• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Projective Synchronization of One Fractional-order Chaotic System

    2015-12-22 07:26:14KONGDefu
    科技視界 2015年20期

    KONG De-fu

    (College of science,Tianjin University of Technology and Education,Tianjin 300222,China)

    0 Introduction

    1 System description

    Consider the following system:

    where x,y,z are the state variables.The chaotic attractors of the system for the order of derivative q=0.98 are displayed through Fig.1 for the parameters,values ɑ=100,b=0.1,c=1.6,d=200.

    Fig.1 The phase portrait of the system(1)

    2 Projective synchronization

    Now,projective synchronization of the fractional -order chaotic system will be studied.For this,the drive system(2)is expressed by

    and the corresponding response system(3)is written by

    Here u1,u2,u3are the control functions.

    Due to facilitate the following analysis,we set the error functions as follows:

    Theorem:If control functions are selected as

    here k1≤-ɑb,k2≤-d is the real constants.Then,the response system(3)is synchronized with the drive system(2)globally and asymptotically,

    Proof:From Eq.(2),(3),(4)and(5),the error systems are achieved as follows:

    Let us define a Lyapunov function as follows:

    the time derivative of V along the trajectory of the error system(6)leads to

    here k1≤-ɑb,k2≤-d is the real constants,since V∈R is positive definite function andis the negative definite function,so according to the Lyapunov stability theory[9],the response system(3)is synchronization to the drive system(2)asymptotically.

    3 Numerical simulation

    In this section,the constants are taken as k1=-20,k2=-250,α=0.3,and the initial conditions of the drive and response systems are taken as,(x1(0),x2(0),x3(0))=(0.2,0.03,-0.2)and(y1(0),y2(0),y3(0))=(1,0.1,-1).Numerical results is achieved as shown in figure 2.

    Fig.2 State trajectories of the errors function of drive system (2) &response system (3)

    4 Conclusion

    In this letter,projective synchronization of one fractional -order chaotic system is presented,and the chaotic attractor is given.Besides,suitable synchronization controllers are investigated by using the Lyapunov stability theory.Numerical simulations are performed to verify these results.

    【Reference】

    [1]Yang T,Chua LO.Secure communication via chaotic parameter modulation[J].IEEE Trans Circuits Syst I,1996,43:817-819.

    [2]Feki M.An adaptive chaos synchronization scheme applied to secure communication[J].Chaos Soliton Fract,2003,3:959-964.

    [3]Li C,Liao X,Wong K.Chaotic lag synchronization of coupled time-delayed systems and its application in secure communication [J].Physica D,2004,194:187-202.

    [4]Chang WD.Digital secure comumunication via chaotic systems[J].Digital Signal Process,2009,19:693-699.

    [5]Nana B,Woafo P,Domngang S.Chaotic synchronization with experimental application to secure communication [J].Commun Nonlinear Sci Numer Simul,2009,14:2266-2276.

    [6]Ott E,Grebogi C,Yorke JA.Controlling chaos [J].Phys.Rev.Lett.,1990,64:1196-1199.

    [7]Pecora LM,Carroll TM.Synchronization of chaotic system [J].Phys Rev Lett.,1990,64(8):821-830.

    [8]Carroll TL,Pecora LM.Synchronizing a chaotic systems,IEEE Trans Circuits Sys.,1991,38:453-456.

    [9]W.Hahn.The Stability of Motion[M].Springer,New York,1967.

    灵寿县| 饶河县| 嵩明县| 德昌县| 定结县| 开平市| 桃江县| 宜春市| 清水河县| 盐山县| 海安县| 富宁县| 甘泉县| 滨海县| 佛冈县| 乌海市| 会宁县| 景洪市| 新营市| 武平县| 惠安县| 西平县| 岢岚县| 鹤壁市| 通化市| 平安县| 武夷山市| 长沙市| 泽普县| 鄂托克前旗| 河北区| 台南市| 贵南县| 怀宁县| 阳朔县| 应城市| 北碚区| 崇阳县| 柏乡县| 拉萨市| 嘉定区|