電刺激干預(yù)腓腸肌拉傷后成肌調(diào)節(jié)因子MyoD與Myogenin蛋白表達(dá)的研究
劉敏
(廣州體育學(xué)院,廣東 廣州510000)
摘要:目的:采用低強(qiáng)度電刺激治療腓腸肌拉傷,觀察其對(duì)于肌肉損傷部位成肌調(diào)節(jié)因子MyoD與Myogenin蛋白表達(dá)的影響。方法:雄性SD大鼠32只,隨機(jī)分為對(duì)照組、模型組、D14組和D14-40Hz組。除對(duì)照組外其余各組建立腓腸肌拉傷動(dòng)物模型。于造模后第5天D14-40Hz組開(kāi)始予以電刺激,其余組繼續(xù)喂養(yǎng)。正常對(duì)照組在實(shí)驗(yàn)開(kāi)始當(dāng)天,模型組在造模當(dāng)天,D14組和D14-40Hz組在第14天進(jìn)行在體力矩測(cè)試,測(cè)試結(jié)束后處死動(dòng)物,分離腓腸肌采用免疫印跡法(Western blotting)測(cè)定MyoD與Myogenin蛋白表達(dá)。結(jié)果:對(duì)照組關(guān)節(jié)最大等長(zhǎng)力矩值為0.236±0.045(Nm),模型組肌肉拉傷后即刻關(guān)節(jié)最大等長(zhǎng)力矩下降為0.176±0.034(Nm),兩者比較存在顯著性差異(P<0.05);第14天D14-40Hz組最大等長(zhǎng)力矩值為0.247±0.038(Nm),與D14組比較存在顯著性差異(P<0.05)。MyoD與Myogenin蛋白表達(dá)測(cè)定結(jié)果:肌肉拉傷后第14天MyoD蛋白表達(dá)D14組與對(duì)照組比較無(wú)差異(P>0.05),但是MyoD蛋白表達(dá)D14-40Hz組比D14組增強(qiáng)明顯(P<0.05);肌肉拉傷后第14天,D14-40Hz組Myogenin蛋白表達(dá)明顯強(qiáng)于D14組(P<0.05)。結(jié)論:腓腸肌急性拉傷后,早期采用低強(qiáng)度電刺激治療可以明顯提高關(guān)節(jié)力矩,并促進(jìn)了MyoD與Myogenin的表達(dá),對(duì)組織修復(fù)起到了積極地作用。
關(guān)鍵詞:腓腸肌拉傷;電刺激治療
中圖分類(lèi)號(hào):G804.2
收稿日期:2015-06-23
作者簡(jiǎn)介:劉敏(1974-),女,貴州人,講師
研究方向:健美操訓(xùn)練與教學(xué)
Effect of Electrical Therapy on Protein Expression of MyoD
and Myogenin in Gastrocnemius Strain
LIU Jun
(Guangdong University of Foreign Studies, Guangzhou 510006,China)
Abstract:Objective:To observe the effect of electrical therapy on protein expression of MyoD and Myogenin in gastrocnemius strain. Methods:Thirty-two male Sprague-Dawley (SD) rats were utilized in this study(control group, animal model group, D14 group, and D14-40Hz group). All male SD rats except those in control group were created a partial gastrocnemius stretch injury. After injury, no interventions were given to animal model group and D14 group. At fifth day, the electrical protocol was given to D14-40Hz group. After experiment, changes in joint torque, protein expression of MyoD and Myogenin were tested. Results: The isometric ankle peak torque of control group was 0.236±0.045Nm. The isometric peak torque of animal model group dropped to 0.176±0.034Nm(P<0.05)post-injury. The isometric ankle peak torque of D14-40Hz group was 0.247±0.038., which is significant difference compared to the isometric peak torque of D14 group(P<0.05). No significant difference of the protein expression of MyoD existed between control group and D14 group(P>0.05). However, the protein expression of MyoD in D14-40Hz group was higher than D14 group (P<0.05). The protein expression of Myogenin (D14-40Hz) was higher than D14 group(P<0.05).Conclusions: The low intensity 40Hz electrical stimulation could increase the isometric peak toque. What's more, it was helpful to improve the expression of MyoD and Myogenin. Therefore, it showed the 40Hz electrical stimulation was useful for muscular rebuilding of gastrocnemius strain by improving gene regulatory of MyoD and Myogenin.
