)量達(dá)到創(chuàng)紀(jì)錄的歷史最高水平,石油和天然氣在能源消費(fèi)結(jié)構(gòu)中仍然占據(jù)主導(dǎo)地位,非常規(guī)油氣產(chǎn)量的大幅上升使油氣供需基本達(dá)到平衡.但目前對(duì)非常規(guī)油氣還有很多重要的基礎(chǔ)理論問(wèn)題沒(méi)有解決,對(duì)非常規(guī)油氣的分布富集規(guī)律、勘探開(kāi)發(fā)特點(diǎn)還沒(méi)有把握.本文以此為出發(fā)點(diǎn),回顧了近期全球油氣勘探形勢(shì),提出了非常規(guī)油氣地質(zhì)學(xué)的4項(xiàng)重要理論問(wèn)題:①“含油氣系統(tǒng)”理論的深化再認(rèn)識(shí),提出了含油氣盆地“全含油氣系統(tǒng)”的“全過(guò)程成藏”模式,從烴類(lèi)生-排-運(yùn)-聚全過(guò)程定量化研究的4個(gè)關(guān)鍵問(wèn)題出發(fā),分析了非常規(guī)油氣成藏機(jī)理;②細(xì)粒沉積體系與致密相帶沉積學(xué),通過(guò)解析細(xì)粒沉積與非常規(guī)油氣生成關(guān)系的角度提出了3個(gè)研究結(jié)合點(diǎn);③頁(yè)巖與致密儲(chǔ)層中微-納米孔隙系統(tǒng)和流體相態(tài),提出了微-納米孔隙系統(tǒng)在非常規(guī)油氣研究方面應(yīng)重點(diǎn)關(guān)注的5個(gè)方面,并解析了微-納米孔隙發(fā)育特點(diǎn)及微-納米孔隙中流體相態(tài)的特征;④非常規(guī)油氣富集規(guī)律與資源評(píng)價(jià),從非常規(guī)油氣聚集特征出發(fā),優(yōu)選建立了非常規(guī)油氣資源評(píng)價(jià)方法體系.

      關(guān)鍵詞:能源消費(fèi)結(jié)構(gòu);非常規(guī)油氣;勘探形勢(shì);理論難題;含油氣系統(tǒng);致密相帶;微-納米孔隙系統(tǒng)

      來(lái)源出版物:石油學(xué)報(bào),2014,35(1): 1-10聯(lián)系郵箱:鄭民,zhenmin@petrochina.com.cn

      滇黔北地區(qū)筇竹寺組高演化頁(yè)巖氣儲(chǔ)層微觀孔隙特征及其控制因素

      梁興,張廷山,楊洋,等

      摘要:頁(yè)巖氣鉆探資料表明,滇黔北地區(qū)下寒武統(tǒng)筇竹寺組頁(yè)巖儲(chǔ)層富氣狀況明顯不如下志留統(tǒng)龍馬溪組頁(yè)巖,由此嚴(yán)重影響其勘探部署決策,查明其原因是當(dāng)務(wù)之急.為此,以頁(yè)巖氣鉆井巖心為基礎(chǔ),采用環(huán)境掃描電鏡、原子力顯微鏡、比表面積測(cè)量、低溫液氮吸附等試驗(yàn)手段,分析了筇竹寺組頁(yè)巖儲(chǔ)層的微觀孔隙類(lèi)型、結(jié)構(gòu)特征等.結(jié)果表明:①筇竹寺組頁(yè)巖儲(chǔ)層呈現(xiàn)出極為發(fā)育的以納米級(jí)為主的微觀孔隙結(jié)構(gòu)特征,發(fā)育黏土礦物層間孔、有機(jī)質(zhì)孔、晶間孔、礦物鑄???、次生溶蝕孔等多類(lèi)型的基質(zhì)孔隙,具有比表面積小和面孔率大的特點(diǎn);TOC②、干酪根類(lèi)型、黏土礦物和Ro是控制筇竹寺組微觀孔隙結(jié)構(gòu)的主要因素,以Ro的影響最為明顯,且在頁(yè)巖達(dá)到過(guò)成熟狀態(tài)后,其比表面積和孔體積隨著Ro的增大而急劇減小.結(jié)論認(rèn)為:已處于過(guò)成熟中后期的該區(qū)筇竹寺組頁(yè)巖層,長(zhǎng)期的地質(zhì)作用過(guò)程和過(guò)高熱演化程度嚴(yán)重制約了其微觀孔隙發(fā)育,呈現(xiàn)微孔隙驟減和比表面積、孔體積明顯較小的情形,不利于頁(yè)巖氣的吸附儲(chǔ)集,由此導(dǎo)致該區(qū)筇竹寺組頁(yè)巖氣富集程度不如龍馬溪組的結(jié)果.

