李舒曼,王可顏,程敬亮
(鄭州大學(xué)第一附屬醫(yī)院MRI科,河南 鄭州 450052)
?
煙霧病的磁共振成像研究進(jìn)展
李舒曼,王可顏,程敬亮*
(鄭州大學(xué)第一附屬醫(yī)院MRI科,河南 鄭州 450052)
煙霧病(MMD)是一種以雙側(cè)頸內(nèi)動脈末端和/或大腦前動脈和/或大腦中動脈進(jìn)行性狹窄或閉塞,伴顱底或基底節(jié)區(qū)異常血管網(wǎng)形成為特征的慢性腦血管病。MRI技術(shù)在MMD早期診斷、提供個體化治療、評估患者病情及不良預(yù)后、隨訪病情進(jìn)展等方面具有巨大潛力。本文對MRI技術(shù)在診斷MMD、評估腦血流動力學(xué)及腦功能等方面的應(yīng)用進(jìn)行綜述。
煙霧?。淮殴舱癯上?/p>
煙霧病(moyamoya disease, MMD)是一種以雙側(cè)頸內(nèi)動脈末端和/或大腦前動脈和/或大腦中動脈進(jìn)行性狹窄或閉塞,伴顱底或基底節(jié)區(qū)異常血管網(wǎng)形成為特征的慢性腦血管病,由于異常血管網(wǎng)造影表現(xiàn)形似煙霧,被命名為MMD[1],若患者具有MMD表現(xiàn)且合并一種以上基礎(chǔ)疾病,則稱為煙霧綜合征(moyamoya syndrome, MMS)。既往DSA、SPECT/PET是公認(rèn)的診斷及評估MMD患者病情的主要手段。而MRI問世以來,以其快捷、無輻射、組織分辨力高等優(yōu)勢被廣泛接受,隨著MRI新技術(shù)的不斷問世,其在臨床及科研中的應(yīng)用也越來越廣泛。本研究對MRI技術(shù)在MMD中的應(yīng)用進(jìn)行綜述。
隨著MRI在臨床中的廣泛應(yīng)用,越來越多的研究[2]證實(shí)MMD的MRI與MRA影像學(xué)表現(xiàn)具有診斷意義。2012年日本專家發(fā)布診斷與治療新指南中首次將MRI與MRA聯(lián)合診斷納入MMD的診斷方法[3],并增加了以MRA表現(xiàn)對MMD進(jìn)行評估分期的新方法[4],與DSA分期高度一致。MRA無創(chuàng)、無輻射,盡管存在高估血管狹窄程度的缺點(diǎn),但其診斷能力早已被國內(nèi)外廣泛認(rèn)可,與DSA一致率約為93.2%[5]。MRI具有卓越的組織分辨力,可顯示顱底點(diǎn)線狀流空血管,即煙霧血管,此外還能提供大腦解剖信息、發(fā)現(xiàn)腦內(nèi)繼發(fā)改變,如梗死、出血、腦萎縮等;MRI衰減反轉(zhuǎn)恢復(fù)圖像可顯示沿大腦皮層表面分布的柔腦膜點(diǎn)線狀高信號,即常春藤征(ivy sign),該征象代表頸內(nèi)動脈系統(tǒng)供血失代償,頸外動脈向顱內(nèi)形成側(cè)枝循環(huán),與MMD病情進(jìn)展有關(guān),也對MMD的診斷有一定特異性[6]。
MMD受累動脈壁的基本病理改變?yōu)椋簞用}內(nèi)膜因纖維細(xì)胞及平滑肌細(xì)胞異常增生而增厚,內(nèi)彈力層結(jié)構(gòu)、功能異常;動脈中膜萎縮變薄;頸內(nèi)動脈及大腦中動脈管壁外徑縮小[7-9]。但由于MMD是動態(tài)進(jìn)展的過程,目前無有效的檢查方法可以隨訪管壁結(jié)構(gòu)的變化,故MMD進(jìn)展中血管壁結(jié)構(gòu)的演變過程仍不明確。
高分辨率MRI(high resolution MRI, HR-MRI)采用“黑血”技術(shù),不僅可以顯示管腔,更能直觀地顯示血管壁結(jié)構(gòu),使評估血管壁病理學(xué)改變成為可能,對探索MMD的進(jìn)展過程具有重要的意義。HR-MRI已經(jīng)成熟應(yīng)用于頸外動脈粥樣硬化斑塊的分析中,并有病理學(xué)結(jié)果對照證實(shí)[10-12]。盡管顱內(nèi)動脈分支細(xì)小且位置較深,但已有研究[13-14]證實(shí)HR-MRI對大腦中動脈管壁的顯示與病理學(xué)具有良好的一致性。
