第一作者李宇男,博士后,副教授,碩士生導(dǎo)師,1982年生
梁式橋抗震設(shè)計(jì)的彈塑性位移反應(yīng)譜
李宇,王森,車(chē)艷陽(yáng),武芳文(長(zhǎng)安大學(xué)公路學(xué)院舊橋檢測(cè)與加固技術(shù)交通行業(yè)重點(diǎn)試驗(yàn)室, 西安710064)
摘要:合理選取四類(lèi)場(chǎng)地320條強(qiáng)震記錄,研究地震動(dòng)特性及恢復(fù)力模型動(dòng)力參數(shù)對(duì)彈塑性位移譜與殘余位移譜影響。結(jié)果表明,給出某一標(biāo)準(zhǔn)設(shè)防烈度的彈塑性反應(yīng)譜,其它設(shè)防烈度下彈塑性反應(yīng)譜可據(jù)PGA設(shè)防烈度與PGA標(biāo)準(zhǔn)烈度比值調(diào)整獲得;可忽略屈服后剛度比對(duì)彈塑性位移譜影響,但應(yīng)選擇偏于保守的屈服后剛度比統(tǒng)計(jì)殘余位移譜,由此建立的殘余位移譜只適用短周期、低延性一般規(guī)則橋梁中、低矮橋墩的抗震設(shè)計(jì);阻尼比與位移延性比為影響彈塑性位移譜及殘余位移譜重要因素,阻尼比增大會(huì)減少橋梁非彈性變形及震后殘余位移?;谠摻Y(jié)果建立適用于我國(guó)梁式橋抗震設(shè)計(jì)的彈塑性及殘余位移譜,為考慮殘余位移影響的梁式橋基于性能的抗震設(shè)計(jì)提供重要參考依據(jù)。
關(guān)鍵詞:彈塑性反應(yīng)譜;抗震設(shè)計(jì);地震動(dòng)峰值加速度;屈服后剛度;延性
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(51408042,51408040);陜西省自然科學(xué)基金資助項(xiàng)目(2014JQ7253);中央高?;究蒲袠I(yè)務(wù)費(fèi)專(zhuān)項(xiàng)資金資助(2013G1211006)
收稿日期:2013-12-05修改稿收到日期:2014-04-10
中圖分類(lèi)號(hào):U442.5文獻(xiàn)標(biāo)志碼:A
Elasto-plastic response spectra for beam bridge’s aseismic design
LIYu,WANGSen,CHEYan-yang,WUFang-wen(Key Laboratory of Ministry of Communications for Bridge Detection & Reinforcement Technology, School of Highway, Chang’an University, Xi’an 710064, China)
Abstract:With 320 strong ground motion records of four sites appropriately selected, the elasto-plastic dynamic analysis was performed to study the effects of characteristics of earthquake motions and dynamic parameters of a restoring force model on elasto-plastic displacement spectra and residual displacement spectra. The study results showed that elasto-plastic response spectra of other protected earthquake intensity can be obtained by adjusting elasto-plastic response spectra of a standard protected earthquake intensity according to the ratio of PGA for protected earthquake intensity to PGA for standard protected earthquake; effects of yielding rigidity ratio on elasto-plastic displacement spectra can be neglected, but conservative yielding rigidity ratio is chosen to establish residual displacement spectra which can be applied in low and medium-height piers’ aseismic design of general regular bridges with short natural periods and low ductility; elasto-plastic displacement spectra and residual displacement spectra are affected obviously by both damping ratio and ductility, elasto-plastic displacements and residual displacements of bridge decrease with increase in damping ratio. Based on the above results, the elasto-plastic displacement spectra and residual displacement spectra applicable to aseismic design for Chinese bridges were established. They provided an important guidance for performance-based aseismic design of beam bridges considering the effects of residual displacements.
