• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      TGA轉(zhuǎn)錄因子在植物氧化脅迫應答中的調(diào)控作用

      2015-12-28 05:42:04羅秀云李園園盧向陽
      化學與生物工程 2015年3期
      關(guān)鍵詞:信號轉(zhuǎn)導擬南芥結(jié)構(gòu)域

      羅秀云,李園園,周 賡,田 云,盧向陽

      (1.湖南農(nóng)業(yè)大學生物科學技術(shù)學院,湖南長沙410128;2.湖南省農(nóng)業(yè)生物工程研究所,湖南長沙410128)

      植物體內(nèi)各組織器官(如根、莖、葉、花、果)時刻都在發(fā)生生理代謝,在代謝過程中會產(chǎn)生活性氧(ROS)。環(huán)境脅迫(如干旱、低溫、高溫、鹽害、外源H2O2等)會導致植物體內(nèi)積累大量的ROS,破壞機體內(nèi)ROS氧化還原的平衡,從而產(chǎn)生氧化脅迫。氧化脅迫會使植物體內(nèi)ROS的清除能力減弱,造成植物傷害甚至死亡[1-2],在很大程度上影響植物的生長發(fā)育、作物品質(zhì)和產(chǎn)量[3]。

      目前,氧化脅迫的研究主要集中在兩方面:一是病毒、微生物引起的植物機體抗氧化應答機理;二是外源H2O2和光照等條件誘導產(chǎn)生的植物抗氧化調(diào)控[4]。ROS是氧化脅迫研究的關(guān)鍵信號分子,主要存在于線粒體、內(nèi)質(zhì)網(wǎng)等膜系統(tǒng)中,植物體內(nèi)清除過量的ROS途徑主要有兩類:抗氧化酶系統(tǒng)(NADPH 酶、脂氧合酶等)和抗氧化劑(GSH、Vc等)[5]。此外,植物機體內(nèi)ROS的信號轉(zhuǎn)導途徑易受機體自身激素的影響[6]。在植物ROS信號途徑中,硫基類蛋白,尤其是半胱氨酸蛋白對ROS的信號轉(zhuǎn)導途徑起關(guān)鍵作用。目前,在ROS信號轉(zhuǎn)導途徑的研究中,主要有NPR1/TGA 和Rap2.4兩類關(guān)鍵蛋白[7]。作者主要綜述了植物TGA轉(zhuǎn)錄因子的分類、結(jié)構(gòu)和作用,重點介紹了TGA 轉(zhuǎn)錄因子在植物ROS應答途徑中的調(diào)控作用。

      1 植物TGA轉(zhuǎn)錄因子

      轉(zhuǎn)錄因子是由DNA 結(jié)合結(jié)構(gòu)域和轉(zhuǎn)錄激活結(jié)構(gòu)域構(gòu)成的能與DNA 分子相互作用的蛋白質(zhì),根據(jù)DNA 結(jié)合位點的不同可分為多類,如bZIP 類轉(zhuǎn)錄因子、MYC類轉(zhuǎn)錄因子等[8]。植物TGA 轉(zhuǎn)錄因子是能夠識別TGACGT 特異性結(jié)合序列且含有一個典型的鋅指結(jié)構(gòu)域和2個谷氨酰胺轉(zhuǎn)錄激活位點的一類轉(zhuǎn)錄因子,屬于bZIP 轉(zhuǎn)錄因子家族中的一個亞家族。TGA 轉(zhuǎn)錄因子中鋅指結(jié)構(gòu)域是螺旋-旋轉(zhuǎn)-螺旋類的DNA 結(jié)構(gòu)域,且在DNA 結(jié)構(gòu)域的C 端含有一個亮氨酸拉鏈和堿性結(jié)構(gòu)的二聚體,此外,其谷氨酰胺激活結(jié)構(gòu)域是一類酸性轉(zhuǎn)錄激活域。

      1.1 植物TGA轉(zhuǎn)錄因子的分類與結(jié)構(gòu)

