張國強(qiáng) 徐玉珍++韓杰++劉濤++吳海平??
摘要:從經(jīng)濟(jì)的角度綜合考慮,基于動(dòng)態(tài)年折算費(fèi)用法建立了區(qū)域供冷系統(tǒng)供回水經(jīng)濟(jì)溫差的優(yōu)化模型,并以夏熱冬冷地區(qū)某小區(qū)區(qū)域供冷系統(tǒng)為例,分析了用電價(jià)格、比摩阻、供冷距離以及空調(diào)負(fù)荷等因素對(duì)供回水經(jīng)濟(jì)溫差的影響.結(jié)果表明,當(dāng)供回水經(jīng)濟(jì)溫差為6.3 ℃時(shí),年度費(fèi)用最低,此時(shí)供水溫度為5.9 ℃,與常規(guī)設(shè)計(jì)溫度7/12 ℃相比,每年可節(jié)約2.4萬元,經(jīng)濟(jì)溫差隨電價(jià)的增加而減小,隨比摩阻、供冷距離、空調(diào)負(fù)荷的增大而增大.
關(guān)鍵詞:區(qū)域供冷;動(dòng)態(tài)年折算費(fèi)用法;經(jīng)濟(jì)溫差;影響因素
中圖分類號(hào):TU995 文獻(xiàn)標(biāo)識(shí)碼:A
區(qū)域供冷系統(tǒng)是指針對(duì)一定區(qū)域內(nèi)的建筑群,由一個(gè)或多個(gè)能源站集中制取冷凍水,通過輸配管網(wǎng)輸送到各用戶,滿足用戶用冷需求的系統(tǒng),包括能源站、輸配管網(wǎng)和末端用能裝置[1-3].與常規(guī)的分散式空調(diào)系統(tǒng)相比,區(qū)域供冷系統(tǒng)機(jī)組能效較高,能有效避免各用戶冷負(fù)荷峰值的同時(shí)出現(xiàn),可降低裝機(jī)容量和提高機(jī)組的部分負(fù)荷率[4].
冷凍水供回水溫差是區(qū)域供冷系統(tǒng)的重要設(shè)計(jì)參數(shù),它直接影響著系統(tǒng)的投資與性能.加大冷凍水供回水溫差可提高系統(tǒng)的經(jīng)濟(jì)性和能效,但其并不是越大越好,因?yàn)檩^低的供水溫度會(huì)導(dǎo)致機(jī)組制冷性能下降,而較高的回水溫度不能滿足室內(nèi)熱舒適的要求.在區(qū)域供冷系統(tǒng)供回水溫差研究方面,胡晨炯[5]以廣州地鐵五號(hào)線集中供冷系統(tǒng)為例,得出了10 ℃供回水溫差能效比最高.壽煒煒[6]分析得出冷凍水供/回水溫度設(shè)計(jì)為7/17 ℃時(shí),節(jié)能效果不明顯,且會(huì)加大系統(tǒng)的初投資.陳曉建立了基于LCC的優(yōu)化數(shù)學(xué)模型,對(duì)某一住宅小區(qū)集中供冷進(jìn)行分析,得出供回水溫差不宜過大,風(fēng)機(jī)盤管系統(tǒng)一般取8 ℃左右.張朝暉[8]建立了基于LCC的冷凍水溫度優(yōu)化模型,并對(duì)大連市星海灣項(xiàng)目進(jìn)行分析,得出最佳的冷凍水供回水溫度參數(shù)為3/12 ℃.華賁等[9]通過制冷主機(jī)串聯(lián)兩級(jí)制冷、末端設(shè)備革新的冷量逐級(jí)利用方法,實(shí)現(xiàn)了冷凍水二次管路的溫差由10 ℃升高到15 ℃.付林等人[10]分析了供回水溫度對(duì)區(qū)域供冷系統(tǒng)能耗的影響,并得出存在最優(yōu)的供回水溫度使得系統(tǒng)能耗最小.