Key words:elasto-plastic response spectra; aseismic design; peak ground motion acceleration (PGA); yielding rigidity; ductility
非線性靜力分析法(NSP)[1, 14-20]為計(jì)算結(jié)構(gòu)彈塑性地震響應(yīng)方法之一。由于NSP法需彈塑性反應(yīng)譜為其提供目標(biāo)位移及彈塑性需求譜,故針對(duì)彈塑性反應(yīng)譜的研究已廣泛開(kāi)展。Newmark等[2]將10條常用地震動(dòng)記錄作為輸入,給出幾種不同的非線性反應(yīng)譜。陳聃等[3]建立以延性系數(shù)為譜坐標(biāo)、能反映地震動(dòng)對(duì)結(jié)構(gòu)強(qiáng)度及延性兩方面要求的非線性反應(yīng)譜。韋承基等[4]建立彈塑性位移比譜,并考慮不同結(jié)構(gòu)強(qiáng)度影響。程民憲等[5]研究結(jié)構(gòu)低周疲勞性能對(duì)地震破壞反應(yīng)影響,并給出以殘余強(qiáng)度為譜坐標(biāo)的非線性反應(yīng)譜。Lieping等[6]給出體系最大總輸入能增量與最大彈塑性位移關(guān)系式。Fajfar等[7-8]采用力降低系數(shù)、性能系數(shù)或延性折減系數(shù)對(duì)彈性反應(yīng)譜進(jìn)行折減,直接獲得彈塑性反應(yīng)譜。
關(guān)于彈塑性反應(yīng)譜研究雖有許多成果,但所依據(jù)的地震動(dòng)記錄太少不具統(tǒng)計(jì)規(guī)律,或僅由經(jīng)驗(yàn)公式推導(dǎo),結(jié)果過(guò)于粗略,離工程設(shè)計(jì)應(yīng)用尚遠(yuǎn)。因此,本文選取四類(lèi)場(chǎng)地的320條強(qiáng)震記錄,采用與鋼筋混凝土受彎構(gòu)件試驗(yàn)吻合較好的Takeda雙線性剛度退化模型,利用SDOF彈塑性動(dòng)力分析程序,研究地震動(dòng)特性及恢復(fù)力模型動(dòng)力參數(shù)對(duì)彈塑性、殘余位移譜影響,建立適用于我國(guó)橋梁結(jié)構(gòu)抗震設(shè)計(jì)的彈塑性、殘余位移譜。
1基本理論
彈塑性反應(yīng)譜為考慮結(jié)構(gòu)非線性變形的地震反應(yīng)譜。該反應(yīng)譜除受結(jié)構(gòu)周期、阻尼特性影響外,與結(jié)構(gòu)響應(yīng)的彈塑性程度有關(guān),可定義為具有一定阻尼的SDOF彈塑性體系對(duì)實(shí)際地面運(yùn)動(dòng)最大反應(yīng)與體系自振周期的關(guān)系曲線。對(duì)某SDOF體系,可據(jù)其自振周期及阻尼在彈塑性反應(yīng)譜中求得體系彈塑性地震響應(yīng)的最大值。
質(zhì)量為m的彈塑性單自由度體系在強(qiáng)地面運(yùn)動(dòng)作用下的運(yùn)動(dòng)微分方程[9]為
(1)
式中:r(x)為彈塑性SDOF體系恢復(fù)力。
結(jié)構(gòu)處于彈性階段時(shí),r(x)僅為時(shí)間的函數(shù);而結(jié)構(gòu)進(jìn)入非彈性變形階段后r(x)則隨結(jié)構(gòu)位移的改變而改變。在結(jié)構(gòu)動(dòng)力參數(shù)中引入適當(dāng)塑性影響參數(shù)后即可獲得各種形式的彈塑性反應(yīng)譜,包括彈塑性加速度譜Sat、彈塑性位移譜Sd、殘余位移譜Dres等。
2地震波選取