      關(guān)鍵詞:滇黔北地區(qū);頁(yè)巖氣;儲(chǔ)集空間類(lèi)型;微觀孔隙結(jié)構(gòu);主控因素;富氣程度;早寒武世;比表面積

      來(lái)源出版物:天然氣工業(yè),2014,34(2): 18-26聯(lián)系郵箱:梁興,liangx85@petrochina.com.cn

      常規(guī)-非常規(guī)油氣“有序聚集”理論認(rèn)識(shí)及實(shí)踐意義

      鄒才能,楊智,張國(guó)生,等

      摘要:在分析全球常規(guī)-非常規(guī)油氣發(fā)展態(tài)勢(shì)、梳理中國(guó)近10年油氣地質(zhì)理論與技術(shù)創(chuàng)新成果基礎(chǔ)上,系統(tǒng)闡述了常規(guī)-非常規(guī)油氣“有序聚集”內(nèi)涵,指出常規(guī)油氣供烴方向有非常規(guī)油氣共生、非常規(guī)油氣外圍空間可能有常規(guī)油氣伴生,強(qiáng)調(diào)常規(guī)油氣與非常規(guī)油氣協(xié)同發(fā)展,找油思想從“源外找油”深入到“進(jìn)源找油”.非常規(guī)油氣甜點(diǎn)著眼于烴源性、巖性、物性、脆性、含油氣性與應(yīng)力各向異性“六特性”匹配評(píng)價(jià),以頁(yè)巖氣為例,中國(guó)有利頁(yè)巖氣TOC大于2%,紋層狀硅質(zhì)鈣質(zhì)或鈣質(zhì)硅質(zhì)頁(yè)巖,孔隙度3%~8%,脆性礦物含量50%~80%,含氣量2.3~4.1 m3/t,壓力系數(shù)1.0~2.3,天然裂縫發(fā)育;北美有利頁(yè)巖氣TOC大于4%,硅質(zhì)頁(yè)巖、鈣質(zhì)頁(yè)巖或泥灰?guī)r,孔隙度4%~9%,脆性礦物含量40%~70%,含氣量2.8~9.9 m3/t,壓力系數(shù)1.30~1.85,天然裂縫發(fā)育.重點(diǎn)論述了“甜點(diǎn)區(qū)”評(píng)價(jià)、平臺(tái)式“工廠化”生產(chǎn)模式等方法與技術(shù):提出非常規(guī)油氣富集“甜點(diǎn)區(qū)”8項(xiàng)評(píng)價(jià)標(biāo)準(zhǔn),其中3項(xiàng)關(guān)鍵指標(biāo)是TOC大于2%(其中頁(yè)巖油S1大于2 mg/g)、孔隙度較高(致密油氣大于10%,頁(yè)巖油氣大于3%)和微裂縫發(fā)育;闡述了多井平臺(tái)式“工廠化”生產(chǎn)內(nèi)涵及其實(shí)施需要具備“批量布井、標(biāo)準(zhǔn)設(shè)計(jì)、流水作業(yè)、重復(fù)利用”4要素;通過(guò)地下含油氣地層各方向水平井體積壓裂,形成大型人工縫網(wǎng)系統(tǒng)“人造油氣藏”.

      關(guān)鍵詞:非常規(guī)油氣;有序聚集;協(xié)同發(fā)展;“甜點(diǎn)區(qū)”評(píng)價(jià);平臺(tái)式“工廠化”生產(chǎn);“人造油氣藏”;致密油;頁(yè)巖油;頁(yè)巖氣;致密氣;“進(jìn)源找油”

      來(lái)源出版物:石油勘探與開(kāi)發(fā),2014,41(1): 14-26

      論四川盆地頁(yè)巖氣資源勘探開(kāi)發(fā)前景

      董大忠,高世葵,黃金亮,等

      摘要:四川盆地是目前中國(guó)頁(yè)巖氣勘探開(kāi)發(fā)的重點(diǎn)地區(qū),也是最成功的地區(qū).四川盆地頁(yè)巖氣資源勘探開(kāi)發(fā)前景,將在較大程度上反映和影響中國(guó)頁(yè)巖氣未來(lái)的發(fā)展前景.通過(guò)全面總結(jié)近年來(lái)該盆地頁(yè)巖氣勘探開(kāi)發(fā)的新進(jìn)展,得出了以下認(rèn)識(shí):①四川盆地經(jīng)歷了海相、陸相兩大沉積演化,發(fā)育了海相、海陸過(guò)渡相、陸相三類(lèi)富有機(jī)質(zhì)頁(yè)巖,形成了震旦系陡山沱組、寒武系筇竹寺組、奧陶系五峰組—志留系龍馬溪組、二疊系龍?zhí)督M、三疊系須家河組、侏羅系自流井組6套有利的頁(yè)巖氣富集層系;②深水陸棚相、集中段厚度大、熱演化程度適中、正向構(gòu)造背景下裂縫發(fā)育、儲(chǔ)層超壓是五峰組—龍馬溪組頁(yè)巖氣富集的“五大”關(guān)鍵要素;③該盆地頁(yè)巖氣勘探開(kāi)發(fā)仍面臨資源富集“甜點(diǎn)區(qū)”及資源潛力不清、深度超過(guò)3500 m的深層頁(yè)巖氣勘探開(kāi)發(fā)技術(shù)不成熟等兩大挑戰(zhàn).結(jié)論認(rèn)為:四川盆地已在侏羅系、三疊系和寒武系初步實(shí)現(xiàn)了頁(yè)巖氣發(fā)現(xiàn),在奧陶系—志留系實(shí)現(xiàn)了工業(yè)化突破和初步規(guī)模生產(chǎn),未來(lái)發(fā)展前景較好;該盆地頁(yè)巖氣資源可以實(shí)現(xiàn)經(jīng)濟(jì)有效勘探開(kāi)發(fā),預(yù)期可實(shí)現(xiàn)年產(chǎn)量300×108~600×108m3;對(duì)該盆地頁(yè)巖氣資源勘探開(kāi)發(fā)將為中國(guó)頁(yè)巖氣資源規(guī)模發(fā)展提供重要的理論與技術(shù)支撐.