      1989年,利用花椰菜花葉病毒(CaMV)35S 啟動子,首次在煙草中發(fā)現(xiàn)了TGA1a轉(zhuǎn)錄因子并確定其能識別TGACGT 特異性結(jié)合序列[9]。之后在水稻、擬南芥中陸續(xù)發(fā)現(xiàn)了TGA 轉(zhuǎn)錄因子。

      根據(jù)TGA 轉(zhuǎn)錄因子的結(jié)構(gòu)差異,植物TGA 轉(zhuǎn)錄因子可分為6 類:TGA1a、TGAⅠ、TGAⅡ、TGAⅢ、TGAⅣ、TGAⅤ,見表1。

      根據(jù)植物TGA 轉(zhuǎn)錄因子的DNA 結(jié)構(gòu)域和轉(zhuǎn)錄激活域的結(jié)構(gòu)特征,可明顯地比較這6類轉(zhuǎn)錄因子的結(jié)構(gòu)異同[10],見圖1。

      表1 植物TGA轉(zhuǎn)錄因子的分類Tab.1 Classification of TGA transcription factors in plant

      圖1 植物TGA轉(zhuǎn)錄因子的結(jié)構(gòu)Fig.1 Structures of TGA transcription factors in plant

      有研究表明,在擬南芥中發(fā)現(xiàn)了10個TGA 轉(zhuǎn)錄因子,根據(jù)其結(jié)構(gòu)的不同可以分為5類:TGAⅠ、TGAⅡ、TGAⅢ、TGAⅣ、TGAⅤ。其中TGAⅠ包括TGA1(At5g65210)和TGA4(At5g10030),其調(diào)控作用類似于煙 草 中 的 TGA1a;TGA Ⅱ 包 括 TGA2(At5g06950)、TGA5(At5g06960) 和 TGA6(At3g12250),相對其它類別而言,其DNA 結(jié)構(gòu)域含有較短的N 端序列,是TGA 轉(zhuǎn)錄因子中研究最多的一類;TGA Ⅲ包括TGA3(At1g22070)和TGA7(At1g77920);TGAⅣ主要包括TGA9(At1g08320)和TGA10(At5g06830)[17];TGA Ⅴ 包 括 PAN(At1g68650)。

      1.2 植物TGA 轉(zhuǎn)錄因子的作用

      TGA 轉(zhuǎn)錄因子參與調(diào)節(jié)植物根系的生長、脅迫應答、開花調(diào)節(jié)等多種生理代謝過程。目前,主要通過擬南芥研究TGA 轉(zhuǎn)錄因子的功能,對水稻、煙草中TGA 轉(zhuǎn)錄因子的研究較少。

      TGAⅠ類轉(zhuǎn)錄因子參與植物根系的生長調(diào)節(jié)。Alvarez等[18]利用免疫共沉淀及生物信息學分析法研究了擬南芥中TGA1和TGA4轉(zhuǎn)錄因子,結(jié)果表明,TGAⅠ作為關(guān)鍵調(diào)節(jié)因子參與擬南芥根系中硝酸鹽的調(diào)節(jié)。

      TGAⅡ類轉(zhuǎn)錄因子參與植物脅迫的應答。Stotz等[19]研究表明,擬南芥TGA2轉(zhuǎn)錄因子參與環(huán)境脅迫誘導的氧化脅迫途徑及ROS的氧化還原調(diào)控途徑,恢復植物生長發(fā)育,避免外界不利條件對植物產(chǎn)生影響。此外,丁香假單胞菌會侵染擬南芥,產(chǎn)生生物脅迫,激活機體內(nèi)細胞分裂素途徑,促使TGA3 轉(zhuǎn)錄因子與ARR2互作形成復合物啟動pr1基因表達,從而調(diào)節(jié)擬南芥的生長發(fā)育[14]。