以文獻(xiàn)[10-11]為依據(jù),從PEER[12]強(qiáng)震記錄數(shù)據(jù)庫(kù)中挑選主要地震事件(斷層距在6.2~161.7 km、震級(jí)5.7~7.6)320條強(qiáng)震記錄(Ⅰ、Ⅱ、Ⅲ、Ⅳ類(lèi)場(chǎng)地各80條),其震級(jí)、震中距分布情況見(jiàn)圖1。
圖1 震級(jí)-距離分布 Fig.1 Magnitude-distance distribution
圖2為以320條地震波為激勵(lì)統(tǒng)計(jì)所得四類(lèi)場(chǎng)地動(dòng)力放大系數(shù)β曲線(ξ=5%),并與文獻(xiàn)[10]進(jìn)行比較??梢钥闯觯疚慕y(tǒng)計(jì)的β曲線總體上與規(guī)范值符合較好,說(shuō)明所選320條地震動(dòng)記錄特性基本符合規(guī)范要求。
圖2 不同場(chǎng)地動(dòng)力放大系數(shù) Fig.2 Dynamic magnification factors in different sites
3彈塑性反應(yīng)譜參數(shù)影響研究
3.1地震動(dòng)峰值加速度影響
以I類(lèi)場(chǎng)地為例,采用Takeda雙線性剛度退化模型,阻尼比ξ=5%,屈服后剛度比η=0.05,位移延性比μ=1.0~5.0。利用Bispec[13]計(jì)算罕遇地震下6~9度設(shè)防時(shí)各類(lèi)彈塑性反應(yīng)譜的平均值,研究地震動(dòng)峰值加速度PGA對(duì)彈塑性位移譜Sd及殘余位移譜Dres的影響,見(jiàn)圖3。由圖3看出,其它條件相同時(shí),雖Sd、Dres均隨PGA增大而增大,但其譜曲線形狀并無(wú)太大改變。為找原因,本文以7度Sd譜值為準(zhǔn),6~9度不同周期對(duì)應(yīng)的Sat譜值分別為7度的0.523 1、1.809 8、3.048 1倍,分別與6~9度PGA值與7度PGA值比值大致相同。PGA對(duì)Dres影響規(guī)律基本相同。因此,只要以某一設(shè)防烈度為標(biāo)準(zhǔn),給出與其相應(yīng)的彈塑性位移譜、殘余位移譜,其它設(shè)防烈度下彈塑性位移譜、殘余位移譜即可據(jù)PGA設(shè)防烈度與PGA標(biāo)準(zhǔn)烈度比值調(diào)整獲得。
3.2屈服后剛度比影響
以I類(lèi)場(chǎng)地為例,將80條強(qiáng)地震動(dòng)記錄按罕遇地震7度設(shè)防標(biāo)準(zhǔn)調(diào)幅為0.21 g,采用Takeda雙線性剛度退化模型,阻尼比ξ=5%,位移延性比μ=1.0~5.0,利用Bispec[13]分別計(jì)算η=0.0, 0.025, 0.05時(shí)彈塑性位移譜Sd及殘余位移譜Dres的均值。不同η對(duì)彈塑性位移譜Sd及殘余位移譜Dres的影響見(jiàn)圖4。由圖4看出,①不同η對(duì)應(yīng)的彈塑性位移譜Sd曲線大體相互重合,故統(tǒng)計(jì)Sd譜時(shí)可忽略η。②隨周期T增加,不同η對(duì)應(yīng)的Dres譜呈遞增趨勢(shì);隨η增大,對(duì)應(yīng)于同一周期的Dres則有所降低。η對(duì)短周期(T<1 s)、低延性(μ<3)SDOF體系殘余位移Dres影響較?。粚?duì)中長(zhǎng)周期(T>2 s)、大延性(μ>5)SDOF體系的Dres值影響較大??梢?jiàn),為使橋梁結(jié)構(gòu)的震后殘余位移能被限制在容許范圍內(nèi),應(yīng)選擇偏于保守的η統(tǒng)計(jì)殘余位移譜Dres,而由此建立的殘余位移譜適用于短周期、低延性一般規(guī)則橋梁中、低矮橋墩的抗震設(shè)計(jì)。