      關(guān)鍵詞:四川盆地;頁(yè)巖氣;勘探開(kāi)發(fā);新進(jìn)展;富集條件;發(fā)展前景;面臨挑戰(zhàn);年產(chǎn)量

      來(lái)源出版物:天然氣工業(yè),2014,34(12): 1-15聯(lián)系郵箱:董大忠,ddz@petrochina.com.cn

      頁(yè)巖氣儲(chǔ)層孔隙發(fā)育特征及主控因素分析: 以上揚(yáng)子地區(qū)龍馬溪組為例

      黃磊,申維

      摘要:運(yùn)用掃描電鏡、氬離子拋光場(chǎng)發(fā)射電子掃描顯微成像與核磁共振測(cè)試技術(shù),對(duì)渝東南地區(qū)Y1井龍馬溪組頁(yè)巖的微米級(jí)孔隙、納米級(jí)孔隙和微裂縫發(fā)育特征3個(gè)層面分別進(jìn)行定量表征.結(jié)合總有機(jī)碳含量、有機(jī)質(zhì)顯微組分及成熟度、黏土礦物及全巖X射線衍射分析等測(cè)試數(shù)據(jù),對(duì)孔隙發(fā)育特征主控因素進(jìn)行分析.對(duì)頁(yè)巖微米級(jí)孔隙發(fā)育有促進(jìn)作用的因素有石英含量和伊利石含量,具有抑制作用的因素有碳酸鹽含量和埋藏深度;對(duì)有機(jī)質(zhì)納米級(jí)孔隙發(fā)育有促進(jìn)作用的因素有有機(jī)質(zhì)成熟度和伊蒙混層含量,具有抑制作用的因素為方解石含量;對(duì)微裂縫發(fā)育有促進(jìn)作用的因素有石英含量、有機(jī)質(zhì)成熟度和總有機(jī)碳含量,具有抑制作用的因素是碳酸鹽含量.

      關(guān)鍵詞:頁(yè)巖氣;儲(chǔ)層;孔隙;龍馬溪組;主控因素

      來(lái)源出版物:地學(xué)前緣,2015,22(1): 374-385聯(lián)系郵箱:黃磊,huangleicomvn@163.com

      涪陵頁(yè)巖氣勘探開(kāi)發(fā)重大突破與啟示

      王志剛

      摘要:中國(guó)海相頁(yè)巖氣分布領(lǐng)域廣,資源豐富,但與北美相比,具有頁(yè)巖時(shí)代老、熱演化程度高的特點(diǎn);同時(shí)由于經(jīng)歷多期次的構(gòu)造改造,具有保存條件和埋深差異大的特殊性.針對(duì)這些特點(diǎn)和特殊性,提出了生烴條件、儲(chǔ)集條件和保存條件為核心的頁(yè)巖氣“三元富集”理論.以此為指導(dǎo),中國(guó)石化集團(tuán)公司的頁(yè)巖氣勘探向四川盆地及其近緣聚焦,確定川東南地區(qū)下志留統(tǒng)是首選的頁(yè)巖氣勘探突破領(lǐng)域.建立了海相頁(yè)巖氣區(qū)帶和目標(biāo)評(píng)價(jià)方法,優(yōu)選涪陵焦石壩構(gòu)造為頁(yè)巖氣突破目標(biāo),2012年部署鉆探焦頁(yè)1井,一舉發(fā)現(xiàn)了中國(guó)首個(gè)大型頁(yè)巖氣田——焦石壩龍馬溪組海相頁(yè)巖氣田.同時(shí),借鑒、集成和研發(fā)關(guān)鍵技術(shù),形成了中、淺層海相頁(yè)巖氣鉆井技術(shù)和大井段分段壓裂的海相頁(yè)巖儲(chǔ)層改造技術(shù).在勘探開(kāi)發(fā)一體化的工作思路指導(dǎo)下,通過(guò)精細(xì)高效的組織管理實(shí)現(xiàn)焦石壩大型頁(yè)巖氣田的快速高效開(kāi)發(fā).

      關(guān)鍵詞:三元富集;勘探開(kāi)發(fā)一體化;海相地層;頁(yè)巖氣;志留系;焦石壩氣田

      來(lái)源出版物:石油與天然氣地質(zhì),2015,36(1): 1-6

      壓裂水平井產(chǎn)能預(yù)測(cè)方法研究綜述

      劉洪平,趙彥超,孟俊,等

      摘要:水平井壓裂技術(shù)已經(jīng)在薄層、低滲透油氣藏以及頁(yè)巖氣的開(kāi)發(fā)中得到了廣泛的應(yīng)用,其產(chǎn)能預(yù)測(cè)方法是進(jìn)行油氣層評(píng)價(jià)、合理高效開(kāi)發(fā)的基礎(chǔ).在對(duì)產(chǎn)能影響因素分析的基礎(chǔ)上,系統(tǒng)總結(jié)了致密砂巖油氣藏和頁(yè)巖氣藏壓裂水平井的產(chǎn)能評(píng)價(jià)方法;認(rèn)為除了對(duì)儲(chǔ)層基質(zhì)以及裂縫內(nèi)流動(dòng)機(jī)理進(jìn)行表征外,裂縫的分布規(guī)律以及儲(chǔ)層應(yīng)力敏感性對(duì)產(chǎn)能的影響不容忽視;同時(shí)應(yīng)重視大量鉆井資料與物理模擬和數(shù)值模擬的結(jié)合,以提高產(chǎn)能預(yù)測(cè)的精度.