HR-MRI對管壁結(jié)構(gòu)的顯示清晰可靠,能在傳統(tǒng)血管成像的基礎(chǔ)上對MMD和MMS加以鑒別診斷。2012年日本MMD診斷指南將MMS定義為符合MMD的影像學(xué)表現(xiàn)且合并至少一種基礎(chǔ)疾病,該基礎(chǔ)疾病能明確導(dǎo)致血管病變,涉及種類多達(dá)35種[15],其中合并動脈粥樣硬化及鉤端螺旋體病在我國最為常見。雖然DSA、CTA及MRA對MMD的診斷價值被認(rèn)可,且以DSA作為診斷MMD的金標(biāo)準(zhǔn),但其均僅能反應(yīng)血管管腔的狀態(tài)[9],HR-MRI卻可對血管壁結(jié)構(gòu)進(jìn)行分析,根據(jù)發(fā)病機(jī)制不同所造成的管壁結(jié)構(gòu)差異對MMD及MMS進(jìn)行鑒別診斷。對于存在動脈粥樣硬化危險因素的年輕患者,MMD受累血管外徑及管壁厚度均明顯小于合并動脈粥樣硬化的MMS,呈均勻的向心性狹窄,而動脈粥樣硬化所致的血管狹窄管壁多為偏心性增厚,可見纖維帽、脂質(zhì)核心、出血等[7,9]。對于合并鉤端螺旋體腦動脈炎的患者,由于病理表現(xiàn)為內(nèi)皮細(xì)胞受損,血管壁呈炎性改變,受累血管壁增強(qiáng)后明顯均勻強(qiáng)化,而MMD受累血管壁無強(qiáng)化??梢?,HR-MRI的應(yīng)用使部分MMS得以與MMD鑒別開來,從而早期針對病因治療,對改善患者預(yù)后具有重要意義。
MRI灌注成像包括動態(tài)磁敏感對比增強(qiáng)灌注成像(perfusion weighted imaging, PWI)及動脈自旋標(biāo)記法(arterial spinl abeling, ASL)。
PWI為應(yīng)用團(tuán)注順磁性對比劑的首過灌注成像法,得到組織對比劑濃度曲線,用去卷積法計算腦血容量(cerebral blood volume, CBV),并通過建立血流動力學(xué)模型獲得血流量(cerebral lood flow, CBF)、平均通過時間(mean transit time, MTT)、達(dá)峰值時間(time to peak, TTP)等血流動力學(xué)參數(shù)[16]。
PWI在反映組織微血管分布及提供血流動力學(xué)信息等方面具有一定的價值[17-20]。Vakil等[18]將PWI與PET進(jìn)行對比分析,發(fā)現(xiàn)PWI-CBF相比PET-CBF,盡管有低估血流量的趨勢,但與之線性相關(guān),遠(yuǎn)優(yōu)于評估血流動力學(xué)的其他檢查。而后,Tanaka等[19]在對MMD患者進(jìn)行的研究中,將PWI所獲得的相對CBV、MTT等參數(shù)與PET所得進(jìn)行對照,不僅進(jìn)一步確定了PWI在分析CBV、血流儲備方面的應(yīng)用價值,還認(rèn)為PWI分辨率更高,可與平掃M(jìn)RI對照分析,提供血流異常處的解剖結(jié)構(gòu)信息,且檢查時間短、無輻射,與PET相比有一定優(yōu)勢。Togao等[20]則發(fā)現(xiàn)MTT延長與血管對CO2的反應(yīng)力降低有關(guān)。TTP由于可聯(lián)合計算大血管及小血管,被認(rèn)為是最敏感的灌注指標(biāo)之一,與基于DSA的suzuki's分級具有良好相關(guān)性[21]??梢姡琍WI診斷腦缺血的靈敏度較高。
目前,被認(rèn)可的MMD的有效治療方式為血管重建術(shù)。Calamante等[22]發(fā)現(xiàn)PWI可在MR常規(guī)掃描顯示正常的腦實(shí)質(zhì)中發(fā)現(xiàn)低灌注區(qū),可作為血管重建術(shù)的靶點(diǎn)。應(yīng)根據(jù)腦灌注情況判斷手術(shù)時機(jī),研究[20,23-24]提示選擇CBF明顯降低但未超出梗死閾值時早期進(jìn)行手術(shù),患者預(yù)后良好,多表現(xiàn)為手術(shù)區(qū)域術(shù)后早期PWI-TTP明顯降低[25-26]。