Key words:Gastrocnemius Strain, Electrical Therapy
現(xiàn)代競(jìng)技運(yùn)動(dòng)中肌肉損傷是最常見(jiàn)的運(yùn)動(dòng)損傷之一[1-6],輕度的肌肉拉傷可影響運(yùn)動(dòng)員的訓(xùn)練、比賽等,嚴(yán)重的肌肉拉傷斷裂則可迫使運(yùn)動(dòng)員結(jié)束其運(yùn)動(dòng)生涯。因此,運(yùn)動(dòng)中肌肉拉傷臨床治療越來(lái)越受到關(guān)注。其中電刺激在肌肉損傷臨床治療中的應(yīng)用越來(lái)越受到關(guān)注,目前雖然無(wú)法明確地闡述電刺激對(duì)于肌肉拉傷康復(fù)治療的作用機(jī)制,但是臨床實(shí)踐中卻不斷證實(shí)了它的有效性[7-9]。本文擬采用低強(qiáng)度電刺激治療腓腸肌急性拉傷,觀察分析其對(duì)于肌肉損傷部位結(jié)構(gòu)重塑以及成肌調(diào)節(jié)因子MyoD與Myogenin蛋白表達(dá)的影響的影響,從而為臨床治療提供實(shí)驗(yàn)支持和理論依據(jù)。
1實(shí)驗(yàn)材料與方法
1.1實(shí)驗(yàn)動(dòng)物分組與動(dòng)物模型構(gòu)建
雄性SD大鼠32只,體重340±20g。先按照動(dòng)物體重分層,然后再隨機(jī)分為對(duì)照組、D0模型組、D14模型組和D14-40Hz組。模型組與D14-40Hz組建立腓腸肌拉傷動(dòng)物模型。采用腹腔注射方法麻醉大鼠,然后大鼠取仰臥位予以固定,再選大鼠一側(cè)肢體,用生理刺激儀的針電刺激肌肉兩端使固定側(cè)肢體的腓腸肌發(fā)生強(qiáng)直收縮,與此同時(shí)發(fā)動(dòng)機(jī)帶動(dòng)大鼠固定板腓腸肌迅速做離心收縮,造成一側(cè)肢體腓腸肌拉傷。
1.2電刺激治療方案
D14-40Hz組于動(dòng)物造模后第6天開(kāi)始給予電刺激,實(shí)驗(yàn)前清理大鼠皮膚,將表面電極貼放在腓腸肌遠(yuǎn)近兩端。電刺激方案為:頻率40Hz,脈沖寬度200us,間隔為5s開(kāi)10s關(guān),24h內(nèi)兩次,每次持續(xù)30min,相隔3h,刺激強(qiáng)度以能夠觀察到肉眼可見(jiàn)腓腸肌肌肉收縮為度。
1.3實(shí)驗(yàn)指標(biāo)測(cè)試
1.3.1在體力矩的測(cè)定
對(duì)照組、模型組、D14組和D14-40Hz組分別于實(shí)驗(yàn)當(dāng)天、第14天測(cè)試關(guān)節(jié)力矩,麻醉后將大鼠取仰臥位固定,腿部固定板與動(dòng)態(tài)扭矩傳感器一端連接,另一端與發(fā)動(dòng)機(jī)軸連接,實(shí)驗(yàn)中通過(guò)運(yùn)動(dòng)控制器調(diào)整角度為900,使用針電刺激使腓腸肌發(fā)生強(qiáng)直收縮,大鼠足部發(fā)生跖曲,從而通過(guò)扭矩傳感器測(cè)量力矩大小。
1.3.2MyoD與Myogenin蛋白表達(dá)免疫印跡測(cè)定
實(shí)驗(yàn)結(jié)束后分離腓腸肌組織,并離心提取總蛋白測(cè)定肌肉組織中的蛋白含量。常規(guī)上樣電泳,轉(zhuǎn)膜(冰上電泳,電泳2 h,電流80V),將轉(zhuǎn)印好的PVDF 膜放入封閉液中于脫色搖床上搖動(dòng)2h。然后漂洗, 再加入MyoD/Myogenin一抗抗體, 4℃下孵育過(guò)夜。第二天漂洗5次,然后予以二抗稀釋液與膜接觸,室溫下孵育2h。最后在暗室中顯影和定影。
1.4統(tǒng)計(jì)學(xué)分析
2實(shí)驗(yàn)結(jié)果
2.1在體力矩測(cè)量結(jié)果
2.1.1大鼠肌肉拉傷后不同時(shí)刻最大等長(zhǎng)力矩指標(biāo)的變化
對(duì)照組腓腸肌力矩值為0.236±0.045(Nm),模型組在肌肉拉傷后即刻最大等長(zhǎng)力矩下降為0.176±0.034(Nm),兩者比較存在顯著性差異(P<0.05);第14天基本恢復(fù)到正常水平,D14組腓腸肌力矩值為0.227±0.036(Nm),與對(duì)照組比較差異不顯著性(P>0.05)。見(jiàn)表1:
表1 實(shí)驗(yàn)各組最大等長(zhǎng)力矩測(cè)量結(jié)果
注:與對(duì)照比較:*P<0.05;與模型組比較:△P<0.05
2.1.2大鼠肌肉拉傷后第14天各組最大等長(zhǎng)力矩指標(biāo)的變化
第14天D14-40Hz組最大等長(zhǎng)力矩值為0.247±0.038(Nm),與D14比較存在顯著性差異(P<0.05)。見(jiàn)表2:
表2 實(shí)驗(yàn)各組最大等長(zhǎng)力矩測(cè)量結(jié)果
注:與D14組比較:*P<0.05;與對(duì)照組比較:△P>0.05
2.2免疫印跡測(cè)定MyoD與Myogenin蛋白表達(dá)