      關(guān)鍵詞:壓裂水平井;致密砂巖;頁(yè)巖氣;產(chǎn)能預(yù)測(cè)

      來(lái)源出版物:地質(zhì)科技情報(bào),2015,34(1): 131-139聯(lián)系郵箱:劉洪平,liuhongping12@126.com

      Petrophysical Considerations in Evaluating and Producing Shale Gas Resources

      C.H. Sondergeld; K.E. Newsham; J.T. Comisky; et al.

      Abstract: We present a practical assessment of petrophysical properties of shales and their measurement in the lab and via logs. Gasbearing shale present unique measurement challenges due to their ultra-low permeability and complicated pore volume connectivity. Thecombination of low intrinsic permeability and gas sorption effects renders these reservoirs “unconventional”. Advances in horizontal drilling and hydraulic stimulation have transformed gas-shale resources into economic reserves. Given their economic significance,there is a strong drive to understand gas shale petrophysical property measurements,both in the laboratory and in the subsurface. We note that various core analysis protocols are used in different laboratories leading to physical property measurements that are inconsistent,even when measured on identical sample sets. In addition,log analysis of kerogen-rich shale is ‘unconventional’ compared to classical techniques used in tight gas sands. As shale gas evaluation is becoming widely practiced among service companies and operators,we will focus on three reservoir assessment categories: storage capacity(gas-in-place),flow capacity(gas deliverability)and mechanical properties impacting hydraulic stimulation. Within each of these categories we have identified influential petrophysical properties such as rock composition,total organic carbon(TOC)content,porosity,saturation,permeability and mechanical properties. Specifically,we demonstrate the importance of estimating accurate mineral and kerogen content as these properties directly impact rock quality,hydraulic fracturing protocols,and gas-in-place estimations. In reviewing these practices,we also will show the need and possible direction of new technologies that will be required for making evaluations more accurate and quantitative in the future.

      來(lái)源出版物:SPE 2010,131768: 1-34

      Thirty Years of Gas Shale Fracturing: What Have We Learned?

      George E. King

      Abstract: Although high gas flow rates from shales are a relatively recent phenomenon,the knowledge bases of shale-specific well completions,fracturing and shale well operations have actually been growing for more than three decades and shale gas production reaches back almost one hundred ninety years. During the last decade of gas shale development,projected recovery of shale gas-in-place has increased from about 2% to estimates of about 50%; mainly through the development and adaptation of technologies to fit shale gas developments. Adapting technologies,including multi-stage fracturing of horizontal wells,slickwater fluids with minimum viscosity and simultaneous fracturing,have evolved to increase formation-face contact of the fracture system into the range of 9.2 million m2(100 million ft2)in a very localized area of the reservoir by opening natural fractures. These technologies have made possible development of enormous gas reserves that were completely unavailable only a few years ago. Current and next generation technologies promise even more energy availability with advances in hybrid fracs,fracture complexity,fracture flow stability and methods of re-using water used in fracturing. This work surveyed over 350 shale completion,fracturing and operations publications,linking geosciences and engineering information together to relay learnings that will identify both intriguing information on selective opening and stabilizing of micro-fracture systems within the shales and new fields of endeavor needed to achieve the next level of shale development advancement.

      來(lái)源出版物:SPE 2010,133456: 1-50

      Pore structure characterization of North American shale gas reservoirs using USANS/SANS,gas adsorption,and mercury intrusion

      Clarkson,CR; Solano,N; Bustin,RM; et al.

      Abstract: Small-angle and ultra-small-angle neutron scattering(SANS and USANS),low-pressure adsorption(N2and CO2),and high-pressure mercury intrusion measurements were performed on a suite of North American shale reservoir samples providing the first ever comparison of all these techniques for characterizing the complex pore structure of shales. The techniques were used to gain insight into the nature of the pore structure including pore geometry,pore size distribution and accessible versus inaccessible porosity. Reservoir samples for analysis were taken from currently-active shale gas plays including the Barnett,Marcellus,Haynesville,Eagle Ford,Woodford,Muskwa,and Duvernay shales. Low-pressure adsorption revealed strong differences in BET surface area and pore volumes for the sample suite,consistent with variability in composition of the samples. The combination of CO2and N2adsorption data allowed pore size distributions to be created for micro-meso-macroporosity up to a limit of similar to 1000 angstrom. Pore size distributions are either uni- or multi-modal. The adsorption-derived pore size distributions for some samples are inconsistent with mercury intrusion data,likely owing to a combination of grain compression during high-pressure intrusion,and the fact that mercury intrusion yields information about pore throat rather than pore body distributions. SANS/USANS scattering data indicate a fractal geometry(power-law scattering)for a wide range of pore sizes and provide evidence that nanometer-scale spatial ordering occurs in lower mesopore-micropore range for some samples,which may be associated with inter-layer spacing in clay minerals. SANS/USANS pore radius distributions were converted to pore volume distributions for direct comparison with adsorption data. For the overlap region between the two methods,the agreement is quite good. Accessible porosity in the pore size(radius)range 5 nm-10 μm was determined for a Barnett shale sample using the contrast matching method with pressurized deuterated methane fluid. The results demonstrate that accessible porosity is pore-size dependent.