      2 植物ROS應答途徑

      氧化脅迫信號轉(zhuǎn)導的關(guān)鍵是植物機體內(nèi)ROS的氧化還原途徑,植物TGA 轉(zhuǎn)錄因子因其螺旋-折疊-螺旋的DNA 結(jié)構(gòu)域,通過特異性識別并結(jié)合TGACGT序列而參與氧化脅迫[20]。Chen等[21]報道了as-1 順式元件能結(jié)合bZIP 類轉(zhuǎn)錄因子PIF1/PIF3與HY5/HYH 互作的復合物,激活ROS 相關(guān)基因的表達,調(diào)控ROS應答途徑。作為ROS應答途徑的關(guān)鍵調(diào)節(jié)蛋白as-1順式元件與TGAⅠ、TGAⅡ轉(zhuǎn)錄因子相互作用,激活ROS 相關(guān)基因的表達,調(diào)節(jié)機體內(nèi)ROS 水平,使ROS達到氧化還原平衡狀態(tài),從而恢復植物的正常生長發(fā)育[12]。ROS的氧化還原途徑主要有兩條:一條是活性電子物質(zhì)(RES)途徑,另一條是茉莉酸(JA)途徑,見圖2。

      圖2 植物ROS的調(diào)控過程Fig.2 Regulation process of ROS in plant

      2.1 TGA轉(zhuǎn)錄因子通過介導RES途徑調(diào)控植物體內(nèi)ROS水平

      植物抗氧化實質(zhì)是植物機體中光系統(tǒng)控制植物ROS的去氧化過程,且ROS主要通過植物光合作用產(chǎn)生[22]。當植物體內(nèi)積累過量的ROS,就會打破機體內(nèi)ROS的氧化還原平衡態(tài),導致ROS 轉(zhuǎn)變成RES,RES在SCL14蛋白的作用下,激活TGAⅡ類轉(zhuǎn)錄因子,啟動RES相關(guān)基因的表達,調(diào)控ROS途徑中產(chǎn)生的脂質(zhì)脅迫,達到ROS 的氧化還原平衡態(tài)[12,23]。此外,在外源物質(zhì)誘導產(chǎn)生的植物ROS 信號途徑中,SCL14蛋白結(jié)合TGAⅡ類轉(zhuǎn)錄因子形成復合物TGA/SCL14后,與MYC2 轉(zhuǎn)錄因子相互作用,誘導Cyp81D11基因的表達,響應機體內(nèi)脂質(zhì)脅迫,達到ROS去氧化的目的[24]。

      Rojas等[25]報道了光合作用中光反應會干擾植物光系統(tǒng)中氧化激發(fā)態(tài),作為光反應中的關(guān)鍵酶乙二醛酶(GLO)催化乙醇酸產(chǎn)生ATP和H2O2[26-27]。H2O2是ROS的一種形態(tài),當其濃度超過機體適宜濃度時,GLO 會抑制H2O2以達到植物正常生長的濃度。在煙草中,GLO 參與Pro/AurPto防御反應,使NADPH氧化成NADP+,促使TGA 轉(zhuǎn)錄因子和NPR1蛋白相互作用并識別TGACGT 特異性序列,激活pr1 基因表達,響應植物ROS途徑[28]。在水稻信號轉(zhuǎn)導途徑中,谷氧還蛋白(GST)與GLO 互作形成復合物后,與TGA 轉(zhuǎn)錄因子相互作用,介導NPR-1的調(diào)節(jié),此外,NH1/NH3蛋白通過與TGA 轉(zhuǎn)錄因子互作形成復合物后與阻遏調(diào)控蛋白NRR 結(jié)合,使植物獲得氧化脅迫抗性[29]。

      2.2 TGA 轉(zhuǎn)錄因子通過介導JA 途徑調(diào)控植物體內(nèi)ROS水平

      植物響應氧化脅迫途徑需依賴JA[30],其JA 信號轉(zhuǎn)導途徑與外源物質(zhì)誘導機體內(nèi)JA 信號轉(zhuǎn)導途徑類似[31]。目前,對植物體內(nèi)JA 信號轉(zhuǎn)導的機制尚不清楚,還需深入研究[32-33]。