圖3 PGA對(duì)彈塑性反應(yīng)譜影響Fig.3EffectofPGAontheelasto-plasticresponsespectra圖4 剛度比對(duì)彈塑性反應(yīng)譜影響Fig.4Effectofηontheelasto-plasticresponsespectra圖5 阻尼比對(duì)彈塑性反應(yīng)譜影響Fig.5Effectofζonelasto-plasticresponsespectra
3.3阻尼比影響
以I類(lèi)場(chǎng)地為例,將80條地震波按罕遇地震7度設(shè)防調(diào)幅為0.21 g,采用Takeda雙線性剛度退化模型,設(shè)屈服后剛度比η=0.05,位移延性比μ=1.0~5.0,結(jié)構(gòu)阻尼比取值分別考慮鋼結(jié)構(gòu)(ξ=2%)、鋼筋混凝土結(jié)構(gòu)(ξ=5%)及隔震結(jié)構(gòu)(ξ=10%, 14%),利用Bispec[13]分別計(jì)算四種阻尼比的彈塑性位移譜Sd及殘余位移譜Dres的平均值。
ξ對(duì)彈塑性位移譜Sd及殘余位移譜Dres影響見(jiàn)圖5。由圖5看出,隨周期T增加不同ξ對(duì)應(yīng)的彈塑性位移譜Sd及殘余位移譜Dres均呈遞增趨勢(shì);而同一周期T對(duì)應(yīng)的彈塑性位移及殘余位移值則隨ξ增大而減小。原因?yàn)榈孛孢\(yùn)動(dòng)輸入結(jié)構(gòu)的能量一定,阻尼比增大造成結(jié)構(gòu)阻尼耗能增加、滯回耗能減少,從而減少結(jié)構(gòu)的非彈性變形及結(jié)構(gòu)震后殘余位移。
3.4位移延性比影響
以Ⅲ類(lèi)場(chǎng)地為例,將80條地震波按罕遇地震7度設(shè)防標(biāo)準(zhǔn)調(diào)幅為0.21 g,采用Takeda雙線性剛度退化模型,阻尼比ξ=5%,屈服后剛度比η=0.05,用Bispec[13]計(jì)算μ=1.0~5.0時(shí)各類(lèi)彈塑性反應(yīng)譜的平均值,研究μ變化對(duì)彈塑性位移譜Sd及殘余位移譜Dres影響,見(jiàn)圖6。由圖6看出,①隨μ增大彈塑性位移譜Sd總體呈遞減趨勢(shì),尤其μ>3后,不同μ對(duì)應(yīng)的Sd譜曲線趨于一致;對(duì)中短周期結(jié)構(gòu)而言,可忽略μ對(duì)Sd譜影響。②Dres譜值均隨μ的增大而增大;當(dāng)μ>3后,不同μ對(duì)應(yīng)的Dres譜曲線亦將趨于一致。
圖6 位移延性比對(duì)彈塑性反應(yīng)譜影響 Fig.6 Effect of ductility on elasto-plastic response spectra
4彈塑性反應(yīng)譜建立
將320條強(qiáng)震記錄作為地震動(dòng)輸入,采用Takeda雙線性剛度退化模型,利用Bispec[13]計(jì)算周期在0.05~5 s、位移延性比μ=1.0~6.0及阻尼比ξ=1%~15%的彈塑性位移譜Sd及殘余位移譜Dres的平均值,獲得具有統(tǒng)計(jì)意義的彈塑性位移譜及殘余位移譜,進(jìn)而為考慮殘余位移影響的橋梁基于性能抗震設(shè)計(jì)方法提供設(shè)計(jì)譜。限于篇幅,僅給出ξ=5%、μ=1.0~6.0、罕遇地震7度設(shè)防時(shí),四類(lèi)場(chǎng)地的彈塑性位移譜Sd及殘余位移譜Dres,其它設(shè)防烈度的Sd、Dres譜可由PGA設(shè)防烈度與PGA7度罕遇的比值調(diào)整獲得。
4.1彈塑性位移譜