      Keywords: Shale gas; Pore structure; Small-angle neutron scattering; Gas adsorption; Mercury intrusion

      來(lái)源出版物:Fuel,2013,103: 606-616聯(lián)系郵箱:Clarkson,CR; clarksoc@ucalgary.ca

      Generation,transport,and disposal of wastewater associated with Marcellus Shale gas development

      Lutz,Brian D; Lewis,Aurana N; Doyle,Martin W

      Abstract: Hydraulic fracturing has made vast quantities of natural gas from shale available,reshaping the energy landscape of the UnitedStates. Extracting shale gas,however,generates large,unavoidable volumes of wastewater,which to date lacks accurate quantification. For the Marcellus shale,by far the largest shale gas resource in the United States,we quantify gas and wastewater production using data from 2189 wells located throughout Pennsylvania. Contrary to current perceptions,Marcellus wells produce significantly less wastewater per unit gas recovered(approximately 35%)compared to conventional natural gas wells. Further,well operators classified only 32.3% of wastewater from Marcellus wells as flow back from hydraulic fracturing; most wastewater was classified as brine,generated over multiple years. Despite producing less wastewater per unit gas,developing the Marcellus shale has increased the total wastewater generated in the region by approximately 570% since 2004,overwhelming current wastewater disposal infrastructure capacity. Citation: Lutz,B. D.,A. N. Lewis,and M. W. Doyle(2013),Generation,transport,and disposal of wastewater associated with Marcellus Shale gas development,Water Resour.

      Keywords: natural-gas; pennsylvania; challenges; methane; brine

      來(lái)源出版物:Water Resources Research,2013,49(2): 647-656聯(lián)系郵箱:Lutz,Brian D; blutz6@kent.edu

      Desalination and Reuse of High-Salinity Shale Gas Produced Water: Drivers,Technologies,and Future Directions

      Shaffer,Devin L; Chavez,Laura H. Arias; Ben-Sasson,Moshe; et al.

      Abstract: In the rapidly developing shale gas industry,managing produced water is a major challenge for maintaining the profitability of shale gas extraction while protecting public health and the environment. We review the current state of practice for produced water management across the United States and discuss the interrelated regulatory,infrastructure,and economic drivers for produced water reuse. Within this framework,we examine the Marcellus shale play,a region in the eastern United States where produced water is currently reused without desalination. In the Marcellus region,and in other shale plays worldwide with similar constraints,contraction of current reuse opportunities within the shale gas industry and growing restrictions on produced water disposal will provide strong incentives for produced water desalination for reuse outside the industry. The most challenging scenarios for the selection of desalination for reuse over other management strategies will be those involving high-salinity produced water,which must be desalinated with thermal separation processes. We explore desalination technologies for treatment of high-salinity shale gas produced water,and we critically review mechanical vapor compression(MVC),membrane distillation(MD),and forward osmosis(FO)as the technologies best suited for desalination of high-salinity produced water for reuse outside the shale gas industry. The advantages and challenges of applying MVC,MD,and FO technologies to produced water desalination are discussed,and directions for future research and development are identified. We find that desalination for reuse of produced water is technically feasible and can be economically relevant. However,because produced water management is primarily an economic decision,expanding desalination for reuse is dependent on process and material improvements to reduce capital and operating costs.

      Keywords: contact membrane distillation; mechanical vapor compression; ammonia-carbon dioxide; osmosis desalination; seawater desalination; natural-gas; waste-water; energy-requirements; process performance; fouling behavior

      來(lái)源出版物:Environmental Science & Technology,2013,47(17): 9569-9583

      聯(lián)系郵箱:Elimelech,Menachem; menachem.elimelech@yale.edu

      A Critical Review of the Risks to Water Resources from Unconventional Shale Gas Development and Hydraulic Fracturing in the United States

      Vengosh,Avner; Jackson,Robert B; Warner,Nathaniel; et al.

      Abstract: The rapid rise of shale gas development through horizontal drilling and high volume hydraulic fracturing has expanded the extraction of hydrocarbon resources in the U.S. The rise of shale gas development has triggered an intense public debate regarding the potential environmental and human health effects from hydraulic fracturing. This paper provides a critical review of the potential risks that shale gas operations pose to water resources,with an emphasis on case studies mostly from the U.S. Four potential risks for water resources are identified:(1)the contamination of shallow aquifers with fugitive hydrocarbon gases(i.e.,stray gas contamination),which can also potentially lead to the salinization of shallow groundwater through leaking natural gas wells and subsurface flow;(2)the contamination of surface water and shallow groundwater from spills,leaks,and/or the disposal of inadequately treated shale gas wastewater;(3)the accumulation of toxic and radioactive elements in soil or stream sediments near disposal or spill sites; and(4)the over extraction of water resources for high-volume hydraulic fracturing that could induce water shortages or conflicts with other water users,particularly in water-scarce areas. Analysis of published data(through January 2014)reveals evidence for stray gas contamination,surface water impacts in areas of intensive shale gas development,and the accumulation of radium isotopes in some disposal and spill sites. The direct contamination of shallow groundwater from hydraulic fracturing fluids and deep formation waters by hydraulic fracturing itself,however,remains controversial.