      在植物ROS途徑中,茉莉酸-亮氨酸途徑(JA-Ile)與RES途徑具有協(xié)同作用,都能恢復機體內(nèi)ROS的氧化還原平衡。脂氧合酶(LOX)能催化植物機體ROS去氧化,在LOX 的催化下,COI1與JAZ蛋白的復合物與MYC轉(zhuǎn)錄因子相互作用,激活JA 相關(guān)基因的表達,調(diào)控ROS 的氧化還原,恢復機體正常生長[34]。有研究表明,TGA 轉(zhuǎn)錄因子調(diào)控的JA/ET 途徑與ROS 的去氧化過程息息相關(guān),EINs 蛋白如EIN2、EIN3 在內(nèi)質(zhì)網(wǎng)中磷酸化后進入核內(nèi),激活GRX 與TGA2 相互作用,誘導ORA59、ERF1 的表達[13,35-36]。ORA59 會下調(diào)JA 的靶基因PDF1.2 和MYC2、MYC3、MYC4的表達[37-38],參與ROS的氧化還原過程。此外,NPR1 蛋白與TGA 轉(zhuǎn)錄因子(如TGA2、TGA3、TGA5、TGA6)相互作用,激活JA 相關(guān)基因的表達,參與ROS水平調(diào)控[39-40]。

      2.3 TGA 轉(zhuǎn)錄因子通過SA 的參與調(diào)控植物體內(nèi)ROS的水平

      SA 作為阻遏因子不僅在植物機體內(nèi)RES的去氧化途徑中起拮抗作用,在JA 途徑中亦然。有研究表明,機體內(nèi)SA 阻遏TGA 轉(zhuǎn)錄因子與NPR1蛋白相互作用,弱化ROS去氧化相關(guān)基因的表達,抑制植物機體內(nèi)ROS 氧化還原態(tài)的恢復,影響植物的生長發(fā)育[17]。

      擬南芥中,用SA 處理野生植物和AtTTM 突變株,部分突變株獲得SA 抗性,獲得抗性的植物在脅迫應答中依賴SA、PAD4、NPR1 激活相關(guān)蛋白的合成[41-43]。無SA 誘導時,TGAⅢ類轉(zhuǎn)錄因子TGA3參與HopMⅠ的脅迫應答激活pr1基因的表達,參與調(diào)控植物ROS水平,減少脅迫對植物傷害[44-47]。

      3 展望

      植物轉(zhuǎn)錄因子調(diào)控作用的研究一直是生物學研究的熱點。目前,主要從生物脅迫信號轉(zhuǎn)導調(diào)控方面來研究植物TGA 轉(zhuǎn)錄因子,而對TGA 轉(zhuǎn)錄因子介導氧化脅迫調(diào)控的研究非常有限。TGA 轉(zhuǎn)錄因子中,研究較多的是TGAⅡ類轉(zhuǎn)錄因子,對其它TGA 轉(zhuǎn)錄因子研究較少。此外,相對其它轉(zhuǎn)錄因子而言,植物TGA轉(zhuǎn)錄因子的功能研究有限,除了在擬南芥中研究較多,在其它植物中研究甚少。

      針對目前植物TGA 轉(zhuǎn)錄因子的研究現(xiàn)狀,今后主要從以下幾方面對TGA 轉(zhuǎn)錄因子展開研究:(1)研究TGA 轉(zhuǎn)錄因子在氧化脅迫中的復雜的調(diào)控網(wǎng)絡;(2)從不同植物材料、不同生理途徑中研究TGA 轉(zhuǎn)錄因子的調(diào)控作用;(3)在植物非宿主防御反應方面對TGA 轉(zhuǎn)錄因子的調(diào)控研究較多,在氧化脅迫應答機制方面研究較少,尤其在ROS應答機制方面的研究還有待進一步加強。

      可以預見,隨著分子生物學和細胞生物學的發(fā)展,對TGA 轉(zhuǎn)錄因子在氧化脅迫應答中的作用將會剖析得更加詳細。

      [1]WASTERNACK C,HAUSE B.Jasmonates:Biosynthesis,perception,signal transduction and action in plant stress response,growth and development.An update to the 2007review in Annals of Botany[J].Annals of Botany,2013,111(6):1021-1058.