實(shí)驗(yàn)第14天免疫印跡測(cè)定MyoD與Myogenin蛋白表達(dá), D14組與對(duì)照組比較無(wú)差異(P>0.05);與對(duì)照組比較,D14-40Hz組顯著增強(qiáng)(P<0.05),見(jiàn)圖1;Myogenin蛋白表達(dá),D14-40Hz組高于D14組(P<0.05)。見(jiàn)圖2:
3分析與討論
3.1電刺激對(duì)于損傷肌肉組織和修復(fù)力學(xué)指標(biāo)的影響
電刺激在增加肌肉力量和肌肉損傷的治療等方面被認(rèn)為是一種有效手段,目前雖然電刺激治療在組織修復(fù)中廣泛應(yīng)用,但是對(duì)于肌肉拉傷早期進(jìn)行電刺激的具體時(shí)間依舊存在爭(zhēng)議。有學(xué)者認(rèn)為骨骼肌急性損傷后,早期物理電刺激治療應(yīng)該在急性炎癥反應(yīng)期后,因?yàn)檫@個(gè)時(shí)期受傷的組織表現(xiàn)為出血、腫脹和壞死,以及損傷組織周?chē)写罅垦准?xì)胞聚集和浸潤(rùn),一般在傷后48h~72h之間達(dá)到高峰,隨后才逐漸消退。雖然關(guān)于進(jìn)行電刺激治療的具體時(shí)間存在爭(zhēng)議,不過(guò)每一次的電刺激都會(huì)引起肌肉節(jié)律性的收縮,研究證實(shí)電刺激療法能促進(jìn)肌肉損傷后的修復(fù),組織切片顯示電刺激治療組肌節(jié)清晰,新生的肌纖維更加成熟[10-11]。對(duì)于組織功能的評(píng)估方面,力矩是肌肉功能評(píng)價(jià)比較常用的指標(biāo)[12-14],本實(shí)驗(yàn)同樣選用力矩測(cè)試作為組織修復(fù)的力學(xué)觀測(cè)指標(biāo)。電刺激[15]可以控制肌肉的收縮時(shí)間和收縮強(qiáng)度, 通過(guò)肌肉的收縮顯著提高肌肉力量。因此,本實(shí)驗(yàn)假設(shè)早期(傷后第5天)給予低強(qiáng)度電刺激干預(yù)腓腸肌拉傷的組織修復(fù),一方面可以避免炎癥反應(yīng)的加劇,另外一方面也有助于損傷組織的修復(fù)和功能重塑。本實(shí)驗(yàn)所采用的低強(qiáng)度40Hz電刺激是低頻電刺激,第14天D14-40Hz組最大等長(zhǎng)力矩值為0.247±0.038(Nm),與D14組比較存在顯著性差異(P<0.05)。這說(shuō)明肌肉損傷早期低強(qiáng)度低頻率40Hz電刺激,能夠提高最大等長(zhǎng)力矩,有利于損傷有利于損傷部位結(jié)構(gòu)和功能的重塑。因此,本實(shí)驗(yàn)結(jié)果可以作為臨床治療的實(shí)驗(yàn)依據(jù)。
圖1 第14天免疫印跡測(cè)定MyoD蛋白表達(dá)
圖2 第14天免疫印跡測(cè)定Myogenin蛋白表達(dá)
3.2電刺激對(duì)于損傷肌肉成肌調(diào)節(jié)因子MyoD和Myogenin的影響
骨骼肌對(duì)于機(jī)械刺激有很好的反應(yīng)能力,有研究表明損傷后輕微的張力刺激能夠使新生的肌原纖維排列有序,并順著刺激所產(chǎn)生的應(yīng)力線方向排列,這對(duì)于損傷肌肉組織的重塑是非常有利的。肌肉組織如果受到諸如牽拉的機(jī)械刺激,肌肉組織內(nèi)的衛(wèi)星細(xì)胞則出現(xiàn)增值[16],而在肌肉組織修復(fù)過(guò)程中已經(jīng)證實(shí)了肌衛(wèi)星細(xì)胞的重要性[17-19]。而MyoD和Myogenin在特異肌基因轉(zhuǎn)錄調(diào)控中起著至關(guān)重要的作用,并積極地促進(jìn)了其他類(lèi)型細(xì)胞轉(zhuǎn)化為成肌細(xì)胞以及成肌細(xì)胞分化為肌管。同時(shí)研究也已經(jīng)發(fā)現(xiàn)電刺激可以調(diào)節(jié)內(nèi)源性各種生長(zhǎng)因子的表達(dá)[20],并且能夠降低TGF-β的表達(dá),據(jù)推測(cè)這可能與myogenin的作用相關(guān)[21]。而如果給予一定的牽拉刺激,可以增加肌肉組織中蛋白的合成,這其中MyoD在肌衛(wèi)星細(xì)胞激活成為具有成肌特性的肌肉干細(xì)胞過(guò)程中至關(guān)重要,而蛋白myogenin則決定了肌肉干細(xì)胞能否終末分化為肌纖維[22]。本實(shí)驗(yàn)研究通過(guò)免疫印跡法對(duì)MyoD與Myogenin表達(dá)的測(cè)定,結(jié)果顯示40Hz的低強(qiáng)度電刺激對(duì)于MyoD與Myogenin的表達(dá)起到促進(jìn)作用,這對(duì)于新生肌纖維的結(jié)構(gòu)重塑意義重大。