從上述研究可知,目前區(qū)域供冷系統(tǒng)供回水溫差設(shè)計(jì)通常采用經(jīng)驗(yàn)值或僅從能耗的角度進(jìn)行優(yōu)選,沒有從系統(tǒng)投資的角度進(jìn)行考慮,而不同規(guī)模的區(qū)域供冷系統(tǒng)所對(duì)應(yīng)的冷凍水經(jīng)濟(jì)溫差不同.經(jīng)濟(jì)溫差指的是從系統(tǒng)經(jīng)濟(jì)技術(shù)分析的角度綜合考慮的冷凍水供回水溫差[11].本文基于動(dòng)態(tài)年折算費(fèi)用法建立區(qū)域供冷系統(tǒng)供回水經(jīng)濟(jì)溫差的優(yōu)化模型,并以夏熱冬冷地區(qū)某小區(qū)區(qū)域供冷系統(tǒng)為例,分析電價(jià)、比摩阻、供冷距離以及空調(diào)負(fù)荷對(duì)區(qū)域供冷系統(tǒng)供回水經(jīng)濟(jì)溫差的影響.
1模型建立
常見的技術(shù)經(jīng)濟(jì)分析法有投資回收期法、年折算費(fèi)用法以及基于LCC的年折算費(fèi)用法.投資回收期法適用于年運(yùn)行費(fèi)存在很大節(jié)省空間的工程;基于LCC的年折算費(fèi)用法實(shí)際運(yùn)用中受各種客觀因素的限制缺乏可操作性;而年折算費(fèi)用法適用性廣.本文基于動(dòng)態(tài)年折算費(fèi)用法建立了區(qū)域冷凍水供回水經(jīng)濟(jì)溫差優(yōu)化模型,并利用Matlab編制程序?qū)ζ溥M(jìn)行求解.
區(qū)域供冷系統(tǒng)比較復(fù)雜,要綜合考慮到各種影響因素,本文所建立的優(yōu)化模型不考慮區(qū)域供冷系統(tǒng)對(duì)優(yōu)化城市能源結(jié)構(gòu)和環(huán)保等方面的作用,僅考慮初投資和運(yùn)行維護(hù)費(fèi)等經(jīng)濟(jì)性因素,并且暫不考慮室內(nèi)管網(wǎng)投資、室內(nèi)管網(wǎng)冷量損失以及末端設(shè)備運(yùn)行費(fèi).
該模型以年折算費(fèi)用最小為目標(biāo)函數(shù),對(duì)區(qū)域供冷系統(tǒng)的冷凍水供回水經(jīng)濟(jì)溫差進(jìn)行優(yōu)化,目標(biāo)函數(shù)如下[12-13]:
MinCt=XtCtz+Cw+Cc+Cp+CΔQ+Cα. (1)
式中: MinCt為年總折算費(fèi)用,元/年; Xt為標(biāo)準(zhǔn)投資效果系數(shù),1/年;Ctz為室外輸配管網(wǎng)初投資,元;Cw為循環(huán)水泵年折算費(fèi),元/年;Cc為冷水機(jī)組年均運(yùn)行費(fèi),元/年;Cp為循環(huán)水泵年均運(yùn)行費(fèi),元/年;CΔQ為輸配系統(tǒng)冷量損失的折算費(fèi),元/年;Ca為室外輸配管網(wǎng)的折舊、維修年均費(fèi),元/年.