統(tǒng)計(jì)所得彈塑性位移譜見(jiàn)圖7。由圖7看出,①各場(chǎng)地的彈塑性位移譜曲線均隨周期T的增加呈遞增趨勢(shì);②隨場(chǎng)地土質(zhì)變軟,彈塑性位移譜值呈遞增趨勢(shì),較其它三類(lèi)場(chǎng)地,Ⅳ類(lèi)場(chǎng)地的彈塑性位移譜值最大。
圖7 四類(lèi)場(chǎng)地彈塑性位移譜 Fig.7 Elasto-plastic displacement spectra in four sites
圖8 不同場(chǎng)地條件下殘余位移譜 Fig.8 Residual displacement spectra in different site
4.2殘余位移譜
統(tǒng)計(jì)所得殘余位移譜見(jiàn)圖8。由圖8看出,①各場(chǎng)地殘余位移譜均隨T的增加而增大;②隨μ增大各場(chǎng)地殘余位移譜值隨之增大;③場(chǎng)地條件對(duì)殘余位移譜影響較大,其它條件相同時(shí),Ⅱ類(lèi)場(chǎng)地殘余位移譜值最小,而其它三類(lèi)場(chǎng)地殘余位移譜值則隨場(chǎng)地土質(zhì)變軟而增大。
5結(jié)論
本文通過(guò)合理選取強(qiáng)震記錄,研究地震動(dòng)特性、恢復(fù)力模型動(dòng)力參數(shù)對(duì)彈塑性位移譜及殘余位移譜影響,建立適用于我國(guó)橋梁抗震設(shè)計(jì)的彈塑性位移譜及殘余位移譜,結(jié)論如下:
(1)給出某一設(shè)防烈度的彈塑性位移譜、殘余位移譜,其它設(shè)防烈度下彈塑性、殘余位移譜可據(jù)PGA設(shè)防烈度與PGA標(biāo)準(zhǔn)烈度的比值調(diào)整獲得。
(2)可忽略屈服后剛度比對(duì)彈塑性位移譜影響,應(yīng)選擇偏于保守的屈服后剛度比統(tǒng)計(jì)殘余位移譜。由此建立的殘余位移譜適用于短周期(T<1 s)、低延性(μ<3)一般規(guī)則橋梁中、低矮橋墩的抗震設(shè)計(jì)。
(3)阻尼比及位移延性比為影響彈塑性位移譜及殘余位移譜重要因素,而阻尼比增大會(huì)減少橋梁結(jié)構(gòu)的非彈性變形及震后殘余位移。
(4)彈塑性反應(yīng)與多種非線性因素有關(guān),若需獲得可靠的反應(yīng)譜,需進(jìn)行大量驗(yàn)證,尤其對(duì)彈塑性地震反應(yīng)分析結(jié)果的驗(yàn)證[21]。本文所建彈塑性位移譜及殘余位移譜可為橋梁基于性能的抗震設(shè)計(jì)提供重要參考依據(jù)。
參考文獻(xiàn)
[1]何文福, 劉文光,楊驍,等. 隔震結(jié)構(gòu)彈塑性反應(yīng)譜分析研究[J]. 振動(dòng)與沖擊, 2010, 29(1): 30-33.
HE Wen-fu, LIU Wen-guang,YANG Xiao,et al. Elasto-elastic response spectra of isolated[J]. Journal of Vibration and Shock, 2010, 29(1): 30-33.
[2]Newmark N M, Hall W J. Seismic design criteria for nuclear reactor facilities[C].//Proceedings of the 4th World Conference on Earthquake Engineering Santiago, Chile, 1969: 37-50.
[3]Chen Dan. Ductility spectra and collapse spectra for earthquake resistant structures[C].//Proc.7th European Conference on Earthquake Engineering, 1982.