ASL對動脈血中的水分子進(jìn)行標(biāo)記,作為內(nèi)源性示蹤劑,在其流入腦實(shí)質(zhì)前后,采集圖像并相減,獲得腦血流灌注圖,所得CBF還可用于定量測量。ASL分為連續(xù)、脈沖式、偽連續(xù)式及血管編碼ASL[27]。ASL對缺血非常敏感,在腦缺血超急性期即可定量顯示其缺血程度,并可與DWI結(jié)合顯示缺血半暗帶,也可早期發(fā)現(xiàn)短暫性腦缺血發(fā)作(transient ischemic attack, TIA)患者CBF的下降[27]。與PWI的對比研究[28]發(fā)現(xiàn),ASL與PWI-MTT、TTP具有良好的一致性,且對低灌注的敏感性更高。在評估患者預(yù)后方面,ASL能更好地顯示腦梗后高灌注,提示患者預(yù)后良好。對,ASL-CBF降低對未發(fā)現(xiàn)梗死灶TIA患者卒中發(fā)作具有一定的預(yù)測作用[29-30]。
然而,ASL也有局限性,即標(biāo)記血填充血管及進(jìn)入組織在時間上有一定的延遲。有學(xué)者[31]認(rèn)為,由于MMD患者主干血管狹窄或閉塞,血流通過側(cè)枝循環(huán)所需時間較長,故MMD狀態(tài)下ASL有低估腦血流灌注的風(fēng)險。但Wang等[32-33]研究表明,設(shè)定ASL標(biāo)記后延遲1.5~2.0 s,得到的MMD患者的灌注圖像與CT灌注成像具有較好的一致性,且認(rèn)為偽連續(xù)式ASL可減輕動脈通過時間、延長造成的誤差。Noguchi等[34]針對MMD患者的研究也發(fā)現(xiàn),采用ASL獲得的腦血管貯備與SPECT結(jié)果具有較高的一致性。在血管重建術(shù)后,若發(fā)生短暫性神經(jīng)功能惡化,ASL在其急性期即可發(fā)現(xiàn)局部腦血流灌注異常,與SPECT高度一致[35]??梢?,ASL在MMD患者的腦血流評估方面同樣具有一定的應(yīng)用價值。
MRI腦灌注成像可對患者腦血流動力學(xué)進(jìn)行早期、準(zhǔn)確評估,適合定期隨訪MMD患者腦血流灌注水平,對了解患者病情、掌握手術(shù)時機(jī)、評估手術(shù)效果及判斷預(yù)后具有重要意義。
血氧水平依賴功能磁共振成像(blood oxygenation leveldependent functional magnetic resonance imaging, BOLD-fMRI)是一種集中了影像、功能、解剖的MRI成像技術(shù),主要依靠氧化血紅蛋白及還原血紅蛋白的磁性差異,當(dāng)神經(jīng)功能激活,該區(qū)域血流量及氧含量發(fā)生改變,導(dǎo)致氧合血紅蛋白比升高,使T2信號升高,可直觀反映神經(jīng)活動[36]。較傳統(tǒng)的方法是在采集圖像時囑患者執(zhí)行某一特定任務(wù),通過該方法獲得的腦功能圖像被稱為任務(wù)態(tài),但該方法在臨床實(shí)踐中難以規(guī)范化,往往患者不能配合完成任務(wù)。有研究[37]發(fā)現(xiàn),患者靜息時不同腦區(qū)存在自發(fā)的信號改變,且腦區(qū)之間有一定的相關(guān)性,這種腦神經(jīng)生理活動產(chǎn)生的信號,稱為自發(fā)低頻振幅(amplitude of low-frequency fluctuations, ALFF),代表靜息狀態(tài)下大腦的自發(fā)活動。由于不需要患者配合,且能反應(yīng)腦部神經(jīng)網(wǎng)絡(luò)及腦區(qū)之間的聯(lián)系,故靜息態(tài)BOLD-fMRI較常應(yīng)用于臨床科研,是目前研究腦功能的首選方法[38-39]。
隨著MMD病情的進(jìn)展,成人患者可能出現(xiàn)血管認(rèn)知損害(vascular cognitive impairment, VCI),包括執(zhí)行能力及記憶、語言、視覺空間障礙[40]。雖然VCI臨床表現(xiàn)與阿茲海默癥、輕度認(rèn)知功能障礙相似,但受損的腦區(qū)并不相同[41]。當(dāng)MMD患者認(rèn)知能力降低時,多個腦區(qū)同時出現(xiàn)ALFF的改變,降低代表著該區(qū)域功能缺損,升高則意味著局部代償性功能活躍,多數(shù)MMD患者頂回、右額回、右顳中回、左尾狀核的ALFF改變尤為顯著[39]。Thomas等[42]對MMD患者行BOLD-fMRI及PWI檢查,通過后處理得到BOLD-fMRI延遲圖像與PWI-TTP,相關(guān)性分析發(fā)現(xiàn)二者具有較高的一致性??紤]由于BOLD-fMRI根據(jù)血液含氧量的變化成像,相當(dāng)于在一個心動周期內(nèi)團(tuán)注含氧血,故腦部不同部位氧含量波動的差異與血流通過動脈的時間延遲有關(guān),提示BOLD-fMRI可反應(yīng)腦血流灌注及腦血管儲備情況[42-43]。