3結(jié)論
本文基于動(dòng)態(tài)年折算費(fèi)用法建立了區(qū)域供冷系統(tǒng)供回水經(jīng)濟(jì)溫差優(yōu)化模型,并對(duì)夏熱冬冷地區(qū)某小區(qū)區(qū)域供冷系統(tǒng)的供回水經(jīng)濟(jì)溫差進(jìn)行了優(yōu)化分析.研究表明,隨著經(jīng)濟(jì)溫差的增大,系統(tǒng)能效降低,但年總折算費(fèi)用隨經(jīng)濟(jì)溫差升高先降低后升高,當(dāng)冷凍水供回水溫差為6.3 ℃時(shí),年度費(fèi)用最低,其相應(yīng)設(shè)計(jì)供水溫度為5.9 ℃,與常規(guī)設(shè)計(jì)工況度7/12 ℃相比,每年可節(jié)約2.4萬元.且經(jīng)濟(jì)溫差隨電價(jià)的增加而減少,隨比摩阻、供冷距離、空調(diào)負(fù)荷的增大而增大.但是,本文僅對(duì)某特定小區(qū)區(qū)域供冷系統(tǒng)的供回水經(jīng)濟(jì)溫差進(jìn)行了優(yōu)化分析,對(duì)于不同建筑群區(qū)域供冷系統(tǒng)的應(yīng)用有待進(jìn)一步研究.
參考文獻(xiàn)
[1]張歆暉,盧軍,李春蝶,等.區(qū)域供冷系統(tǒng)能耗模型及能效分析[J].煤氣與熱力,2013,33(3):29-32.
ZHANG Xinhui, LU Jun, LI Chundie, et al. Energy consumption model and energy efficiency analysis of district cooling system[J]. Gas & Heat, 2013,33(3):29-32.(In Chinese)
[2]馬鈞,陳進(jìn),李春蝶,等.區(qū)域供冷系統(tǒng)設(shè)計(jì)分析[J].暖通空調(diào), 2012, 42(3): 12-16.
MA Jun, CHEN Jin, LI Chundie, et al. Analysis of district cooling system[J]. Heating, Ventilating & Air Conditioning, 2012, 42(3): 12-16. (In Chinese)
[3]王培培,龍惟定,白煒.能源總線系統(tǒng)研究——半集中式區(qū)域供冷供熱系統(tǒng)[J].湖南大學(xué)學(xué)報(bào):自然科學(xué)版,2009,36(12):137-141.
WANG Peipei, LONG Weiding, BAI Wei. Study on energy bus systemsemicentral DHC[J]. Journal of Hunan University: Natural Sciences, 2009,36(12):137-141.(In Chinese)
[4]CHAN A, HANBY V I, CHOW T T. Optimization of distribution piping network in district cooling system using genetic algorithm with local search[J]. Energy Conversion and Management, 2007, 48(10): 2622-2629.
[5]胡晨炯.從廣州地鐵五號(hào)線集中供冷系統(tǒng)淺談遠(yuǎn)距離大溫差供冷系統(tǒng)[J]. 建設(shè)科技,2012(12):92-93.
HU Chenjiong. Analysis of long distance large temperature difference cooling system through central cooling system in Guangzhou metro line 5[J]. Construction Science and Technology, 2012(12):92-93.(In Chinese)
[6]壽煒煒.空調(diào)用冷水溫差的擇優(yōu)探討[J].制冷技術(shù),2000(2):5-9.
SHOU Weiwei. Discussion on optimum selection of chilled water temperature difference for AC[J]. Refrigeration Technology, 2000(2): 5-9. (In Chinese)
[7]陳曉.住宅小區(qū)集中供冷系統(tǒng)的技術(shù)及經(jīng)濟(jì)性分析[D].長沙:湖南大學(xué)土木工程學(xué)院,2002:48-59.
CHEN Xiao. Technical and economical analysis of district cooling system in residential district[D]. Changsha: College of Civil Engineering, Hunan University, 2002:48-59.(In Chinese)
[8]張朝暉.區(qū)域供冷供熱方案的LCC評(píng)價(jià)及關(guān)鍵參數(shù)分析[D].大連:大連理工大學(xué)建筑工程學(xué)部,2007:51-55.