[4]韋承基. 彈塑性結(jié)構(gòu)的位移比譜[J]. 建筑結(jié)構(gòu)學(xué)報(bào), 1983, 4(2): 40-48.
WEI Cheng-ji. Displacement ratio spectrum of elastoplastic structures[J].Journal of Building Structures, 1983, 4(2): 40-48.
[5]Cheng Ming-xian. Residual strength spectra for earthquake resistant structures[C].//Proc.1st Conference on Design, Construction and Repair of Building Structures in Earthquake Zones, 1987.
[6]Ye L P,Maximum O S. Seismic displacement of inelastic systems based on energy concept[J]. Earthquake Engineering and Strucutral Dynamics, 1999,28:1483-1499.
[7]Fajfar P, Fischinger M. Earthquake design spectra considering duration of ground motion[C].//Proc.4th U.S.NCEE, California, 1990:15-24.
[8]Tolis S V, Faccioli E. Displacement design spectra[J]. Journal of Earthquake Engineering,1999,3(1):107-125.
[9]王博,白國(guó)良,代慧娟.典型地震動(dòng)作用下長(zhǎng)周期單自由度體系地震反應(yīng)分析[J].振動(dòng)與沖擊,2013, 32(15): 190-196.
WANG Bo,BAI Guo-liang,DAI Hui-juan.Seismic response analysis of long-period SDOF system under typical ground motions[J].Journal of Vibration and Shock,2013,32(15):190-196.
[10]GB50111-2006,鐵路工程抗震設(shè)計(jì)規(guī)范[S].
[11]JTG/TB02-01-2008,公路橋梁抗震設(shè)計(jì)細(xì)則[S].
[12]弓俊青,朱晞. 以位移為基礎(chǔ)的鋼筋混凝土橋梁墩柱抗震設(shè)計(jì)方法[J].中國(guó)公路學(xué)報(bào),2001,14(4): 42-46.
GONG Jun-qing, ZHU Xi. Displacement}ased seismic design method for RC bridge columns[J]. China lournal of Highwav and Transport, 2001, 14(4): 42-46.
[13]黃建文,朱晞. 近場(chǎng)地震作用下鋼筋混凝土橋墩基于位移的抗震設(shè)計(jì)[J].土木工程學(xué)報(bào),2005, 38(4): 84-90.
HUANG Jian-wen ZHU Xi. Displacement based seismic design for rc bridge columns under near fault earthquakes[J]. China Civil Engineering Journal, 2005, 38(4): 84-90.
[14]Kawashima K, MacRae G A, Hoshikuma J, et al. Residual displacement response spectrum[J]. Journal of Structural Engineering, 1998, 124(5): 523-530.
[15]Kawashima K. Seismic design and retrofit of bridges[C]. 12WCEE, New Zealand, Reference No.2828, 2000.
[16]Japanroad association. design specifications of highway bridges, part V: seismic design[S]. Tokyo, Japan, 1996.
[17]Riddell R,Newmark N M. Statistical analysis of the response of nonlinear systems subjected to earthquakes[R]. University of Illinois, Urban, Illinois, 1979.
[18]Mahin S A, Bertero V V. An evaluation of inelastic seismic response spectra[J]. Journal of the Structural Division, 1981, 107(ST9): 1777-1795.
[19]MacRae G A, Kawashima K. Post-earthquake residual displacements of bilinear oscillators[J]. Earthquake Engineering and Structural Dynamics, 1997,26(77): 701-716.
[20]Zatar W A, Mutsuyoshi H. Reduced residual displacements of partially prestressed concrete bridge piers[C]. 12WCEE, New Zealand, Reference No.2828, 2000.
[21]李宇. 考慮殘余位移和土-結(jié)構(gòu)相互作用的橋梁結(jié)構(gòu)基于性能的抗震設(shè)計(jì)及評(píng)估[D]. 北京:北京交通大學(xué), 2010.