      [2]ZHOU X F,JIN Y H,YOO C Y,et al.CYCLIN H;1Regulates drought stress responses and blue light-induced stomatal opening by inhibiting reactive oxygen species accumulation inArabidopsis[J].Plant Physiology,2013,162(2):1030-1041.

      [3]YING S,ZHANG D F,F(xiàn)U J,et al.Cloning and characterization of a maize bZIP transcription factor,ZmbZIP72,confers drought and salt tolerance in transgenicArabidopsis[J].Planta,2012,10(235):253-266.

      [4]PARK J M,LEE J S,LEE K R,et al.Cordyceps militaris extract protects human dermal fibroblasts against oxidative stress-induced apoptosis and premature senescence[J].Nutrients,2014,6(9):3711-3726.

      [5]SHINOHARA A,IMAI Y,NAKAGAWA M,et al.Intracellular reactive oxygen species mark and influence the megakaryocyte-erythrocyte progenitor fate of common myeloid progenitors[J].Stem Cells,2014,32(2):548-557.

      [6]LI C H,WANG G,ZHAO J I,et al.The receptor-like kinase SIT1 mediates salt sensitivity by activating MAPK3/6and regulating ethylene homeostasis in rice[J].Plant Cell,2014,26(6):2538-2553.

      [7]VOLODYMYR I L.Adaptive response to oxidative stress:Bacteria,fungi,plants and animals[J].Comparative Biochemistry and Physioligy,Toxicology &Pharmacology:CBP,2011,153(2):175-190.

      [8]WATSON J D,TANIA A B,STEPHEN P B.Molecular Biology of the Gene[M].Fifth Edition.Addison-Wesly Long man,Amsterdam,2010:35-44.

      [9]KATAGIRI F,LAM E,CHUA N H.Two tobacco DNA-binding proteins with homology to the nuclear factor CREB[J].Nature,1989,340(6236):727-730.

      [10]CHRISTIANE G.From pioneers to team player:TGA Transcription factors provide a molecular link between different stress pathways[J].Molecular Plant-Microbe Interactions,2013,26(2):151-159.

      [11]YAMAMOTO K,TESHIBA S,SHIGEOKA Y.Characterization of an omega-class glutathione S-transferase in the stress response of the silkmoth[J].Insective Molecular Biology,2011,20(3):379-386.

      [12]EDWARD E F,MARTIN J M.ROS-Mediated lipid peroxidation and RES-activated signaling[J].Annual Review Plant Biology,2013,64:429-450.

      [13]ZANDER M,CHEN S X,IMKAMPE J,et al.Repression of theArabidopsisthalianajasmonic acid/ethylene-induced defense pathway by TGA-interacting glutaredoxins depends on their Cterminal ALWL motif[J].Molecular Plant,2012,5(4):831-840.

      [14]CHOL J,HUH S U,KOJIMA M.The cytokinin-activated transcription factor ARR2 promotes plant immunityviaTGA3/NPR1-dependent salicylic acid signaling inArabidopsis[J].Developmental Cell,2010,19(2):284-295.

      [15]MURMUM J,BUSH M J,de LONG C.Arabidopsisbasic leucine-zipper transcription factors TGA9and TGA10interact with floral glitaredoxins ROXY1and ROXY2and are redundantly required for anther development[J].Plant Physiology,2010,154(3):1492-1504.

      [16]LI S,LAURI A,ZIEMANN M.Nuclear activity of ROXY1,agl-utaredoxin interacting with TGA factors,is required for petal development inArabidopsisthaliana[J].Plant Cell,2009,21(2):429-441.

      [17]MARK Z,CORINNA T,CHRISTIANE G.TGA Transcription factors activate the salicylic acid-suppressible branch of the ethylene-induced defense program by regulatingORA59expression[J].Plant Physiology,2014,165(4):1671-1683.

      [18]ALVAREZ J M,RIVERAS E,VIDAL E A,et al.Systems approach identifies TGA1and TGA4transcription factors as important regulatory components of the nitrate response ofArabidopsisthalianaroots[J].Plant Journal,2014,80(1):1-13.