BOLD-fMRI快速、無創(chuàng)、無輻射、操作簡單,空間分辨率高,可覆蓋全腦,一次檢查即可提供解剖、神經(jīng)活動及血流動力學(xué)信息。由于神經(jīng)損害引起的腦功能改變遠(yuǎn)早于結(jié)構(gòu)及彌散信息的改變,故該技術(shù)有助于早期診斷及采取更有針對性的治療方法,改善患者預(yù)后。但由于需要復(fù)雜的后處理分析,目前在臨床中較少應(yīng)用。
隨著MRI新技術(shù)的不斷問世,其在醫(yī)學(xué)臨床、科研領(lǐng)域中的應(yīng)用也越來越廣泛。用于MMD的相關(guān)研究時,MRI在疾病診斷、評估腦血流動力學(xué)、側(cè)枝循環(huán)的研究方面的價值已被認(rèn)可,但其潛力不止于此,盡管目前研究尚少,MRI技術(shù)在疾病進(jìn)展中隨訪血管壁變化、評估腦組織血流動力學(xué)與不良預(yù)后及手術(shù)時機(jī)的關(guān)系、早期診斷及認(rèn)知障礙進(jìn)行個體化治療等方面具有廣闊前景,與臨床治療及患者預(yù)后息息相關(guān)。
[1] Kuroda S, Houkin K. Moyamoya disease: Current concepts and future perspectives. The Lancet Neurology, 2008,7(11):1056-1066.
[2] 鐘安民,邱瑩瑩,葉如馨,等.煙霧病的MRI與MRA診斷.中國醫(yī)學(xué)影像學(xué)雜志,2003,11(2):150-151.
[3] Research Committee on the Pathology and Treatment of Spontaneous Occlusion of the Circle of Willis; Health Labour Sciences Research Grant for Research on Measures for Infractable Diseases. Guidelines for diagnosis and treatment of moyamoya disease (spontaneous occlusion of the circle of Willis). Neurol Med Chir (Tokyo), 2012,52(5):245-266.
[4] Yoon HK, Shin HJ, Chang YW. "Ivy sign" in childhood moyamoya disease: Depiction on FLAIR and contrast-enhanced T1-weighted MR images. Radiology, 2002,223(2):384-389.
[5] 李明珠,徐敏,奚克敏.64-SCTA、MRA、DSA診斷腦血管狹窄對比研究.中國醫(yī)療設(shè)備,2009,24(7):138-140.
[6] 馮燕韻,黃飚,梁長虹.成人煙霧病:FLAIR圖像上常春藤征的診斷價值.中國醫(yī)學(xué)影像技術(shù),2010,26(10):1852-1855.
[7] Kim YJ, Lee DH, Kwon JY, et al. High resolution MRI difference between moyamoya disease and intracranial atherosclerosis. Eur J of Neurol, 2013,20(9):1311-1318.
[8] Yamashita M, Oka K, Tanaka K. Histopathology of the brain vascular network in moyamoya angiopathy disease. Stroke, 1983(14):50-58.