      Keywords: potential contaminant pathways; disinfection by-products; southern high-plains; natural-gas; marcellus shale; drinking-water;waste-water; sedimentary basin; barnett shale; methane contamination

      來(lái)源出版物:Environmental Science & Technology,2014,48(15): 8334-8348聯(lián)系郵箱:Vengosh,A; vengosh@duke.edu

      Life Cycle Greenhouse Gas Emissions and Freshwater Consumption of Marcellus Shale Gas

      Laurenzi,Ian J; Jersey,Gilbert R

      Abstract: We present results of a life cycle assessment(LCA)of Marcellus shale gas used for power generation. The analysis employs the most extensive data set of any LCA of shale gas to date,encompassing data from actual gas production and power generation operations. Results indicate that a typical Marcellus gas life cycle yields 466 kg CO2eq/MWh(80% confidence interval: 450-567 kg CO2eq/MWh)of greenhouse gas(GHG)emissions and 224 gal/MWh(80% CI: 185-305 gal/MWh)of freshwater consumption. Operations associated with hydraulic fracturing constitute only 1.2% of the life cycle GHG emissions,and 6.2% of the life cycle freshwater consumption. These results are influenced most strongly by the estimated ultimate recovery(EUR)of the well and the power plant efficiency: increase in either quantity will reduce both life cycle freshwater consumption and GHG emissions relative to power generated at the plant. We conclude by comparing the life cycle impacts of Marcellus gas and U.S. coal: The carbon footprint of Marcellus gas is 53%(80% CI: 44-61%)lower than coal,and its freshwater consumption is about 50% of coal. We conclude that substantial GHG reductions and freshwater savings may result from the replacement of coal-fired power generation with gas-fired power generation.

      Keywords: natural-gas; footprint; coal

      來(lái)源出版物:Environmental Science & Technology,2013,47(9): 4896-4903

      聯(lián)系郵箱:Laurenzi,Ian J; ian.j.laurenzi@exxonmobil.com

      Natural gas from shale formation-The evolution,evidences and challenges of shale gas revolution in United States

      Wang,Qiang; Chen,Xi; Jha,Awadhesh N; et al.

      Abstract: Extraction of natural gas from shale rock in the United States(US)is one of the landmark events in the 21st century. The combination of horizontal drilling and hydraulic fracturing can extract huge quantities of natural gas from impermeable shale formations,which were previously thought to be either impossible or uneconomic to produce. This review offers a comprehensive insight into US shale gas opportunities,appraising the evolution,evidence and the challenges of shale gas production in the US. The history of US shale gas in this article is divided into three periods and based on the change of oil price(i.e.,the period before the 1970s oil crisis,the period from 1970s to 2000,and the period since 2000),the US has moved from being one of the world's biggest importers of gas to being self-sufficient in less than a decade,with the shale gas production increasing 12-fold(from 2000 to 2010). The US domestic natural gas price hit a 10-year low in 2012. The US domestic natural gas price in the first half of 2012 was about $2 per million British Thermal Unit(BTU),compared with Brent crude,the world benchmark price for oil,now about $80-100/barrel,or $14-17 per million BTU. Partly due to an increase in gas-fired power generation in response to low gas prices,US carbon emissions from fossil-fuel combustion fell by 430 million ton CO2-more than any other country-between 2006 and 2011. Shale gas also stimulated economic growth,creating 600000 new jobs in the US by 2010. However,the US shale gas revolution would be curbed,if the environmental risks posed by hydraulic fracturing are not managed effectively. The hydraulic fracturing is water intensive,and can cause pollution in the marine environment,with implications for long-term environmental sustainability in several ways. Also,large amounts of methane,a powerful greenhouse gas,can be emitted during the shale gas exploration and production. Hydraulic fracturing also may induce earthquakes. These environmental risks need to be managed by good practices which is not being applied by all the producers in all the locations. Enforcing stronger regulations are necessary to minimize risk to the environment and on human health. Robust regulatory oversight can however increase the cost of extraction,but stringent regulations can foster an historic opportunity to provide cheaper and cleaner gas to meet the consumer demand,as well as to usher in the future growth of the industry.

      Keywords: Natural gas from shale formation; Energy revolution; Environmental challenge; Best practices; US shale gas

      來(lái)源出版物:Renewable & Sustainable Energy Reviews,2014,30: 1-28聯(lián)系郵箱:Wang,Qiang; qiangwang7@gmail.com

      Water resource impacts during unconventional shale gas development: The Pennsylvania experience

      Brantley,Susan L; Yoxtheimer,Dave ; Arjmand,Sina; et al.