      [19]STOTZ H U,F(xiàn)INDLING S,NUKARINEN F,et al.A tandem affinity purification tag of TGA2for isolation of interacting proteins inArabidopsisthaliana[J].Plant Singaling & Behavior,2014,9:e29990.

      [20]BERGAMO P,LUONGO D,MAURANO F,et al.Butterfat fatty acids differentially regulate growth and differentiation in Jurlat T-cells[J].Journal of Cell Biochemistry,2005,96(2):349-360.

      [21]CHEN D,XU G,TANG W,et al.Antagonistic basic helix-loophelix/bZIP transcription factors from transcriptional modules that integrate light and reactive oxygen species singnaling inArabidopsis[J].Plant Cell,2013,25(5):1657-1673.

      [22]CHERN M,BAI W,CHEX X W,et al.Reduced expression of glycolate oxidase leads to enhanced disease resistance in rice[J].Peerj,2013,1:e28.

      [23]DOMBRECHT B,XUE G P,SPRAGUE S J,et al.MYC2differentially modulates diverse jasmonate-dependent functions inArabidopsis[J].Plant Cell,2007,19(7):2225-2245.

      [24]KOSTER J,THUROW C,KRUSE K,et al.Xenobiotic-and jasmonic acid-inducible signal transduction pathways have become interdependent at theArabidopsisCYP81D11 promoter[J].Plant Physiology,2012,159(1):391-402.

      [25]ROJAS C M,SENTHIL-KUMAR M,WANG K,et al.Glycolate oxidase modulates reactive oxygen species-mediated signal transduction during nonhost resistance inNicotianabenthamianaandArabidopsis[J].Plant Cell,2012,24(1):336-352.

      [26]FOYER C H,BLOOM A J,QUEVAL G,et al.Photorespiratory metabolism:Genes,mutants,energetics,and redox signaling[J].Annual Review of Plant Biology,2009,60:455-484.

      [27]ZELITCH I,SCHULTES N P,PETERSON R B,et al.High glycolate oxidase activity is required for survival of maize in normal air[J].Plant Physiology,2009,149(1):195-204.

      [28]ROJAS C M,MYSORE K S.Glycolate oxidase is an alternative source of H2O2production during plant defense responses and functions independently from NADPH oxidase[J].Plant Signaling &Behavior,2012,7(7):752-755.

      [29]CHERN M,CANLAS P E,F(xiàn)ITZGERALD H A,et al.Rice NRR,a negative regulator of disease resistance,interacts withArabidopsisNPR1and rice NH1[J].The Plant Journal,2005,43(5):623-635.

      [30]PIETERSE C M J,VANDER D D,ZAMIOUDIS C,et al.Hormonal modulation of plant immunity[J].Annual Review of Cell and Developmental Biology,2012,28:489-521.

      [31]HOWE G A,JANDER G.Plant immunity to insect herbivores[J].Annual Review of Plant Biology,2008,59:41-66.

      [32]ATTARAN E,MAJOR I T,GRUZ J A,et al.Temporal dynamics of growth and photosynthesis suppression in response to jasmonate signaling[J].Plant Physiology,2014,165(3):1302-1314.

      [33]LIN Z,ZHONG S,GRIERSON D.Recent advances in ethylene research[J].Journal of Experimental Botany,2009,60(12):3311-3336.

      [34]FERNANDEZ-CALVO P,CHINI A,F(xiàn)ERNADEZ-BARBERO G,et al.TheArabidopsisbHLH transcription factors MYC3 and MYC4are targets of JAZ repressors and act additively with MYC2in the activation of jasmonate responses[J].Plant Cell,2011,23(2):701-715.

      [35]STEPANOVA A N,ALONSO J M.Ethylene signaling and response:Where different regulatory modules meet[J].Current Opinion in Plant Biology,2009,12(5):548-555.

      [36]JU C,YOON G M,SHEMANSKY J M,et al.CTR1Phosphorylates the central regulator EIN2to control ethylene hormone signaling from the ER membrane to the nucleus inArabidopsis[J].Proceeding of the National Academy of Sciences of the United States of America,2012,109(47):19486-19491.