ZHANG Zhaohui. The life cycle cost evaluation of schemes and analysis of key parameters in district cooling and heating system[D]. Dalian: Faculty of Infrastructure Engineering, Dalian University of Technology, 2007:51-55.(In Chinese)
[9]華賁,康英姿.一種用于區(qū)域供冷的高效節(jié)能空調(diào)系統(tǒng)及其實(shí)現(xiàn)方法[P].中國:CN101344291,2009-01-14.
HUA Ben, KANG Yingzi. A high efficiency and energy saving air conditioning system and its implementation method for district cooling[P]. China: CN101344291, 2009-01-14.(In Chinese)
[10]FU Lin, JIANG Yi, YUAN Weixing, et al. Influence of supply and return water temperature on the energy consumption of a district cooling system[J]. Applied Thermal Engineering, 2001,21(4):511-521.
[11]高松.供熱二次網(wǎng)經(jīng)濟(jì)設(shè)計(jì)溫差的研究[D].天津:天津大學(xué)機(jī)械工程學(xué)院, 2008:10-26.
GAO Song. Economic study of design temperature difference of secondary heating network[D]. Tianjin: School of Mechanical Engineering, Tianjin University, 2008:10-26.(In Chinese)
[12]馮小平.上海世博園區(qū)區(qū)域供冷系統(tǒng)管網(wǎng)優(yōu)化分析的研究[D].上海:同濟(jì)大學(xué)機(jī)械工程學(xué)院, 2007:101-121.
FENG Xiaoping. Study on optimal design of district cooling system pipe network in Shanghai EXPO[D]. Shanghai: School of Mechanical Engineering, Tongji University, 2007:101-121.(In Chinese)
[13]董曉麗.降低空調(diào)冷凍水系統(tǒng)輸送能耗的研究[D].上海:東華大學(xué)環(huán)境科學(xué)與工程學(xué)院,2012:48-50.
DONG Xiaoli. Research of reducing energy consumption of air conditioning chilled water system[D]. Shanghai: School of Environment Science and Engineering, Donghua University, 2012: 48-50. (In Chinese)
[14]戎衛(wèi)國.供熱參數(shù)優(yōu)化的研究及應(yīng)用[J].山東建筑工程學(xué)院學(xué)報(bào),1992,7(4):58-63.
RONG Weiguo. A study on optimization of parameters for heating system and its application[J]. Journal of Shandong Architectural and Civil Engineering Institute, 1992,7(4):58-63.(In Chinese)
[15]張思柱,楊俊,龍惟定.區(qū)域供冷系統(tǒng)最佳供冷半徑研究[J].暖通空調(diào), 2008, 38(4): 116-119.
ZHANG Sizhu, YANG Jun, LONG Weiding. Research on optimal radius of a district cooling system[J]. Heating, Ventilating & Air Conditioning, 2008,38(4):116-119.(In Chinese)
[16]康英姿,左政.區(qū)域供冷系統(tǒng)二次管網(wǎng)的冷量損失分析[J].暖通空調(diào), 2009, 39(11): 31-36.
KANG Yingzi, ZUO Zheng. Cooling loss of the secondary piping network in district cooling system[J]. Heating, Ventilating & Air Conditioning, 2009, 39(11):31-36.(In Chinese)
[17]住房和城鄉(xiāng)建設(shè)部工程質(zhì)量安全監(jiān)管司,中國建筑標(biāo)準(zhǔn)設(shè)計(jì)研究所.全國民用建筑工程設(shè)計(jì)技術(shù)措施:暖通空調(diào)·動(dòng)力[M]. 北京:中國計(jì)劃出版社,2009:50.
Department of Construction Engineering Quality & Safety Supervision of Ministry of Housing and UrbanRural Development of the P R China, China Institute of Building Standard Design & Research.Technical measures for design of civil construction engineering: heating, ventilation and air conditioning[M]. Beijing: China Planning Press, 2009:50.(In Chinese)