因此我們可以得到這樣的結(jié)論,腓腸肌急性拉傷后早期采用低強(qiáng)度電刺激治療,可以有效地促進(jìn)損傷后嘗試著從成肌調(diào)節(jié)因子MyoD與Myogenin蛋白表達(dá),對(duì)于損傷后肌肉組織功能結(jié)構(gòu)的重塑非常有利。但是,目前的研究工作還遠(yuǎn)遠(yuǎn)不足。本實(shí)驗(yàn)研究只是針對(duì)肌肉拉傷給予小強(qiáng)度的電刺激治療,嘗試著從成肌調(diào)節(jié)因子MyoD與Myogenin表達(dá)的角度解釋電刺激修復(fù)損傷肌肉的機(jī)制,至于發(fā)揮該作用的其它途徑尚不清楚,并且電刺激不同強(qiáng)度的應(yīng)用療效如何依舊有待進(jìn)一步的分析和探討。
參考文獻(xiàn):
[1] Drakos M , Birmingham P , Delos D, et al. Corticosteroid and Anesthetic Injections for Muscle Strains and Ligament Sprains in the NFL [J]. HSS J 2014 Jul;10 (2): 136-142
[2] Pedret C, Balius R, Idoate F.Sonography and MRI of latissimus dorsi strain injury in four elite athletes [J].Skeletal Radiol,2011,40(5):603-608
[3] Simpson KM, Munro BJ, Steele JR.Backpack load affects lower limb muscle activity patterns of female hikers during prolonged load carriage.J Electromyogr Kinesiol. 2011 Oct;21(5):782-788
[4] Fu GY, Zhou WX, Yu Y. Fifty-six cases of gastrocnemius muscle injury treated by superficial needling theray.Zhongguo Zhen Jiu. 2011 Mar;31(3):246
[5] Gulotta LV, Voos JE, Shindle MK, et al.Gastrocnemius injury complicated by an arteriovenous malformation in a professional American football player.Clin J Sport Med. 2011.21(3):266-268
[6] Blake C , O'Malley E , Gissane C, et al. Epidemiology of injuries in hurling: a prospective study 2007-2011. BMJ Open 2014 ;4 (6): e005059
[7] Ryan TE , Erickson ML , Young HJ , et al. Case report: endurance electrical stimulation training improves skeletal muscle oxidative capacity in chronic spinal cord injury. Arch Phys Med Rehabil 2013 Dec;94 (12): 2559-2561
[8] Pastor D.Use of electrical stimulation and exercise to increase muscle strength in a patient after surgery for cervical spondylotic myelopathy[J].Physiother Theory Pract. 2010,26(2):134-142
[9] Dingemanse R , Randsdorp M , Koes BW , et al. Evidence for the effectiveness of electrophysical modalities for treatment of medial and lateral epicondylitis: a systematic review. Br J Sports Med 2014 Jun;48 (12): 957-965
[10] Thomas CK , Bakels R , Klein CS , et al. Human spinal cord injury: motor unit properties and behaviour. Acta Physiol (Oxf) 2014 Jan;210 (1):5-19
[11] Watson T. The role of electrotherapy in contemporary physiotherapy practice[J].Manual Therapy 2000.5(3):132-141