      [37]van der DOES D,LEON-REYES A,KOORNNEEF A,et al.Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifsviatranscription factor ORA59[J].Plant Cell,2013,25(2):744-761.

      [38]MUR L A,PRATS E,PIERRE S,et al.Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways[J].Fromtiers in Plant Science,2013,215(4):1-7.

      [39]BARGMANN B O R,LAXALT A M,RIET B T,et al.Reassessing the role of phospholipase D in theArabidopsiswounding response[J].Plant Cell Environ,2009,32(7):837-850.

      [40]ZANDER M,LACAMERA S,LAMOTTE O,et al.Arabidopsis thalianaclass-ⅡTGA transcription factors are essential activators of jasmonic acid/ethylene-induced defense responses[J].The Plant Journal,2010,61(2):200-210.

      [41]VLOT A C,KLESSIG D F,PARK S W.Systemic acquired resistance:The elusive signal(s)[J].Current Opinion in Plant Biology,2008,11(4):436-442.

      [42]SHAH J,ZEIER J.Long-distance communication and signal amplification in systemic acquired resistance[J].Frontiers in Plant Science,2013,4:30.

      [43]UNQ H,MOEDER W,YOSHIOKA K.Arabidopsistriphosphate tunnel metalloenzyme2(AtTTM2)is a negative regulator of the salicylic acid-mediated feedback amplification loop for defense responses[J].Plant Physiology,2014,10(1104):1-41.

      [44]KESARWANI M,YOO J,DONG X.Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance inArabidopsis[J].Plant Physiology,2007,144(1):336-346.

      [45]KALDE M,NUHSE T S,F(xiàn)INDLAY K,et al.The syntaxin SYP132contributes to plant resistance against bacteria and secretion of pathogenesis-related protein 1[J].Proceeding of the National Academy of Sciences of the United States of America,2007,104(28):11850-11855.

      [46]GANQADHARAN A,SREEREKHA M N,WHITEHILL J,et al.ThePseudomonassyringaepv.tomato type Ⅲeffector HopM1suppressesArabidopsisdefenses independent of suppressing salicylic acid signaling and of targeting AtMIN7[J].PLoS One,2013,8(12):e82032.

      [47]GATZ C.From pioneers to team players:TGA Transcription factors provide a molecular link between different stress pathways[J].Molecular Plant-Microbe Interactions,2013,26(2):151-159.

      猜你喜歡
      信號轉(zhuǎn)導擬南芥結(jié)構(gòu)域
      擬南芥:活得粗糙,才讓我有了上太空的資格
      Wnt/β-catenin信號轉(zhuǎn)導通路在瘢痕疙瘩形成中的作用機制研究
      蛋白質(zhì)結(jié)構(gòu)域劃分方法及在線服務綜述
      尿黑酸對擬南芥酪氨酸降解缺陷突變體sscd1的影響
      兩種LED光源作為擬南芥生長光源的應用探究
      擬南芥干旱敏感突變體篩選及其干旱脅迫響應機制探究
      重組綠豆BBI(6-33)結(jié)構(gòu)域的抗腫瘤作用分析
      組蛋白甲基化酶Set2片段調(diào)控SET結(jié)構(gòu)域催化活性的探討
      HGF/c—Met信號轉(zhuǎn)導通路在結(jié)直腸癌肝轉(zhuǎn)移中的作用
      泛素結(jié)合結(jié)構(gòu)域與泛素化信號的識別
      长泰县| 奇台县| 修武县| 大足县| 安吉县| 潼关县| 滕州市| 泰来县| 澄江县| 华蓥市| 青冈县| 镇原县| 嵊州市| 夏邑县| 潜山县| 张家界市| 山阳县| 东源县| 龙井市| 牟定县| 栖霞市| 阿拉善右旗| 绥江县| 九龙城区| 株洲市| 宕昌县| 鄯善县| 万荣县| 甘洛县| 兖州市| 洛阳市| 定兴县| 宜良县| 本溪市| 德兴市| 镇江市| 宁晋县| 凌海市| 凤城市| 呼和浩特市| 华蓥市|