[9] Yuan M, Liu ZQ, Wang ZQ, et al. High-resolution MR imaging of the arterial wall in moyamoya disease. Neurosci Lett, 2015,584:77-82.
[10] 婁昕,姜衛(wèi)劍,馬林,等.重度顱內(nèi)動脈狹窄活體高分辨磁共振成像初探.中華內(nèi)科雜志,2008,47(6):478-481.
[11] 李樹合,周定標(biāo),婁昕,等.高分辨MRI對頸動脈粥樣硬化斑塊成分顯示的病理對照研究.中華神經(jīng)外科雜志,2007,23(7):514-516.
[12] Puppini GF, Cirota N. Characterisation of carotid atherosclerotic plaque: Comparison between magnetic resonance imaging and histology. Radiol Med, 2006,1(7):921-930.
[13] Li ML, Xu WH, Song L, et al. Atherosclerosis of middle cerebral artery: Evaluation with high-resolution MR imaging at 3T. Atherosclerosis, 2009, 204(2):447-452.
[14] Klein IF, Lavallee PC, Touboul PJ, et al. In vivo middle cerebral artery plaque imaging by high-resolution MRI. Neurology, 2006,67(2):327-329.
[15] Fukui M, Kono S, Sueishi K, et al. Moyamoya angiopathy disease. Neuropathology, 2000,20(Suppl):S61-S64.
[16] 付玏,李克.MR腦灌注成像原理與臨床應(yīng)用.中國醫(yī)學(xué)計算機(jī)成像雜志,2013,19(2):180-183.
[17] Villringer A, Rosen BR, Belliveau JW, et al. Dynamic imaging with lanthanide chelates in normal brain: Contrast due to magnetic susceptibility effects. Magn Reson Med, 1988,6(2):164-174.
[18] Vakil P, Lee JJ, Mouannes-Srour JJ, et al. Cerebrovascular occlusive disease: Quantitative cerebral blood flow using dynamic susceptibility contrast MR imaging correlates with quantitative H2[15O] PET. Radiology, 2013,266(3):879-886.
[19] Tanaka Y, Nariai T, Nagaoka T, et al. Quantitative evaluation of cerebral hemodynamics in patients with moyamoya disease by dynamic susceptibility contrast magnetic resonance imaging—comparison with positron emission tomography. J Cereb Blood Flow Metab, 2006,26(2):291-300.
[20] Togao O, Mihara F, Yoshiura T, et al. Cerebral hemodynamics in Moyamoya disease: Correlation between perfusion-weighted Mr imaging and cerebral angiography. AJNR Am J Neuroradiol, 2006,27(2):391-397.
[21] Hung SC, Liang ML, Lin CF, et al. New grading of moyamoya disease using color-coded parametric quantitative digital subtraction angiography. J Chin Med Assoc, 2014,77(8):437-442.
[22] Calamante F, Ganesan V, Kirkham FJ, et al. MR perfusion maging in Moyamoya syndrome: Potential implications for clinical evaluation of occlusive cerebrovascular disease. Stroke, 2001,32(12):2810-2816.
[23] Lee SK, Kim DI, Jeong EK, et al. Postoperative evaluation of moyamoya disease with perfusion-weighted MR imaging: Initial experience. AJNR Am J Neuroradiol, 2003,24(4):741-747.
[24] 張軍,王劍虹,耿道穎,等.采用256層CT全腦灌注研究煙霧病術(shù)后橋血管再通及手術(shù)前后腦血流動力學(xué)的變化.中華放射學(xué)雜志,2011,45(8):743-746.
[25] 張亞男,薛靜,高培毅.DSA及CT灌注成像在單側(cè)MMD腦血管重建術(shù)中的應(yīng)用.放射學(xué)實(shí)踐,2014(12):1380-1386.
[26] Detre JA, Subramanian VH, Mitchell MD, et al. Measurement of regional cerebral blood flow in cat brain using intracarotid 2H2O and 2H NMR imaging. Magn Reson Med, 1990,14(2):389-395.
[27] 王敏,王寶軍,劉國榮,等.磁共振動脈自旋標(biāo)記灌注成像技術(shù)及其評價缺血性卒中患者腦血流灌注的研究進(jìn)展.中國腦血管病雜志,2013,10(5):277-280.