[12] Keen J, Nyland J, Kocabey Y, Malkani A. Shoulder and elbow function 2 years following long head triceps interposition flap transfer for massive rotator cuff tear reconstruction [J]. Arch Orthop Trauma Surg. 2006,126(7):471-479
[13] Ellenbecker TS, Elmore E, Bailie DS. Descriptive report of shoulder range of motion and rotational strength 6 and 12 weeks following rotator cuff repair using a mini-open deltoid splitting technique [J]. J Orthop Sports Phys Ther. 2006,36(5):326-335
[14] Cools AM, Declercq GA, Cambier DC, Mahieu NN, Trapezius activity and intramuscular balance during isokinetic exercise in overhead athletes with impingement symptoms [J]. Scand J Med Sci Sports. 2007,17(1):25-33
[15] Scott W , Flora K , Kitchin BJ , et al. Neuromuscular electrical stimulation pulse duration and maximum tolerated muscle torque. Physiother Theory Pract 2014 May;30 (4): 276-281
[16] Zhang BT, Yeung SS, Liu Y, Wang HH, Wan YM, Ling SK, Zhang HY, Li YH, Yeung EW.The effects of low frequency electrical stimulation on satellite cell activity in rat skeletal muscle during hindlimb suspension.BMC Cell Biol. 2010,11:87
[17] Lundgreen K , Lian OB , Engebretsen L , Lower muscle regenerative potential in full-thickness supraspinatus tears compared to partial-thickness tears. Acta Orthop 2013 Dec;84 (6): 565-570
[18] Sato Y , DO MK , Suzuki T , Satellite cells produce neural chemorepellent semaphorin 3A upon muscle injury. Anim Sci J 2013 Feb;84 (2): 185-189
[19] LaFramboise WA, Jayaraman RC, Bombach KL, et al.Acute molecular response of mouse hindlimb muscles to chronic stimulation. Am J Physiol Cell Physiol. 2009,297(3):C556-570
[20] Borzykh AA , Kuz'min IV , Lysenko EA , et al. Regional differences in the level of ERK1/2 phosphorylation and expression of the myogenic regulatory factors following electrostimulation with different mechanic and metabolic action on the gastrocnemius muscle . Aviakosm Ekolog Med 2014 ;48 (2): 43-47
[21] Gonzalo Ugarte, Enrique Brandan. Transforming Growth Factor (TGF-β) Signaling Is Regulated by Electrical Activity in Skeletal Muscle Cells[J]. The Journal of Biological Chemistry.2006. 281 (27): 18473-18481
[22] Gabillard JC, Sabin N, Paboeuf G.In vitro characterization of proliferation and differentiation of trout satellite cells.Cell Tissue Res. 2010,342(3):471-477
廣州體育學(xué)院學(xué)報(bào)2015年5期