      Abstract: Improvements in horizontal drilling and hydrofracturing have revolutionized the energy landscape by allowing the development of so-called “unconventional” gas resources. The Marcellus play in the northeastern U.S.A. documents how fast this technology developed: the number of unconventional Marcellus wells in Pennsylvania(PA)increased from 8 in 2005 to similar to 7234 today. Publicly available databases in PA show only rare evidence of contamination of surface and groundwaters. This could document that incidents that impact PA waters have been relatively rare and that contaminants were quickly diluted. However,firm conclusions are hampered by i)the lack of information about location and timing of incidents; ii)the tendency to not release water quality data related to specific incidents due to liability or confidentiality agreements; iii)the sparseness of sample and sensor data for the analytes of interest; iv)the presence of pre-existing water impairments that make it difficult to determine potential impacts from shale-gas activity; and v)the fact that sensors can malfunction or drift. Although the monitoring data available to assess contamination events in PA are limited,the state manages an online database of violations. Overall,one fifth of gas wells drilled were given at least one non-administrative notice of violation(NOV)from thePA regulator. Through March 2013,3.4% of gas wells were issued NOVs for well construction issues and 0.24% of gas wells received NOVs related to methane migration into groundwater. Between 2008 and 2012,161 of the similar to 1000 complaints received by the state described contamination that implicated oil or gas activity: natural gas was reported for 56% and brine salt components for 14% of the properties. Six percent of the properties were impacted by sediments,turbidity,and/or drill cuttings. Most of the sites of groundwater contamination with methane and/or salt components were in previously glaciated northern PA where fracture flow sometimes allows long distance fluid transport. No cases of subsurface transport of fracking or flow back fluids into water supplies were documented. If Marcellus-related flowback/production waters did enter surface or groundwaters,the most likely contaminants to be detected would be Na,Ca,and Cl,but those elements are already common in natural waters. The most Marcellus-specific "fingerprint" elements are Sr,Ba,and Br. For example,variable Br concentrations measured in southwestern PA streams were attributed to permitted release of wastewaters from unconventional shale gas wells into PA streams through municipal or industrial wastewater treatment plants before 2011. Discharge has now been discontinued except for brines from a few plants still permitted to discharge conventional oil/gas brines after treatment. Overall,drinking water supply problems determined by the regulator to implicate oil/gas activities peaked in frequency in 2010 while spill rates increased through 2012. Although many minor violations and temporary problems have been reported,the picture that emerges from PA is that the fast shale-gas start may have led to relatively few environmental incidents of significant impact compared to wells drilled; however,the impacts remain difficult to assess due to the lack of transparent and accessible data.

      Keywords: Unconventional shale gas; Environmental impact; Hydraulic fracturing; Hydrofracturing; Water quality; Marcellus Shale

      來(lái)源出版物:International Journal of Coal Geology,2014,126(S1): 140-156

      Molecular simulation of shale gas adsorption and diffusion in inorganic nanopores

      Sharma,Aman; Namsani,Sadanandam; Singh,Jayant K

      Abstract: We studied the structural and dynamical properties of methane and ethane in montmorillonite(MMT)slit pore of sizes 10,20 and 30 angstrom using grand canonical Monte Carlo and classical molecular dynamics(MD)simulations. The isotherm,at 298.15 K,is generated for pressures up to 60 bar. The molecules preferentially adsorb at the surface as indicated by the density profile. In case of methane,we observe only a single layer,at the pore wall,whose density increases with increasing pressure. However,ethane also displays a second layer,though of low density in case of pore widths 20 and 30 angstrom. In-plane self-diffusion coefficient,DII,of methane and ethane is of the order of 10-6m2/s. At low pressure,DIIincreases significantly with the pore size. However,DIIdecreases rapidly with increasing pressure. Furthermore,the effect of pore size on DIIdiminishes at high pressure. Ideal adsorbed solution theory is used to understand the adsorption behaviour of the binary mixture of methane(80%)and ethane(20%)at 298.15 K. Furthermore,we calculate the selectivity of the gases at various pressures of the mixture,and found high selectivity for ethane in MMT pores. However,selectivity of ethane decreases with increase in pressure or pore size.

      Keywords: methane; shale gas; GCMC; ethane; montmorillonite

      來(lái)源出版物:Molecular Simulationk,2015,41(5-6): 414-422聯(lián)系郵箱:Singh,Jayant K; jayantks@iitk.ac.in

      Study on gas flow through nano pores of shale gas reservoirs

      Guo,Chaohua; Xu,Jianchun; Wu,Keliu; et al.

      Abstract: Unlike conventional gas reservoirs,gas flow in shale reservoirs is a complex and multiscale flow process which has special flow mechanisms. Shale gas reservoirs contain a large fraction of nano pores,which leads to an apparent permeability that is dependent on pore pressure,fluid type,and pore structure. Study of gas flow in nano pores is essential for accurate numerical simulation of shale gas reservoirs. However,no comprehensive study has been conducted pertaining to the gas flow in nano pores. In this paper,experiments for nitrogen flow through nano membranes(with pore throat size: 20 nm,55 nm,and 100 nm)have been done and analyzed. Obvious discrepancy between apparent permeability and intrinsic permeability has been observed; and the relationship between this discrepancy and pore throat diameter(PTD)has been analyzed. Then,based on the advection-diffusion model,a new mathematical model has been constructed to characterize gas flow in nano pores. A new apparent permeability expression has been derived based on advection and Knudsen diffusion. A comprehensive coefficient for characterizing the flow process was proposed. Simulation results were verified against the experimental data for gas flow through nano membranes and published data. By changing the comprehensive coefficient,we found the best candidate for the case of argon with a membrane PTD of 235 nm. We verified the model using experimental data with different gases(oxygen,argon)and different PTDs(235 nm,220 nm). The comparison shows that the new model matches the experimental data very closely. Additionally,we compared our results with experimental data,the Knudsen/Hagen-Poiseuille analytical solution,and existing models available in the literature. Results show that the model proposed in this study yielded a more reliable solution. Shale gas simulations,in which gas flowing in nano pores plays a critical role,can be made more accurate and reliable based on the results of this work.