[28] 張水霞,張順,姚義好,等.3D-ASL與DSC-PWI在缺血性腦梗死患者中的對比研究.放射學(xué)實(shí)踐,2014,29(8):901-905.
[29] Tong T, Yao Z, Feng X. Combined diffusion-and perfusion-weighted imaging: A new way for the assessment of hemispheric transient ischemic attack patients. Int J Dev Neurosci, 2011,29(1):63-69.
[30] Fiehler J, Von Bezold M, Kucinski T, et al. Cerebral blood flow predicts lesion growth in acute stroke patients. Stroke, 2002,33(10):2421-2425.
[31] Lee M, Zaharchuk G, Guzman R, et al. Quantitative hemodynamic studies in moyamoya disease: A review. Neurosurg Focus, 2009,26(4):E5.
[32] Wang R, Yu S, Alger JR, et al. Multi-delay arterial spin labeling perfusion MRI in moyamoya disease—comparison with CT perfusion imaging. Eur Radiol, 2014,24(5):1135-1144.
[33] Qiu D, Straka M, Zun Z, et al. CBF measurements using multidelay pseudocontinuous and velocity-selective arterial spin labeling in patients with long arterial Transit delays: Comparison with Xenon CT CBF. J Magn Reson Imaging, 2012,36(1):110-119.
[34] Noguchi T, Kawashima M, Nishihara M, et al. Noninvasive method for mapping CVR in moyamoya disease using ASL-MRI. Eur J Radiol, 2015,84(6):1137-1143.
[35] Sugino T, Mikami T, Miyata K, et al. Arterial Spin-Labeling magnetic resonance imaging after revascularization of moyamoya disease. J Stroke Cerebrovasc Dis, 2013,22(6):811-816.
[36] Jonckers E, Shah D, Hamaide J. The power of using functional fMRI on small rodents to study brain pharmacology and disease. Front Pharmacol, 2015,6:231.
[37] Biswal B, Hudetz AG, Yetkin FZ, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med, 1995,34(4):537-541.
[38] 黃敏,錢若兵.靜息態(tài)功能性磁共振成像的研究進(jìn)展.立體定向和功能性神經(jīng)外科雜志,2010,23(1):55-58.
[39] Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci, 2007,8(9):700-711.
[40] Su SH, Hai J, Zhang L, et al. Assessment of cognitive function in adult patients with hemorrhagic moyamoya disease who received no surgical revascularization. Eur J Neuro, 2013,20(7):1081-1087.
[41] Hachinski V, Iadecola C, Petersen RC, et al. National institute of neurological disorders and Stroke-Canadian stroke network vascular cognitive impairment harmonization standards. Stroke, 2006,37(9):2220-2241.
[42] Christen T, Jahanian H, Ni WW, et al. Noncontrast mapping of arterial delay and functional connectivity using resting-state functional MRI: A study in Moyamoya patients. J Magn Reson Imaging, 2015,41(2):424-430.
[43] Lv Y, Margulies DS, Cameron Craddock R, et al. Identifying the perfusion deficit in acute stroke with resting-state functional magnetic resonance imaging. Ann Neurol, 2013,73(1):136-140.
Progresses of MRI in moyamoya disease
LIShuman,WANGKeyan,CHENGJingliang*
(DepartmentofMRI,theFirstAffiliatedHospitalofZhengzhouUniversity,Zhengzhou450052,China)
Moyamoya disease (MMD) is a disease with the terminal of bilateral internal carotid artery and (or) the proximal of the bilateral middle cerebral artery and (or) the proximal of the bilateral anterior cerebral artery lumen stenosis or occlusion progresively, accompanying with the formation of abnormal vascular network at the base of the brain. MRI techniques show great potential in the early diagnosis, individualized treatment, assessing patient's condition and prognosis and follow-up of MMD. The application of MRI in research on MMD were reviewed in this article, such as in diagnosis of MMD, assessment of cerebral haemodynamics and function and so on.
Moyamoya disease; Magnetic resonance imaging
李舒曼(1992—),女,河南漯河人,在讀碩士。研究方向:中樞神經(jīng)系統(tǒng)影像學(xué)。E-mail: lishuman120@163.com
程敬亮,鄭州大學(xué)第一附屬醫(yī)院MRI科,450052。
E-mail: cjr.chjl@vip.163.com
2016-02-05
2016-03-25
R445.2; R743
A
1672-8475(2016)09-0580-05
10.13929/j.1672-8475.2016.09.014