      Keywords: Shale gas; Nano pores; Apparent permeability; Advection-diffusion model; Knudsen diffusion

      來(lái)源出版物:Fuel,2015,143: 107-117聯(lián)系郵箱:wei,mingzhen; weim@mst.edu

      編輯:衛(wèi)夏雯

      The first commercial United States natural gas production(1821)came from an organic-rich Devonian shale in the Appalachian basin. Understanding the geological and geochemical nature of organic shale formations and improving their gas producibility have subsequently been the challenge of millions of dollars worth of research since the 1970s. Shale-gas systems essentially are continuous-type biogenic(predominant),thermogenic,or combined biogenic-thermogenic gas accumulations characterized by widespread gas saturation,subtle trapping mechanisms,seals of variable lithology,and relatively short hydrocarbon migration distances. Shale gas may be stored as free gas in natural fractures and intergranular porosity,as gas sorbed onto kerogen and clay-particle surfaces,or as gas dissolved in kerogen and bitumen. Five United States shale formations that presently produce gas commercially exhibit an unexpectedly wide variation in the values of five key parameters: thermal maturity(expressed as vitrinite reflectance),sorbed-gas fraction,reservoir thickness,total organic carbon content,and volume of gas in place. The degree of natural fracture development in an otherwise low-matrix-permeability shale reservoir is a controlling factor in gas producibility. To date,unstimulated commercial production has been achievable in only a small proportion of shale wells,those that intercept natural fracture networks. In most other cases,a successful shale-gas well requires hydraulic stimulation. Together,the Devonian Antrim Shale of the Michigan basin and Devonian Ohio Shale of the Appalachian basin accounted for about 84% of the total 380 bcf of shale gas produced in 1999. However annual gas production is steadily increasing from three other major organic shale formations that subsequently have been explored and developed: the Devonian New Albany Shalein the Illinois basin,the Mississippian Barnett Shale in the Fort Worth basin,and the Cretaceous Lewis Shale in the San Juan basin. In the basins for which estimates have been made,shale-gas resources are substantial,with in-place volumes of 497-783 tcf. The estimated technically recoverable resource(exclusive of the Lewis Shale)ranges from 31 to 76 tcf. In both cases,the Ohio Shale accounts for the largest share.

      fractured sandstone; liquid permeability; gas permeability; laboratory study

      高影響力文章

      文章題目第一作者來(lái)源出版物1Fractured shale-gas systemsCurtis JBAAPG Bulletin,2002,86(11): 1921-1938 2 Mississippian Barnett Shale,F(xiàn)ort Worth basin,north-central texas: Gas-shale play with multi-trillion cubic foot potential Montgomery SL AAPG Bulletin,2005,89(2): 155-175 3 Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment Jarvie DMAAPG Bulletin,2007,91(4): 475-499 4 Shale gas potential of the Lower Jurassic Gordondale Member,Bulletin of Canadian Petroleum Geology,northeastern British Columbia,Canada Ross DJK 2007,55(1): 51-75 5 Characterizing the shale gas resource potential of Devonian-Mississippian strata in the Western Canada sedimentary basin: Application of an integrated formation evaluation Ross DJKAAPG Bulletin,2008,92(1): 87-125

      Fractured shale-gas systems

      JB Curtis

      *摘編自《石油學(xué)報(bào)》2012年33卷 增刊1:107~114頁(yè)

      *摘編自《石油勘探與開(kāi)發(fā)》2010年37卷6期:641~653頁(yè)

      猜你喜歡
      頁(yè)巖氣
      一種評(píng)價(jià)頁(yè)巖氣水平井氣層產(chǎn)氣性的方法
      宣威熱水—沾益德澤地區(qū)下寒武統(tǒng)筇竹寺組頁(yè)巖氣成藏條件分析
      非常規(guī)天然氣管理與發(fā)展之路
      商情(2016年40期)2016-11-28 10:59:46
      促進(jìn)中國(guó)頁(yè)巖氣產(chǎn)業(yè)發(fā)展對(duì)策探析
      商(2016年28期)2016-10-27 09:22:51
      川南威遠(yuǎn)地區(qū)頁(yè)巖氣水平井開(kāi)發(fā)箱體設(shè)計(jì)研究及應(yīng)用
      頁(yè)巖氣的開(kāi)發(fā)現(xiàn)狀及特征分析
      科技視界(2016年6期)2016-07-12 13:38:41
      自然伽馬能譜測(cè)井在涪陵頁(yè)巖氣解釋中的應(yīng)用
      我國(guó)頁(yè)巖氣產(chǎn)業(yè)發(fā)展路徑研究
      商(2016年10期)2016-04-25 19:21:33
      關(guān)于我國(guó)頁(yè)巖氣勘探開(kāi)發(fā)的思考
      商情(2016年11期)2016-04-15 22:01:18
      中國(guó)頁(yè)巖氣開(kāi)發(fā)的現(xiàn)狀、問(wèn)題及對(duì)策
      人民論壇(2016年8期)2016-04-11 12:57:08
      定陶县| 鹤庆县| 米林县| 顺平县| 津南区| 江源县| 汾阳市| 石渠县| 武胜县| 屯昌县| 香河县| 青浦区| 诏安县| 公主岭市| 德惠市| 临漳县| 天水市| 周口市| 繁昌县| 榆社县| 西宁市| 浠水县| 木兰县| 万州区| 浙江省| 新营市| 清新县| 绍兴县| 洛南县| 政和县| 那曲县| 铜鼓县| 泽库县| 绥棱县| 新兴县| 和田县| 文成县| 靖西县| 曲松县| 娱乐| 金华市|